Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Aplastic Anemia Medication

  • Author: Sameer Bakhshi, MD; Chief Editor: Emmanuel C Besa, MD  more...
 
Updated: Feb 15, 2016
 

Medication Summary

The goals of pharmacotherapy in cases of aplastic anemia are to reduce morbidity and prevent complications.

As previously stated, options in immunosuppressive treatment include combination therapy, including antithymocyte globulin (ATG), cyclosporin-A (CSA), and methylprednisolone, with or without cytokine support. ATG or CSA alone may also produce a response in aplastic anemia, but the combination improves the likelihood of a response.

Hematopoietic support with eltrombopag, granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) may be considered in refractory infections, although this therapy should be weighed against cost and efficacy.[8, 51, 52, 53, 83, 84]

Next

Immunosuppressive Agents

Class Summary

The merits of additional immunosuppression versus the increased risk and cost should be considered. Data from a randomized, prospective study indicated that an increased proportion of patients responded to the addition of CSA to ATG but that this did not translate into a long-term survival advantage.[85] That is, failure-free survival is better with CSA, but long-term overall survival was similar between CSA and ATG.

For patients who cannot tolerate equine-based products, use of the commercially available, rabbit-based ATG product (Thymoglobulin) may be considered. This product is currently approved in the United States and has been used for the treatment of aplastic anemia in Europe (although note the different dose schedule).

Cyclosporine (Sandimmune, Neoral)

 

Cyclosporine is a cyclic polypeptide that suppresses some humoral immunity and, to a greater extent, cell-mediated immune reactions (eg, delayed hypersensitivity, allograft rejection, experimental allergic encephalomyelitis, graft versus host disease) for a variety of organs.

For children and adults, base the initial dosing on the ideal body weight and subsequently adjust for levels. Frequent monitoring of drug levels is needed. To convert to the oral dose, use an intravenous (IV)-to-oral correction factor of 1:4. The dosage and duration of therapy may vary with different protocols. When used without hematopoietic growth factor in children, ATG and cyclosporine-based immunosuppressive therapy has been shown to lead to an excellent response and survival rate with low incidence of clonal evolution.

Methylprednisolone (Medrol, Solu-Medrol)

 

Steroids ameliorate the delayed effects of anaphylactoid reactions and may limit biphasic anaphylaxis. In severe serum sickness (mediated by immune complexes), parenteral steroids may reduce the inflammatory effects. Hence, methylprednisolone is used with antithymocyte globulin (ATG) to decrease the adverse effects (eg, allergic reactions, serum sickness). Also, this agent has an additional immunosuppressive effect. High doses or long duration may be needed if serum sickness occurs with ATG. The doses and duration may vary with different protocols.

Alemtuzumab (Campath, MabCampath)

 

Alemtuzumab is a recombinant monoclonal antibody against CD52 (lymphocyte antigen). This agent promotes antibody-dependent lysis.

Lymphocyte immune globulin, equine (Atgam)

 

Lymphocyte immune globulin inhibits the cell-mediated immune response by altering T-cell function or by eliminating antigen-reactive cells. There is little prospective, randomized data to suggest a single schedule that is superior, but experience suggests that a 4- to 5-day infusion is associated with less toxicity than older 7- to 10-day schedules.

Cyclophosphamide (Cytoxan)

 

Cyclophosphamide is chemically related to nitrogen mustards. As an alkylating agent, the mechanism of action of the active metabolites may involve cross-linking of deoxyribonucleic acid (DNA), which may interfere with the growth of normal and neoplastic cells. Monitor carefully; used only on an investigational basis.

Antithymocyte globulin, rabbit (Thymoglobulin)

 

Antithymocyte globulin (ATG) may modify T-cell function. The dose and duration of therapy vary with the investigational protocols.

