Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Chronic Lymphocytic Leukemia

  • Author: Muhammad A Mir, MD, FACP; Chief Editor: Emmanuel C Besa, MD  more...
 
Updated: May 23, 2016
 

Practice Essentials

Chronic lymphocytic leukemia (chronic lymphoid leukemia, CLL) is a monoclonal disorder characterized by a progressive accumulation of functionally incompetent lymphocytes (see the image below). It is the most common form of leukemia found in adults in Western countries.[1] Some patients die rapidly, within 2-3 years of diagnosis, because of complications from CLL, but most patients live 5-10 years.

Peripheral smear from a patient with chronic lymph Peripheral smear from a patient with chronic lymphocytic leukemia, small lymphocytic variety.

See Chronic Leukemias: 4 Cancers to Differentiate, a Critical Images slideshow, to help detect chronic leukemias and determine the specific type present. See also Chronic Lymphocytic Leukemia (CLL) Guidelines

.

Signs and symptoms

Patients with CLL present with a wide range of symptoms and signs. Onset is insidious, and it is not unusual for CLL to be discovered incidentally after a blood cell count is performed for another reason; 25-50% of patients will be asymptomatic at time of presentation.

Symptoms include the following:

  • Enlarged lymph nodes, liver, or spleen
  • Recurring infections
  • Loss of appetite or early satiety
  • Abnormal bruising (late-stage symptom)
  • Fatigue
  • Night sweats

See Clinical Presentation for more detail.

Diagnosis

Patients with CLL have a higher-than-normal white blood cell count, which is determined by complete blood count (CBC). Peripheral blood flow cytometry is the most valuable test to confirm a diagnosis of CLL. Other tests that may be helpful for diagnosis include bone marrow biopsy and ultrasonography of the liver and spleen. Immunoglobulin testing may be indicated for patients developing repeated infections.

Staging

Two staging systems are used for CLL.

The Rai-Sawitsky staging system categorizes patients into low-, intermediate-, and high-risk groups, as follows:

  • Low risk (formerly stage 0) – Lymphocytosis in the blood and marrow only (25% of presenting population) [2]
  • Intermediate risk (formerly stages I and II) – Lymphocytosis with enlarged nodes in any site or splenomegaly or hepatomegaly (50% of presentation)
  • High risk (formerly stages III and IV) – Lymphocytosis with disease-related anemia (hemoglobin < 11 g/dL) or thrombocytopenia (platelets < 100 x 10 9/L) (25% of all patients)

The Binet staging system categorizes patients according to the number of lymph node groups involved, as follows:

  • Stage A – Hemoglobin greater than or equal to 10 g/dL, platelets greater than or equal to 100 × 10 9/L, and fewer than 3 lymph node areas involved.
  • Stage B – Hemoglobin and platelet levels as in stage A and three or more lymph node areas involved
  • Stage C – Hemoglobin less than 10 g/dL or platelets less than 100 × 10 9/L, or both

See Workup for more detail.

Management

Patients with early-stage CLL are not treated with chemotherapy until they become symptomatic or display evidence of rapid progression of disease. Early initiation of chemotherapy has failed to show benefit in CLL and may even increase mortality.

When chemotherapy is initiated, the nucleoside analogue fludarabine is the most commonly used first-line therapy in CLL. Combination regimens have shown improved response rates in several clinical trials and include the following:

  • Fludarabine, cyclophosphamide, and rituximab (FCR) [3, 4]
  • Pentostatin, cyclophosphamide, and rituximab (PCR)
  • Fludarabine, cyclophosphamide, and mitoxantrone (FCM)
  • Cyclophosphamide, vincristine, and prednisone (CVP)
  • Cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP)

See Treatment and Medication for more detail.

Next

Background

Chronic lymphocytic leukemia (chronic lymphoid leukemia, CLL) is a monoclonal disorder characterized by a progressive accumulation of functionally incompetent lymphocytes. It is the most common form of leukemia found in adults in Western countries.[1] (See the histologic sample in the image below.)

Peripheral smear from a patient with chronic lymph Peripheral smear from a patient with chronic lymphocytic leukemia, small lymphocytic variety.

