Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Hemolytic Anemia Treatment & Management

  • Author: Paul Schick, MD; Chief Editor: Emmanuel C Besa, MD  more...
 
Updated: May 26, 2016
 

Approach Considerations

There are numerous types of hemolytic anemia, and treatment may differ depending on the type of hemolysis.[2, 3, 4, 30, 31] Only the general care of hemolytic anemias and the management of the most commonly encountered hemolytic anemias are discussed. The diagnosis and treatment of cold agglutinin hemolytic anemia has been reviewed.[32]

Folic acid, corticosteroids, rituximab, and IVIG

Prophylactic folic acid is indicated because active hemolysis can consume folate and cause megaloblastosis.

Corticosteroids are indicated in autoimmune hemolytic anemia (AIHA).

Increasing evidence supports the use of rituximab in AIHA, particularly warm antibody AIHA.[33, 33] Results of a phase III trial in 64 patients support its use as first-line therapy for warm AIHA, in combination with corticosteroids. Birgens et al reported that after 12 months, a satisfactory response was observed in 75% of the patients treated with rituximab and prednisolone, but in 36% of those given prednisolone alone (P = 0.003). After 36 months, about 70% of the patients who had received rituximab and prednisolone were still in remission, compared with about 45% of those in the prednisolone group.[31]

Intravenous immunoglobulin G (IVIG) has been used for patients with AIHA, but only a few patients have responded to this treatment, and the responses have been transient.

Next

Transfusion Therapy

One should avoid transfusions unless absolutely necessary. However, transfusions may be essential for patients with angina or a severely compromised cardiopulmonary status. It is best to administer packed red blood cells slowly to avoid cardiac stress.

In autoimmune hemolytic anemia (AIHA), typing and cross-matching may be difficult. One should use the least incompatible blood if transfusions are indicated. The risk of destruction of transfused blood is high, but the degree of the hemolysis depends on the rate of infusion. Therefore, one should slowly transfuse half units of packed red blood cells to prevent rapid destruction of transfused blood.

Iron overload due to multiple transfusions for chronic anemia (eg, thalassemia or sickle cell disorder) can be treated with chelation therapy. A systematic review that compared the oral iron chelator deferasirox with the oral chelator deferiprone and the traditional parenteral agent deferoxamine found little clinical difference between the 3 chelation agents in terms of removing iron from the blood and liver.[34]

Previous
Next

Erythropoietin Therapy

Erythropoietin (EPO) has been used to try to reduce transfusion requirements, with variable outcomes. Settings in which EPO therapy has reduced transfusion requirements include the following:

  • Children with chronic renal failure [35]
  • Autoimmune hemolytic anemia associated with reticulocytopenia [36]
  • A patient with sickle cell disease undergoing hemodialysis for renal failure [37]
  • Jehovah’s Witnesses [38]
  • Infants with hereditary spherocytosis [39, 40]

However, the ability of EPO to reduce transfusion requirement has been questioned in newborns with hereditary spherocytosis[41] and in post-diarrheal hemolytic uremic syndrome.[42]

There is a general impression that additional studies should be carried out to establish the role and indications for EPO in hemolytic disorders. EPO therapy costs more than transfusions. The potential for EPO-induced cardiovascular complications needs to be considered. EPO has pleiotropic effects and might inhibit macrophages in Salmonella infections.[43] EPO was reported to be helpful in treating cerebral malaria due to itspleiotropic effect and not its hematopoietic action.[44] Hence, EPO should be used judiciously.

Previous
Next

Discontinuing Medications

Penicillin and other agents that can cause immune hemolysis should be discontinued in patients who develop hemolysis. The following is a partial list of medications that can cause immune hemolysis:

  • Penicillin
  • Cephalothin
  • Ampicillin
  • Methicillin
  • Quinine
  • Quinidine

One should discontinue oxidant medications such as sulfa drugs in patients with G-6-PD deficiency or those who have unstable hemoglobins. The following is a partial list of medications and chemicals that should be avoided in G6PD deficiency:

  • Acetanilide
  • Furazolidone
  • Isobutyl nitrite
  • Nalidixic acid
  • Naphthalene
  • Niridazole
Previous
Next

Iron Therapy

Iron therapy is contraindicated in most cases of hemolytic anemia. The reason is that iron released from RBCs in most hemolytic anemias is reused and iron stores are not reduced.