Previous
Next

Hematopoietic Growth Factors

Class Summary

Eltrombopag has gained FDA approval for severe aplastic anemia and may be considered in patients who fail immunosuppressive therapy. Several preliminary studies have demonstrated that the addition of cytokines (eg, granulocyte colony-stimulating factor [G-CSF], granulocyte-macrophage colony-stimulating factor [GM-CSF]) may hasten the neutrophil recovery and that these agents may improve response rate and survival, although long-term use may increase the risk of clonal evolution.

Eltrombopag (Promacta)

 

Eltrombopag is a thrombopoietin (TPO)-receptor agonist that interacts with human TPO receptor transmembrane domain of human TPO-receptor. It initiates signaling cascades that induce proliferation and differentiation of megakaryocytes from bone marrow progenitor cells. It is indicated for severe aplastic anemia in patients who fail to respond adequately to at least 1 prior immunosuppressive therapy.

Sargramostim (Leukine)

 

A recombinant human GM-CSF, sargramostim can stimulate production of neutrophils and activate mature granulocytes and macrophages. The dose and frequency of administration vary with the investigational protocol.

Filgrastim (Neupogen)

 

Filgrastim is a G-CSF that activates and stimulates the production, maturation, migration, and cytotoxicity of neutrophils.

Previous
Next

Antineoplastic Agent, Antimetabolite (purine)

Class Summary

Antimetabolites are antineoplastic agent that inhibit cell growth and proliferation.

Fludarabine (Fludara)

 

Fludarabine contains fludarabine phosphate, a fluorinated nucleotide analogue of the antiviral agent vidarabine, 9-b-D-arabinofuranosyladenine (ara-A) that enters the cell and is phosphorylated to form the active metabolite 2-fluoro-ara-adenosine triphosphate, which inhibits deoxyribonucleic acid (DNA) synthesis. Specifically, this agent inhibits DNA polymerase, DNA primase, DNA ligase, and ribonucleotide reductase, as well as ribonucleic acid (RNA) function, RNA processing, and mRNA translation. Fludarabine also activates apoptosis.

Previous
Next

Chelators

Class Summary

Chelating agents eliminate iron overload from transfusions.

Deferoxamine (Desferal)

 

Deferoxamine chelates iron by forming a stable complex that prevents the iron from entering into further chemical reactions; it also chelates iron readily from ferritin and hemosiderin but not readily from transferrin. Desferoxamine does not combine with the iron from cytochromes and hemoglobin. The chelate is readily soluble and is renally excreted.

Deferasirox (Exjade)

 

Deferasirox chelates trivalent iron. This agent is used to treat chronic iron overload due to blood transfusions. Monitor patients' renal and hepatic function.

Previous
 
Contributor Information and Disclosures
Author

Sameer Bakhshi, MD Additional Professor of Pediatric Oncology, Department of Medical Oncology, Dr BRA Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, India

Disclosure: Nothing to disclose.

Chief Editor

Emmanuel C Besa, MD Professor Emeritus, Department of Medicine, Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University

Emmanuel C Besa, MD is a member of the following medical societies: American Association for Cancer Education, American Society of Clinical Oncology, American College of Clinical Pharmacology, American Federation for Medical Research, American Society of Hematology, New York Academy of Sciences

Disclosure: Nothing to disclose.

Acknowledgements

Esteban Abella, MD Consulting Staff, Arizona Pediatric Hematology/Oncology, PLLC

Disclosure: Nothing to disclose.

David Aboulafia, MD Medical Director, Bailey-Boushay House, Clinical Professor, Department of Medicine, Division of Hematology, Attending Physician, Section of Hematology/Oncology, Virginia Mason Clinic; Investigator, Virginia Mason Community Clinic Oncology Program/SWOG

David Aboulafia, MD is a member of the following medical societies: American College of Physicians, American Medical Association, American Medical Directors Association, American Society of Hematology, Infectious Diseases Society of America, and Phi Beta Kappa

Disclosure: Nothing to disclose.