Onset is insidious, and it is not unusual for CLL to be discovered incidentally after a blood cell count is performed for another reason. Enlarged lymph nodes are the most common presenting symptom, but patients may present with a wide range of symptoms and signs. (See Presentation.)

Chemotherapy is not needed in CLL until patients become symptomatic or display evidence of rapid progression of disease. A variety of chemotherapy regimens are used in CLL. These may include nucleoside analogues, alkylating agents, and biologics, often in combination. Allogeneic stem cell transplantation is the only known curative therapy. (See Treatment.)

Previous
Next

Pathophysiology

The cells of origin in most patients with CLL are clonal B cells arrested in the B-cell differentiation pathway, intermediate between pre-B cells and mature B cells. Morphologically, in the peripheral blood, these cells resemble mature lymphocytes.

CLL B-lymphocytes typically show B-cell surface antigens, as demonstrated by CD19, CD20dim, CD21, and CD23 monoclonal antibodies. In addition, they express CD5, which is more typically found on T cells. Because normal CD5+ B cells are present in the mantle zone of lymphoid follicles, B-cell CLL is most likely a malignancy of a mantle zone–based subpopulation of anergic self-reactive cells devoted to the production of polyreactive natural autoantibodies.

CLL B-lymphocytes express extremely low levels of surface membrane immunoglobulin, most often immunoglobulin M (IgM) or IgM/IgD and IgD. Additionally, they also express extremely low levels of a single immunoglobulin light chain (kappa or lambda).

An abnormal karyotype is observed in the majority of patients with CLL. The most common abnormality is deletion of 13q, which occurs in more than 50% of patients. Individuals showing 13q14 abnormalities have a relatively benign disease that usually manifests as stable or slowly progressive isolated lymphocytosis.

The presence of trisomy 12, which is observed in 15% of CLL patients, is associated with atypical morphology and progressive disease. Deletion in the short arm of chromosome 17 has been associated with rapid progression, short remission, and decreased overall survival. 17p13 deletions are associated with loss of function of the tumor suppressor gene p53. Deletions of bands 11q22-q23, observed in 19% of patients, are associated with extensive lymph node involvement, aggressive disease, and shorter survival.

More sensitive techniques have demonstrated abnormalities of chromosome 12. Forty to 50% of patients demonstrate no chromosomal abnormalities on conventional cytogenetic studies. However, 80% of patients will have abnormalities detectable by fluorescence in situ hybridization (FISH). Approximately 2-5% of patients with CLL exhibit a T-cell phenotype.

Studies have demonstrated that the proto-oncogene bcl2 is overexpressed in B-cell CLL.[5] The proto-oncogene bcl2 is a known suppressor of apoptosis (programmed cell death), resulting in a long life for the involved cells. Despite the frequent overexpression of bcl-2 protein, genetic translocations that are known to result in the overexpression of bcl2, such as t(14;18), are not found in patients with CLL.

Studies have shown that this upregulation in bcl2 is related to deletions of band 13q14. Two genes, named miRNA15a and miRNA16-1, are located at 13q14 and have been shown to encode not for proteins, but rather for a regulatory RNA called microRNA (miRNA).[6, 7] These miRNA genes belong to a family of highly conserved noncoding genes throughout the genome whose transcripts inhibit gene expression by causing degradation of mRNA or by blocking transcription of mRNA.

Deletions of miRNA15a and miRNA16-1 lead to overexpression of bcl2 through loss of downregulating miRNAs. Genetic analyses have demonstrated deletion or downregulation of these miRNA genes in 70% of CLL cases.[8]

Wang et al studied the CLL genome and discovered splicing factor 3b (SF3B1) mutations affecting pre-mRNA in 15% of sampled cells, similar to the finding of 20% of myelodysplastic syndrome cells that has been described.[9] At some stage, this may offer tempting therapeutic targets.