However, iron therapy is indicated for patients with severe or intravascular hemolysis in which persistent hemoglobinuria has caused substantial iron loss. Before starting iron therapy, one should document iron deficiency by serum iron studies and, possibly, by assessing iron stores in bone marrow aspirates.

Previous
Next

Splenectomy

Splenectomy may be the first choice of treatment in some types of hemolytic anemia, such as hereditary spherocytosis.[45] In other cases, such as in AIHA, splenectomy is recommended when other measures have failed. Splenectomy is usually not recommended in hemolytic disorders such as cold agglutinin hemolytic anemia in which hemolysis is intravascular.

Overwhelming postsplenectomy sepsis is a rare but a potentially fatal event, especially during the first 2 years after splenectomy. One should immunize against infections with encapsulated organisms, such as Haemophilus influenzae and Streptococcus pneumoniae, in advance of the procedure. Immunization can be performed post splenectomy.

Previous
Next

Deterrence/Prevention of Hemolytic Anemia

The following is a partial list of medications and chemicals that individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency should avoid:

  • Acetanilid
  • Furazolidone
  • Isobutyl nitrite
  • Nalidixic acid
  • Naphthalene
  • Niridazole
  • Sulfa drugs

The G6PD Deficiency Association has a more comprehensive online list of medications that people with G6PD deficiency should avoid.

Fava beans can cause severe hemolysis in certain populations with the Mediterranean G6PD isoenzyme variant. These patients should avoid eating dishes with fava beans.

Patients should know to avoid medications that caused them to have immune hemolysis. The following is a partial list of medications that can cause immune hemolysis:

  • Penicillin
  • Cephalothin
  • Ampicillin
  • Methicillin
  • Quinine
  • Quinidine
Previous
Next

Consultations

A hematology consultation would be helpful in selecting appropriate diagnostic approaches and laboratory tests and in planning and monitoring therapy.

Previous
Next

Long-Term Monitoring

One should monitor the hemoglobin level, reticulocyte count, indirect bilirubin value, LDH level, and haptoglobin value in patients with hemolytic anemia to determine the response to therapy. Urine hemoglobin and hemosiderin should be monitored to evaluate recovery in patients with severe or intravascular hemolysis.

Other treatments are as follows:

  • Folic acid should be recommended for patients with ongoing hemolysis.
  • Administer oral iron to patients who have become iron deficient due to intravascular hemolysis.
  • One should taper corticosteroids. Occasionally, patients may have to continue low-dose steroids.
  • Avoid transfusions unless there is evidence of angina, cardiopulmonary decompensation, or other severe organ impairment.
Previous
 
 
Contributor Information and Disclosures
Author

Paul Schick, MD Emeritus Professor, Department of Internal Medicine, Jefferson Medical College of Thomas Jefferson University; Research Professor, Department of Internal Medicine, Drexel University College of Medicine; Adjunct Professor of Medicine, Lankenau Hospital

Paul Schick, MD is a member of the following medical societies: American College of Physicians, American Society of Hematology

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Ronald A Sacher, MB, BCh, FRCPC, DTM&H Professor, Internal Medicine and Pathology, Director, Hoxworth Blood Center, University of Cincinnati Academic Health Center

Ronald A Sacher, MB, BCh, FRCPC, DTM&H is a member of the following medical societies: American Association for the Advancement of Science, American Association of Blood Banks, American Society for Clinical Pathology, American Society of Hematology, College of American Pathologists, International Society on Thrombosis and Haemostasis, Royal College of Physicians and Surgeons of Canada, American Clinical and Climatological Association, International Society of Blood Transfusion

Disclosure: Serve(d) as a speaker or a member of a speakers bureau for: GSK Pharmaceuticals,Alexion,Johnson & Johnson Talecris,,Grifols<br/>Received honoraria from all the above companies for speaking and teaching.