Roy Baynes, MB, BCh, PhD, FACP Charles Martin Professor of Cancer Research, Department of Internal Medicine, Division of Hematology and Oncology, Karmanos Cancer Institute, Wayne State University

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Breakey VR, Meyn S, Ng V, Allen C, Dokal I, Lansdorp PM, et al. Hepatitis-associated aplastic anemia presenting as a familial bone marrow failure syndrome. J Pediatr Hematol Oncol. 2009 Nov. 31(11):884-7. [Medline].

  2. Gonzalez-Casas R, Garcia-Buey L, Jones EA, Gisbert JP, Moreno-Otero R. Systematic review: hepatitis-associated aplastic anaemia--a syndrome associated with abnormal immunological function. Aliment Pharmacol Ther. 2009 Sep 1. 30(5):436-43. [Medline].

  3. Miano M, Dufour C. The diagnosis and treatment of aplastic anemia: a review. Int J Hematol. 2015 Jun. 101 (6):527-35. [Medline].

  4. McCormack PL. Eltrombopag: a review of its use in patients with severe aplastic anaemia. Drugs. 2015 Apr. 75 (5):525-31. [Medline].

  5. [Guideline] Killick SB, Bown N, Cavenagh J, Dokal I, Foukaneli T, Hill A, et al. Guidelines for the diagnosis and management of adult aplastic anaemia. Br J Haematol. 2016 Jan. 172 (2):187-207. [Medline]. [Full Text].

  6. [Guideline] Barone A, Lucarelli A, Onofrillo D, Verzegnassi F, Bonanomi S, et al. Diagnosis and management of acquired aplastic anemia in childhood. Guidelines from the Marrow Failure Study Group of the Pediatric Haemato-Oncology Italian Association (AIEOP). Blood Cells Mol Dis. 2015 Jun. 55 (1):40-7. [Medline].

  7. Wu Y, Yu J, Zhang L, Luo Q, Xiao JW, Liu XM, et al. [Hematopoiesis support of mesenchymal stem cells in children with aplastic anemia]. Zhongguo Dang Dai Er Ke Za Zhi. 2008 Aug. 10(4):455-9. [Medline].

  8. Scopes J, Daly S, Atkinson R, Ball SE, Gordon-Smith EC, Gibson FM. Aplastic anemia: evidence for dysfunctional bone marrow progenitor cells and the corrective effect of granulocyte colony-stimulating factor in vitro. Blood. 1996 Apr 15. 87(8):3179-85. [Medline].

  9. Young NS. Pathophysiologic mechanisms in acquired aplastic anemia. Hematology Am Soc Hematol Educ Program. 2006. 72-7. [Medline].

  10. Liu H, Mihara K, Kimura A, Tanaka K, Kamada N. Induction of apoptosis in CD34+ cells by sera from patients with aplastic anemia. Hiroshima J Med Sci. 1999 Jun. 48(2):57-63. [Medline].

  11. Marsh JC. Long-term bone marrow cultures in aplastic anaemia. Eur J Haematol Suppl. 1996. 60:75-9. [Medline].

  12. Marsh JC, Chang J, Testa NG, Hows JM, Dexter TM. The hematopoietic defect in aplastic anemia assessed by long-term marrow culture. Blood. 1990 Nov 1. 76(9):1748-57. [Medline].

  13. Solomou EE, Keyvanfar K, Young NS. T-bet, a Th1 transcription factor, is up-regulated in T cells from patients with aplastic anemia. Blood. 2006 May 15. 107(10):3983-91. [Medline]. [Full Text].

  14. Socié G, Rosenfeld S, Frickhofen N, Gluckman E, Tichelli A. Late clonal diseases of treated aplastic anemia. Semin Hematol. 2000 Jan. 37(1):91-101. [Medline].

  15. Nakao S. Immune mechanism of aplastic anemia. Int J Hematol. 1997 Aug. 66(2):127-34. [Medline].

  16. Frickhofen N, Kaltwasser JP, Schrezenmeier H, Raghavachar A, Vogt HG, Herrmann F, et al. Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. The German Aplastic Anemia Study Group. N Engl J Med. 1991 May 9. 324(19):1297-304. [Medline].