Investigations have also identified a number of high-risk genetic features and markers, including the following:

  • Germline immunoglobulin variable heavy chain (IgV H)
  • IgV H V3-21 gene usage
  • Increased CD38 expression
  • Increased Zap70 expression
  • Elevated serum beta-2-microglobulin levels
  • Increased serum thymidine kinase activity
  • Short lymphocyte doubling time (< 6 mo)
  • Increased serum levels of soluble CD23

These features have been associated with rapid progression, short remission, resistance to treatment, and shortened overall survival in patients with CLL.

Germline IgVH has been shown to indicate a poor prognosis. Studies have shown that these patients also have earlier progression of CLL after treatment with chemotherapy.

Zeta-associated peptide of 70 kilodaltons (Zap70) is a cytoplasmic tyrosine kinase whose expression has been associated with a poor prognosis. Cells with germline IgVH often have an increased expression of Zap70; however, studies have shown discordance rates of 10-20% between IgVH mutational status and Zap70 expression levels.

Elevated levels of Zap70 are believed to decrease the threshold for signaling through bcl2, thereby facilitating the antiapoptotic effects of bcl2.

Previous
Next

Etiology

As in the case of most malignancies, the exact cause of CLL is uncertain. CLL is an acquired disorder, and reports of truly familial cases are exceedingly rare.[10] A meta-analysis of four genome-wide association studies that included 3100 cases of CLL found multiple risk loci. Several of those loci are in close proximity to genes involved in apoptosis, suggesting a plausible underlying biological mechanism.[11]

Previous
Next

Epidemiology

United States statistics

The American Cancer Society estimates that 18,960 new cases of CLL will be diagnosed in the United States in 2016.[12] The true incidence in the US is unknown and is likely higher, as estimates of CLL incidence come from tumor registries, and many cases are not reported.

International statistics

Although the incidence of CLL in Western countries is similar to that of the United States, CLL is extremely rare in Asian countries (ie, China, Japan), where it is estimated to comprise only 10% of all leukemias. However, underreporting and incomplete registry may significantly underestimate the true incidence of CLL in these countries.

Race-, sex-, and age-related demographics

The incidence of CLL is higher among whites than blacks. The incidence of CLL is higher in males than in females, with a male-to-female ratio of 1.7:1.

CLL is a disease that primarily affects the elderly, with the median age of presentation being 72 years. Median age is 58 years in familial cases.[2]

Previous
Next

Prognosis

The prognosis of patients with CLL varies widely at diagnosis. Some patients die rapidly, within 2-3 years of diagnosis, because of complications from CLL. Most patients live 5-10 years, with an initial course that is relatively benign but followed by a terminal, progressive, and resistant phase lasting 1-2 years. During the later phase, morbidity is considerable, both from the disease and from complications of therapy.[13, 14]

Prognosis depends on the disease stage at diagnosis as well as the presence or absence of high-risk markers (see Pathophysiology).

Previous
 
 
Contributor Information and Disclosures
Author

Muhammad A Mir, MD, FACP Assistant Professor of Medicine (Hematology, Blood/Marrow Transplant) Milton S Hershey Medical Center, Pennsylvania State University College of Medicine

Muhammad A Mir, MD, FACP is a member of the following medical societies: American College of Physicians, American Society of Hematology, American Society for Blood and Marrow Transplantation, American Society of Clinical Oncology

Disclosure: Nothing to disclose.

Coauthor(s)

Haleem J Rasool, MD, FACP Chair, Department of Oncology, Mayo Clinic Health System, La Crosse, WI

Haleem J Rasool, MD, FACP is a member of the following medical societies: American College of Physicians, American Society of Clinical Oncology, American Society of Hematology

Disclosure: Nothing to disclose.

Delong Liu, MD, PhD Professor of Medicine, Division of Oncology/Hematology, New York Medical College; Chief of Hematology, Phelps Memorial Hospital Center; Director of Non-ablative Allogeneic Stem Cell Transplantation Program, Westchester Medical Center; Editor-in-Chief, Journal of Hematology and Oncology

Delong Liu, MD, PhD is a member of the following medical societies: American Society of Hematology, American Society of Clinical Oncology

Disclosure: Nothing to disclose.