  17. Passweg JR, Pérez WS, Eapen M, Camitta BM, Gluckman E, Hinterberger W, et al. Bone marrow transplants from mismatched related and unrelated donors for severe aplastic anemia. Bone Marrow Transplant. 2006 Apr. 37(7):641-9. [Medline].

  18. Bacigalupo A, Brand R, Oneto R, Bruno B, Socié G, Passweg J, et al. Treatment of acquired severe aplastic anemia: bone marrow transplantation compared with immunosuppressive therapy--The European Group for Blood and Marrow Transplantation experience. Semin Hematol. 2000 Jan. 37(1):69-80. [Medline].

  19. Hirano N, Butler MO, Von Bergwelt-Baildon MS, Maecker B, Schultze JL, O'Connor KC, et al. Autoantibodies frequently detected in patients with aplastic anemia. Blood. 2003 Dec 15. 102(13):4567-75. [Medline].

  20. Solomou EE, Gibellini F, Stewart B, Malide D, Berg M, Visconte V, et al. Perforin gene mutations in patients with acquired aplastic anemia. Blood. 2007 Jun 15. 109(12):5234-7. [Medline]. [Full Text].

  21. Solomou EE, Rezvani K, Mielke S, Malide D, Keyvanfar K, Visconte V, et al. Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Blood. 2007 Sep 1. 110(5):1603-6. [Medline]. [Full Text].

  22. Scheinberg P, Cooper JN, Sloand EM, Wu CO, Calado RT, Young NS. Association of telomere length of peripheral blood leukocytes with hematopoietic relapse, malignant transformation, and survival in severe aplastic anemia. JAMA. 2010 Sep 22. 304(12):1358-64. [Medline].

  23. Alter BP. Aplastic Anemia, Pediatric Aspects. Oncologist. 1996. 1(6):361-366. [Medline].

  24. Vulliamy T, Marrone A, Dokal I, Mason PJ. Association between aplastic anaemia and mutations in telomerase RNA. Lancet. 2002 Jun 22. 359(9324):2168-70. [Medline].

  25. Rothbaum R, Perrault J, Vlachos A, Cipolli M, Alter BP, Burroughs S, et al. Shwachman-Diamond syndrome: report from an international conference. J Pediatr. 2002 Aug. 141(2):266-70. [Medline].

  26. Doherty L, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Clinton C, et al. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2010 Feb 12. 86(2):222-8. [Medline]. [Full Text].

  27. Zhang J, Yang T. [Meta-analysis of association between organophosphorus pesticides and aplastic anemia]. Zhonghua Liu Xing Bing Xue Za Zhi. 2015 Sep. 36 (9):1005-9. [Medline].

  28. Young NS, Maciejewski JP, Sloand E, Chen G, Zeng W, Risitano A, et al. The relationship of aplastic anemia and PNH. Int J Hematol. 2002 Aug. 76 Suppl 2:168-72. [Medline].

  29. Kaufman DW, Kelly JP, Levy M, Shapiro S. The Drug Etiology of Agranulocytosis and Aplastic Anemia. New York: Oxford University Press; 1991.

  30. Issaragrisil S, Sriratanasatavorn C, Piankijagum A, Vannasaeng S, Porapakkham Y, Leaverton PE, et al. Incidence of aplastic anemia in Bangkok. The Aplastic Anemia Study Group. Blood. 1991 May 15. 77(10):2166-8. [Medline].

  31. Young NS, Shimamura A. Acquired bone marrow failure syndromes. Handen RI, Lux SE, Stossel TP,. Blood: Principles & Practice of Hematology. 2nd ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2003. 297.

  32. Locasciulli A, Oneto R, Bacigalupo A, Socié G, Korthof E, Bekassy A, et al. Outcome of patients with acquired aplastic anemia given first line bone marrow transplantation or immunosuppressive treatment in the last decade: a report from the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2007 Jan. 92(1):11-8. [Medline].

  33. Chan KW, McDonald L, Lim D, Grimley MS, Grayson G, Wall DA. Unrelated cord blood transplantation in children with idiopathic severe aplastic anemia. Bone Marrow Transplant. 2008 Nov. 42(9):589-95. [Medline].

  34. Bunin N, Aplenc R, Iannone R, Leahey A, Grupp S, Monos D, et al. Unrelated donor bone marrow transplantation for children with severe aplastic anemia: minimal GVHD and durable engraftment with partial T cell depletion. Bone Marrow Transplant. 2005 Feb. 35(4):369-73. [Medline].

  35. Kang HJ, Shin HY, Choi HS, Ahn HS. Fludarabine, cyclophosphamide plus thymoglobulin conditioning regimen for unrelated bone marrow transplantation in severe aplastic anemia. Bone Marrow Transplant. 2004 Dec. 34(11):939-43. [Medline].

  36. Brodsky RA, Sensenbrenner LL, Smith BD, Dorr D, Seaman PJ, Lee SM, et al. Durable treatment-free remission after high-dose cyclophosphamide therapy for previously untreated severe aplastic anemia. Ann Intern Med. 2001 Oct 2. 135(7):477-83. [Medline].

  37. Horowitz MM. Current status of allogeneic bone marrow transplantation in acquired aplastic anemia. Semin Hematol. 2000 Jan. 37(1):30-42. [Medline].

  38. Kaito K, Kobayashi M, Katayama T, Masuoka H, Shimada T, Nishiwaki K, et al. Long-term administration of G-CSF for aplastic anaemia is closely related to the early evolution of monosomy 7 MDS in adults. Br J Haematol. 1998 Nov. 103(2):297-303. [Medline].

  39. Piaggio G, Podestà M, Pitto A, Sessarego M, Figari O, Fugazza G, et al. Coexistence of normal and clonal haemopoiesis in aplastic anaemia patients treated with immunosuppressive therapy. Br J Haematol. 1999 Dec. 107(3):505-11. [Medline].

  40. Rosti V. The molecular basis of paroxysmal nocturnal hemoglobinuria. Haematologica. 2000 Jan. 85(1):82-7. [Medline].

  41. Orazi A, Czader MB. Myelodysplastic syndromes. Am J Clin Pathol. 2009 Aug. 132(2):290-305. [Medline].

  42. Kulasekararaj AG, Jiang J, Smith AE, Mohamedali AM, Mian S, Gandhi S, et al. Somatic mutations identify a sub-group of aplastic anemia patients that progress to myelodysplastic syndrome. Blood. 2014 Aug 18. [Medline].

  43. Arai Y, Kondo T, Yamazaki H, Takenaka K, Sugita J, Kobayashi T, et al. Allogeneic unrelated bone marrow transplantation from older donors results in worse prognosis in recipients with aplastic anemia. Haematologica. 2016 Feb 8. [Medline].

  44. Vajdic CM, Mayson E, Dodds AJ, O'Brien T, Wilcox L, Nivison-Smith I, et al. Second cancer risk and late mortality in adult Australians receiving allogeneic haematopoietic stem cell transplantation: A population-based cohort study. Biol Blood Marrow Transplant. 2016 Feb 6. [Medline].

  45. Brodsky RA, Mukhina GL, Li S, Nelson KL, Chiurazzi PL, Buckley JT, et al. Improved detection and characterization of paroxysmal nocturnal hemoglobinuria using fluorescent aerolysin. Am J Clin Pathol. 2000 Sep. 114(3):459-66. [Medline].

  46. Krauss JS. The laboratory diagnosis of paroxysmal nocturnal hemoglobinuria (PNH): update 2010. Lab Medicine. 2012. 43:20-4. [Full Text].

  47. Camitta BM, Thomas ED, Nathan DG, Gale RP, Kopecky KJ, Rappeport JM, et al. A prospective study of androgens and bone marrow transplantation for treatment of severe aplastic anemia. Blood. 1979 Mar. 53(3):504-14. [Medline].