Samir C Patel, MD Fellow, Department of Hematology and Medical Oncology, Metropolitan Hospital, New York Medical College

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Chief Editor

Emmanuel C Besa, MD Professor Emeritus, Department of Medicine, Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University

Emmanuel C Besa, MD is a member of the following medical societies: American Association for Cancer Education, American Society of Clinical Oncology, American College of Clinical Pharmacology, American Federation for Medical Research, American Society of Hematology, New York Academy of Sciences

Disclosure: Nothing to disclose.

Acknowledgements

Michael Perry, MD, MS, MACP† Former Nellie B Smith Chair of Oncology Emeritus, Former Director, Division of Hematology and Medical Oncology, Former Deputy Director, Ellis Fischel Cancer Center, University of Missouri-Columbia School of Medicine

Clarence Sarkodee-Adoo, MD Consulting Staff, Department of Bone Marrow Transplantation, City of Hope Samaritan BMT Program

Disclosure: Takeda Millenium Honoraria Speaking and teaching

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Elter T, Hallek M, Engert A. Fludarabine in chronic lymphocytic leukaemia. Expert Opin Pharmacother. 2006 Aug. 7(12):1641-51. [Medline].

  2. PDQ Adult Treatment Editorial Board. Chronic Lymphocytic Leukemia Treatment (PDQ®): Health Professional Version. PDQ Cancer Information Summaries. Bethesda, MD: National Cancer Institute; January 29, 2016. [Full Text].

  3. Klepfish A, Gilles L, Ioannis K, Eliezer R, Ami S. Enhancing the action of rituximab in chronic lymphocytic leukemia by adding fresh frozen plasma: complement/rituximab interactions & clinical results in refractory CLL. Ann N Y Acad Sci. 2009 Sep. 1173:865-73. [Medline].

  4. Badoux XC, Keating MJ, Wang X, et al. Fludarabine, cyclophosphamide and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. Blood. 2011 Jan 18. [Medline].

  5. Zenz T, Benner A, Duhrsen U, Durig J, Dohner H, Siffert W, et al. BCL2-938C>A polymorphism and disease progression in chronic lymphocytic leukemia. Leuk Lymphoma. 2009 Sep 11. 1-6. [Medline].

  6. Nicoloso MS, Kipps TJ, Croce CM, Calin GA. MicroRNAs in the pathogeny of chronic lymphocytic leukaemia. Br J Haematol. 2007 Dec. 139(5):709-16. [Medline]. [Full Text].

  7. Hanlon K, Rudin CE, Harries LW. Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL). PLoS One. 2009 Sep 25. 4(9):e7169. [Medline]. [Full Text].

  8. Fabbri M, Bottoni A, Shimizu M, et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011 Jan 5. 305(1):59-67. [Medline].

  9. Wang L, Lawrence MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011 Dec 29. 365(26):2497-506. [Medline].

  10. Slager SL, Kay NE. Familial Chronic Lymphocytic Leukemia: What Does it Mean to Me?. Clin Lymphoma Myeloma. 2009 Sep 1. 9:S194-S197. [Medline].

  11. Berndt SI, Camp NJ, Skibola CF, Vijai J, Wang Z, et al. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nat Commun. 2016 Mar 9. 7:10933. [Medline].

  12. Cancer Facts & Figures 2016. American Cancer Society. Available at http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf. Accessed: March 10, 2016.

  13. Rai KR, Keating HJ. Chronic lymphocytic leukemia. Holland JF, Bast RC, Morton DL, et al, eds. Cancer Medicine. 4th ed. Baltimore, Md: Williams and Wilkins; 1997. Vol II: 2697-728.

  14. Kristinsson SY, Dickman PW, Wilson WH, et al. Improved survival in chronic lymphocytic leukemia in the past decade: a population-based study including 11,179 patients diagnosed between 1973-2003 in Sweden. Haematologica. 2009 Sep. 94(9):1259-65. [Medline]. [Full Text].

  15. Maurer MJ, Cerhan JR, Katzmann JA, et al. Monoclonal and polyclonal serum free light chains and clinical outcome in chronic lymphocytic leukemia. Blood. 2011 Sep 8. 118(10):2821-6. [Medline]. [Full Text].