  48. Valdez JM, Scheinberg P, Young NS, Walsh TJ. Infections in patients with aplastic anemia. Semin Hematol. 2009 Jul. 46(3):269-76. [Medline].

  49. Jancel T, Penzak SR. Antiviral therapy in patients with hematologic malignancies, transplantation, and aplastic anemia. Semin Hematol. 2009 Jul. 46(3):230-47. [Medline].

  50. Pournaras S, Iosifidis E, Roilides E. Advances in antibacterial therapy against emerging bacterial pathogens. Semin Hematol. 2009 Jul. 46(3):198-211. [Medline].

  51. Di Bona E, Rodeghiero F, Bruno B, Gabbas A, Foa P, Locasciulli A, et al. Rabbit antithymocyte globulin (r-ATG) plus cyclosporine and granulocyte colony stimulating factor is an effective treatment for aplastic anaemia patients unresponsive to a first course of intensive immunosuppressive therapy. Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Br J Haematol. 1999 Nov. 107(2):330-4. [Medline].

  52. Bacigalupo A, Broccia G, Corda G, Arcese W, Carotenuto M, Gallamini A, et al. Antilymphocyte globulin, cyclosporin, and granulocyte colony-stimulating factor in patients with acquired severe aplastic anemia (SAA): a pilot study of the EBMT SAA Working Party. Blood. 1995 Mar 1. 85(5):1348-53. [Medline].

  53. Dufour C, Ferretti E, Bagnasco F, Burlando O, Lanciotti M, Ramenghi U, et al. Changes in cytokine profile pre- and post-immunosuppression in acquired aplastic anemia. Haematologica. 2009 Dec. 94(12):1743-7. [Medline]. [Full Text].

  54. Schrezenmeier H, Passweg JR, Marsh JC, Bacigalupo A, Bredeson CN, Bullorsky E, et al. Worse outcome and more chronic GVHD with peripheral blood progenitor cells than bone marrow in HLA-matched sibling donor transplants for young patients with severe acquired aplastic anemia. Blood. 2007 Aug 15. 110(4):1397-400. [Medline]. [Full Text].

  55. Kumar R, Kimura F, Ahn KW, Hu ZH, Kuwatsuka Y, et al. Comparing Outcomes with Bone Marrow or Peripheral Blood Stem Cells as Graft Source for Matched Sibling Transplants in Severe Aplastic Anemia across Different Economic Regions. Biol Blood Marrow Transplant. 2016 Jan 18. [Medline].

  56. Locatelli F, Bruno B, Zecca M, Van-Lint MT, McCann S, Arcese W, et al. Cyclosporin A and short-term methotrexate versus cyclosporin A as graft versus host disease prophylaxis in patients with severe aplastic anemia given allogeneic bone marrow transplantation from an HLA-identical sibling: results of a GITMO/EBMT randomized trial. Blood. 2000 Sep 1. 96(5):1690-7. [Medline].

  57. George B, Mathews V, Viswabandya A, Kavitha ML, Srivastava A, Chandy M. Fludarabine and cyclophosphamide based reduced intensity conditioning (RIC) regimens reduce rejection and improve outcome in Indian patients undergoing allogeneic stem cell transplantation for severe aplastic anemia. Bone Marrow Transplant. 2007 Jul. 40(1):13-8. [Medline].

  58. Anderlini P, Wu J, Gersten I, Ewell M, Tolar J, Antin JH, et al. Cyclophosphamide conditioning in patients with severe aplastic anaemia given unrelated marrow transplantation: a phase 1-2 dose de-escalation study. Lancet Haematol. 2015 Sep. 2 (9):e367-75. [Medline].

  59. Maury S, Balère-Appert ML, Chir Z, Boiron JM, Galambrun C, Yakouben K, et al. Unrelated stem cell transplantation for severe acquired aplastic anemia: improved outcome in the era of high-resolution HLA matching between donor and recipient. Haematologica. 2007 May. 92(5):589-96. [Medline].