  16. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008 Jun 15. 111(12):5446-56. [Medline].

  17. Bouley J, Deriano L, Delic J, Merle-Béral H. New molecular markers in resistant B-CLL. Leuk Lymphoma. 2006 May. 47(5):791-801. [Medline].

  18. Abbott BL. Chronic lymphocytic leukemia: recent advances in diagnosis and treatment. Oncologist. 2006 Jan. 11(1):21-30. [Medline]. [Full Text].

  19. Zwiebel JA, Cheson BD. Chronic lymphocytic leukemia: staging and prognostic factors. Semin Oncol. 1998 Feb. 25(1):42-59. [Medline].

  20. [Guideline] National Comprehensive Cancer Network. Non-Hodgkin's Lymphomas Version 2. 2016. NCCN. Available at http://www.nccn.org/professionals/physician_gls/pdf/nhl.pdf. Accessed: March 11, 2016.

  21. Parikh SA, Strati P, Tsang M, West CP, Shanafelt TD. Should IGHV status and FISH testing be performed in all CLL patients at diagnosis? A systematic review and meta-analysis. Blood. 2016 Feb 3. 39 (8A):935-7. [Medline].

  22. Hillmen P, Skotnicki AB, Robak T, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007 Dec 10. 25(35):5616-23. [Medline].

  23. Montillo M, Tedeschi A, Miqueleiz S, et al. Alemtuzumab as consolidation after a response to fludarabine is effective in purging residual disease in patients with chronic lymphocytic leukemia. J Clin Oncol. 2006 May 20. 24(15):2337-42. [Medline]. [Full Text].

  24. Moreton P, Kennedy B, Lucas G, et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol. 2005 May 1. 23(13):2971-9. [Medline]. [Full Text].

  25. Visone R, Veronese A, Rassenti LZ, et al. miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood. 2011 Sep 15. 118(11):3072-9. [Medline]. [Full Text].

  26. Rai KR, Sawitsky A, Cronkite EP, et al. Clinical staging of chronic lymphocytic leukemia. Blood. 1975 Aug. 46(2):219-34. [Medline]. [Full Text].

  27. Bosch F, Ferrer A, Villamor N, et al. Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin Cancer Res. 2008 Jan 1. 14(1):155-61. [Medline].

  28. Byrd JC, Gribben JG, Peterson BL, et al. Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol. 2006 Jan 20. 24(3):437-43. [Medline].

  29. Wierda WG, O'Brien S, Wang X, et al. Multivariable model for time to first treatment in patients with chronic lymphocytic leukemia. J Clin Oncol. 2011 Nov 1. 29(31):4088-95. [Medline].

  30. Eichhorst BF, Busch R, Stilgenbauer S, et al. First-line therapy with fludarabine compared with chlorambucil does not result in a major benefit for elderly patients with advanced chronic lymphocytic leukemia. Blood. 2009 Oct 15. 114(16):3382-91. [Medline].

  31. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015 Dec 17. 373 (25):2425-37. [Medline].

  32. Robak T, Jamroziak K, Gora-Tybor J, et al. Comparison of cladribine plus cyclophosphamide with fludarabine plus cyclophosphamide as first-line therapy for chronic lymphocytic leukemia: a phase III randomized study by the Polish Adult Leukemia Group (PALG-CLL3 Study). J Clin Oncol. 2010 Apr 10. 28(11):1863-9. [Medline].

  33. Fischer K, Cramer P, Busch R, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2011 Sep 10. 29(26):3559-66. [Medline].

  34. Knauf WU, Lissitchkov T, Aldaoud A, Liberati AM, Loscertales J, Herbrecht R, et al. Bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukaemia: updated results of a randomized phase III trial. Br J Haematol. 2012 Oct. 159(1):67-77. [Medline].

  35. Nabhan C, Coutré S, Hillmen P. Minimal residual disease in chronic lymphocytic leukaemia: is it ready for primetime?. Br J Haematol. 2007 Feb. 136(3):379-92. [Medline].

  36. Sayala HA, Rawstron AC, Hillmen P. Minimal residual disease assessment in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol. 2007 Sep. 20(3):499-512. [Medline].

  37. Parikh SA, Keating MJ, O'Brien S, et al. Frontline chemoimmunotherapy with fludarabine, cyclophosphamide, alemtuzumab, and rituximab for high-risk chronic lymphocytic leukemia. Blood. 2011 Aug 25. 118(8):2062-8. [Medline].

  38. Badoux XC, Keating MJ, Wang X, et al. Cyclophosphamide, fludarabine, alemtuzumab, and rituximab as salvage therapy for heavily pretreated patients with chronic lymphocytic leukemia. Blood. 2011 Aug 25. 118(8):2085-93. [Medline].

  39. Skoetz N, Bauer K, Elter T, Monsef I, Roloff V, Hallek M, et al. Alemtuzumab for patients with chronic lymphocytic leukaemia. Cochrane Database of Systematic Reviews. 2012.

  40. Lemery SJ, Zhang J, Rothmann MD, Yang J, Earp J, Zhao H. U.S. Food and Drug Administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab. Clin Cancer Res. 2010 Sep 1. 16(17):4331-8. [Medline].

  41. Nelson R. FDA Grants Full Approval to Ofatumumab (Arzerra) for CLL. Medscape Medical News. Available at http://www.medscape.com/viewarticle/823837. Accessed: March 10, 2016.

  42. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014 Mar 13. 370(11):997-1007. [Medline]. [Full Text].

  43. van Oers MH, Kuliczkowski K, Smolej L, Petrini M, Offner F, Grosicki S, et al. Ofatumumab maintenance versus observation in relapsed chronic lymphocytic leukaemia (PROLONG): an open-label, multicentre, randomised phase 3 study. Lancet Oncol. 2015 Oct. 16 (13):1370-9. [Medline].

  44. Goede V, Fischer K, Humphrey K, Asikanius E, Busch R, Engelke A, et al. Obinutuzumab (GA101) plus chlorambucil (Clb) or rituximab (R) plus Clb versus Clb alone in patients with chronic lymphocytic leukemia (CLL) and preexisting medical conditions (comorbidities): Final stage 1 results of the CLL11 (BO21004) phase III trial. J Clin Oncol 31, 2013 (suppl; abstr 7004).

  45. B McCall. Obinutuzumab Active in Elderly Chronic Lymphocytic Leukemia. Medscape Medical News from the: 18th Congress of the European Hematology Association (EHA). June 21, 2013. Available at http://www.medscape.com/viewarticle/806700. Accessed: November 11, 2013.

  46. Mougalian SS, O'Brien S. Adverse prognostic features in chronic lymphocytic leukemia. Oncology (Williston Park). 2011 Jul. 25(8):692-6, 699. [Medline].

  47. Robak T, Dmoszynska A, Solal-Celigny P, et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol. 2010 Apr 1. 28(10):1756-65. [Medline].

  48. Woyach JA, Ruppert AS, Heerema NA, Peterson BL, Gribben JG, Morrison VA, et al. Chemoimmunotherapy With Fludarabine and Rituximab Produces Extended Overall Survival and Progression-Free Survival in Chronic Lymphocytic Leukemia: Long-Term Follow-Up of CALGB Study 9712. J Clin Oncol. 2011 Apr 1. 29(10):1349-55. [Medline].

  49. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010 Oct 2. 376(9747):1164-74. [Medline].

  50. Nelson R. New Drug Combo Potentially 'Practice Changing' in CLL. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/817454. Accessed: December 16, 2013.

  51. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013 Jul 4. 369(1):32-42. [Medline]. [Full Text].

  52. Chustecka Z. Ibrutinib in CLL: indication expanded, benefit confirmed. July 28, 2014. [Full Text].

  53. Byrd JC, Brown JR, O'Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014 Jul 17. 371 (3):213-23. [Medline]. [Full Text].

  54. Chustecka Z. Idelalisib (Zydelig) approved for CLL and lymphoma. Medscape Medical News. July 23, 2014. [Full Text].

  55. FDA news release: FDA approves Zydelig for three types of blood cancers. US Food and Drug Administration. July 23, 2014. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm406387.htm.