  60. Yagasaki H, Takahashi Y, Hama A, et al. Comparison of matched-sibling donor BMT and unrelated donor BMT in children and adolescent with acquired severe aplastic anemia. Bone Marrow Transplant. 2010 Oct. 45(10):1508-13. [Medline].

  61. Tolar J, Deeg HJ, Arai S, Horwitz M, Antin JH, McCarty JM, et al. Fludarabine-based conditioning for marrow transplantation from unrelated donors in severe aplastic anemia: early results of a cyclophosphamide dose deescalation study show life-threatening adverse events at predefined cyclophosphamide dose levels. Biol Blood Marrow Transplant. 2012 Jul. 18(7):1007-11. [Medline].

  62. Samarasinghe S, Steward C, Hiwarkar P, Saif MA, Hough R, Webb D, et al. Excellent outcome of matched unrelated donor transplantation in paediatric aplastic anaemia following failure with immunosuppressive therapy: a United Kingdom multicentre retrospective experience. Br J Haematol. 2012 May. 157(3):339-46. [Medline].

  63. Hamad N, Del Bel R, Messner HA, Kim D, Kuruvilla J, Lipton JH, et al. Outcomes of Hematopoietic Cell Transplantation in Adult Patients with Acquired Aplastic Anemia Using Intermediate-Dose Alemtuzumab-Based Conditioning. Biol Blood Marrow Transplant. 2014 Jul 10. [Medline].

  64. Clay J, Kulasekararaj AG, Potter V, Grimaldi F, McLornan D, Raj K, et al. Nonmyeloablative Peripheral Blood Haploidentical Stem Cell Transplantation for Refractory Severe Aplastic Anemia. Biol Blood Marrow Transplant. 2014 Jul 10. [Medline].

  65. Peffault de Latour R, Rocha V, Socié G. Cord blood transplantation in aplastic anemia. Bone Marrow Transplant. 2013 Feb. 48(2):201-2. [Medline].

  66. MacMillan ML, Walters MC, Gluckman E. Transplant outcomes in bone marrow failure syndromes and hemoglobinopathies. Semin Hematol. 2010 Jan. 47(1):37-45. [Medline].

  67. Chan KW, McDonald L, Lim D, Grimley MS, Grayson G, Wall DA. Unrelated cord blood transplantation in children with idiopathic severe aplastic anemia. Bone Marrow Transplant. 2008 Nov. 42(9):589-95. [Medline].

  68. Yoshimi A, Kojima S, Taniguchi S, et al. Unrelated cord blood transplantation for severe aplastic anemia. Biol Blood Marrow Transplant. 2008 Sep. 14(9):1057-63. [Medline].

  69. Schrezenmeier H, Korper S, Hochsmann B. Standard first-line immunosuppression for acquired severe aplastic anemia in adults. Curr Drug Targets. 2015 Jun 30. [Medline].

  70. Scheinberg P, Nunez O, Weinstein B, et al. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med. 2011 Aug 4. 365(5):430-8. [Medline].

  71. Risitano AM. Immunosuppressive therapies in the management of acquired immune-mediated marrow failures. Curr Opin Hematol. 2012 Jan. 19(1):3-13. [Medline].

  72. Doney K, Dahlberg SJ, Monroe D, Storb R, Buckner CD, Thomas ED. Therapy of severe aplastic anemia with anti-human thymocyte globulin and androgens: the effect of HLA-haploidentical marrow infusion. Blood. 1984 Feb. 63(2):342-8. [Medline].

  73. Marsh JC, Hows JM, Bryett KA, Al-Hashimi S, Fairhead SM, Gordon-Smith EC. Survival after antilymphocyte globulin therapy for aplastic anemia depends on disease severity. Blood. 1987 Oct. 70(4):1046-52. [Medline].

  74. Means RT Jr, Krantz SB, Dessypris EN, Lukens JN, Niblack GD, Greer JP, et al. Re-treatment of aplastic anemia with antithymocyte globulin or antilymphocyte serum. Am J Med. 1988 Apr. 84(4):678-82. [Medline].

  75. Schrezenmeier H, Marin P, Raghavachar A, McCann S, Hows J, Gluckman E, et al. Relapse of aplastic anaemia after immunosuppressive treatment: a report from the European Bone Marrow Transplantation Group SAA Working Party. Br J Haematol. 1993 Oct. 85(2):371-7. [Medline].

  76. Schrezenmeier H, Hertenstein B, Wagner B, Raghavachar A, Heimpel H. A pathogenetic link between aplastic anemia and paroxysmal nocturnal hemoglobinuria is suggested by a high frequency of aplastic anemia patients with a deficiency of phosphatidylinositol glycan anchored proteins. Exp Hematol. 1995 Jan. 23(1):81-7. [Medline].

  77. Stein RS, Means RT Jr, Krantz SB, Flexner JM, Greer JP. Treatment of aplastic anemia with an investigational antilymphocyte serum prepared in rabbits. Am J Med Sci. 1994 Dec. 308(6):338-43. [Medline].

  78. Tichelli A, Passweg J, Nissen C, Bargetzi M, Hoffmann T, Wodnar-Filipowicz A, et al. Repeated treatment with horse antilymphocyte globulin for severe aplastic anaemia. Br J Haematol. 1998 Feb. 100(2):393-400. [Medline].

  79. Maschan A, Bogatcheva N, Kryjanovskii O, Shneider M, Litvinov D, Mitiushkina T, et al. Results at a single centre of immunosuppression with cyclosporine A in 66 children with aplastic anaemia. Br J Haematol. 1999 Sep. 106(4):967-70. [Medline].

  80. Scheinberg P, Young NS. How I treat acquired aplastic anemia. Blood. 2012 Aug 9. 120(6):1185-96. [Medline]. [Full Text].

  81. Brodsky RA, Chen AR, Dorr D, et al. High-dose cyclophosphamide for severe aplastic anemia: long-term follow-up. Blood. 2010 Mar 18. 115(11):2136-41. [Medline]. [Full Text].

  82. Tisdale JF, Dunn DE, Geller N, et al. High-dose cyclophosphamide in severe aplastic anaemia: a randomised trial. Lancet. 2000 Nov 4. 356(9241):1554-9. [Medline].

  83. Olnes MJ, Scheinberg P, Calvo KR, Desmond R, Tang Y, Dumitriu B, et al. Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J Med. 2012 Jul 5. 367(1):11-9. [Medline]. [Full Text].

  84. Promacta (eltrombopag) prescribing information [package insert]. Research Triangle Park, NC 27709: GlaxoSmithKline. August 2014. Available at [Full Text].

  85. Frickhofen N, Heimpel H, Kaltwasser JP, Schrezenmeier H. Antithymocyte globulin with or without cyclosporin A: 11-year follow-up of a randomized trial comparing treatments of aplastic anemia. Blood. 2003 Feb 15. 101(4):1236-42. [Medline].

  86. Führer M, Rampf U, Baumann I, Faldum A, Niemeyer C, Janka-Schaub G, et al. Immunosuppressive therapy for aplastic anemia in children: a more severe disease predicts better survival. Blood. 2005 Sep 15. 106(6):2102-4. [Medline].

  87. Deyell RJ, Shereck EB, Milner RA, Schultz KR. Immunosuppressive therapy without hematopoietic growth factor exposure in pediatric acquired aplastic anemia. Pediatr Hematol Oncol. 2011 Sep. 28(6):469-78. [Medline].

 
Previous
Next
 
Oral leukoplakia in dyskeratosis congenita.
Low power, H and E showing a hypocellular bone marrow with increased adipose tissue and decreased hematopoietic cells in the marrow space.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.