  56. Molica S. Immunomodulatory drugs in chronic lymphocytic leukemia: a new treatment paradigm. Leuk Lymphoma. 2007 May. 48(5):866-9. [Medline].

  57. Boggs W. Chlorambucil Effective for Chronic Lymphocytic Leukemia in Elderly. Medscape Medical News. December 13, 2012. [Full Text].

  58. Woyach JA, Ruppert AS, Rai K, Lin TS, Geyer S, Kolitz J, et al. Impact of Age on Outcomes After Initial Therapy With Chemotherapy and Different Chemoimmunotherapy Regimens in Patients With Chronic Lymphocytic Leukemia: Results of Sequential Cancer and Leukemia Group B Studies. J Clin Oncol. 2012 Dec 10. [Medline].

  59. Gribben JG, Hosing C, Maloney DG. Stem cell transplantation for indolent lymphoma and chronic lymphocytic leukemia. Biol Blood Marrow Transplant. 2011 Jan. 17(1 Suppl):S63-70. [Medline].

  60. Michallet M, Dreger P, Sutton L, et al. Autologous hematopoietic stem cell transplantation in chronic lymphocytic leukemia: results of European intergroup randomized trial comparing autografting versus observation. Blood. 2011 Feb 3. 117(5):1516-1521. [Medline].

  61. Hodgson K, Ferrer G, Montserrat E, Moreno C. Chronic lymphocytic leukemia and autoimmunity: a systematic review. Haematologica. 2011 May. 96(5):752-61. [Medline]. [Full Text].

  62. Raanani P, Gafter-Gvili A, Paul M, Ben-Bassat I, Leibovici L, Shpilberg O. Immunoglobulin prophylaxis in chronic lymphocytic leukemia and multiple myeloma: systematic review and meta-analysis. Leuk Lymphoma. 2009 May. 50(5):764-72. [Medline].

  63. Koehrer S, Keating MJ, Wierda WG. Eltrombopag, a second-generation thrombopoietin receptor agonist, for chronic lymphocytic leukemia-associated ITP. Leukemia. 2010 May. 24(5):1096-8. [Medline].

  64. Borthakur G, O'Brien S, Wierda WG, et al. Immune anaemias in patients with chronic lymphocytic leukaemia treated with fludarabine, cyclophosphamide and rituximab--incidence and predictors. Br J Haematol. 2007 Mar. 136(6):800-5. [Medline].

  65. Moulin B, Ronco PM, Mougenot B, Francois A, Fillastre JP, Mignon F. Glomerulonephritis in chronic lymphocytic leukemia and related B-cell lymphomas. Kidney Int. 1992 Jul. 42(1):127-35. [Medline].

  66. Chustecka Z. Ibrutinib (Imbruvica) Approved for CLL in US. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/820537. Accessed: February 19, 2014.

  67. FDA News Release. FDA approves Gazyva for chronic lymphocytic leukemia. Medscape [serial online]. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm373209.htm. Accessed: November 4, 2013.

  68. FDA News Release. FDA approves Imbruvica to treat chronic lymphocytic leukemia. U.S. Food and Drug Administration. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm385764.htm. Accessed: February 19, 2014.

  69. Nelson R. FDA Gives Arzerra Breakthrough Therapy Designation for CLL. Medscape Medical News. Available at http://www.medscape.com/viewarticle/811307. Accessed: September 24, 2013.

  70. Shanafelt T, Lanasa MC, Call TG, et al. Ofatumumab-based chemoimmunotherapy is effective and well tolerated in patients with previously untreated chronic lymphocytic leukemia (CLL). Cancer. 2013 Aug 6. [Medline].

  71. Venclexta (venetoclax) [package insert]. North Chicago, IL: AbbVie, Inc. April 2016. Available at [Full Text].

 
Previous
Next
 
Peripheral smear from a patient with chronic lymphocytic leukemia, small lymphocytic variety.
Peripheral smear from a patient with chronic lymphocytic leukemia, large lymphocytic variety. Smudge cells are also observed; smudge cells are the artifacts produced by the lymphocytes damaged during the slide preparation.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.