Chief Editor

Emmanuel C Besa, MD Professor Emeritus, Department of Medicine, Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University

Emmanuel C Besa, MD is a member of the following medical societies: American Association for Cancer Education, American Society of Clinical Oncology, American College of Clinical Pharmacology, American Federation for Medical Research, American Society of Hematology, New York Academy of Sciences

Disclosure: Nothing to disclose.

References
  1. Gallagher PG. The Red Blood Cell Membrane and Its Disorders: Hereditary Spherocytosis, Elliptocytosis, and Related Diseases. Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT, eds. Williams Hematology. 8th ed. New York, NY: McGraw Hill; 2010. 617-46.

  2. Lichtman MA. Hemolytic anemia due to infections with microorganisms. Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT, eds. Williams Hematology. 8th ed. New York, NY: McGraw Hill; 2010. 769-76.

  3. Beutler E, Bull BS, Herrmann PC. Hemolytic Anemia Resulting from Chemical and Physical Agents. Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT, eds. Williams Hematology. 8th ed. New York, NY: McGraw Hill; 2010. 763-68.

  4. Glader BE. Hemolytic anemia in children. Clin Lab Med. 1999 Mar. 19(1):87-111, vi. [Medline].

  5. Kong JT, Schmiesing C. Concealed mothball abuse prior to anesthesia: mothballs, inhalants, and their management. Acta Anaesthesiol Scand. 2005 Jan. 49(1):113-6. [Medline].

  6. Lane DR, Youse JS. Coombs-positive hemolytic anemia secondary to brown recluse spider bite: a review of the literature and discussion of treatment. Cutis. 2004 Dec. 74(6):341-7. [Medline].

  7. Packman CH, Leddy JP. Acquired hemolytic anemia due to warm-reacting autoantibodies. Beutler E, Lichtman MA, Coller BS, Kipps TJ, eds. Williams Hematology. 5th ed. New York, NY: McGraw Hill; 1995. 667-84.

  8. Gallagher PG. Red cell membrane disorders. Hoffman R, Benz EJ Jr, Silberstein LE, Heslop H, Weitz J, Anastasi J, eds. Hematology: Basic Principles and Practice. 6th ed. New York, NY: Churchill Livingstone; 2013. 592-613.

  9. Price EA, Schrier SL. Extrinsic nonimmune hemolytic anemias. Hoffman R, Benz EJ Jr, Silberstein LE, Heslop H, Weitz J, Anastasi J, eds. Hematology: Basic Principles and Practice. 6th ed. New York, NY: Churchill Livingstone; 2013. 628-38.

  10. Jager U, Lechner K. Autoimmune hemolytic anemia. Hoffman R, Benz EJ Jr, Silberstein LE, Heslop H, Weitz J, Anastasi J, eds. Hematology: Basic Principles and Practice. 6th ed. New York, NY: Churchill Livingstone; 2013. 614-17.

  11. Shah A. Acquired hemolytic anemia. Indian J Med Sci. 2004 Dec. 58(12):533-6. [Medline]. [Full Text].

  12. Berentsen S, Randen U, Tjønnfjord GE. Cold agglutinin-mediated autoimmune hemolytic anemia. Hematol Oncol Clin North Am. 2015 Jun. 29 (3):455-71. [Medline].

  13. Rink BD, Gonik B, Chmait RH, O'Shaughnessy R. Maternal hemolysis after intravenous immunoglobulin treatment in fetal and neonatal alloimmune thrombocytopenia. Obstet Gynecol. 2013 Feb. 121(2 Pt 2 Suppl 1):471-3. [Medline].

  14. Mayer B, Leo A, Herziger A, Houben P, Schemmer P, Salama A. Intravascular immune hemolysis caused by the contrast medium iomeprol. Transfusion. 2013 Jan 24. [Medline].

  15. Acharya D, McGiffin DC. Hemolysis after Mitral Valve Repair. J Card Surg. 2013 Jan 13. 1-4. [Medline].

  16. Petz LD. Drug-induced autoimmune hemolytic anemia. Transfus Med Rev. 1993 Oct. 7(4):242-54. [Medline].

  17. Chiao EY, Engels EA, Kramer JR, Pietz K, Henderson L, Giordano TP, et al. Risk of immune thrombocytopenic purpura and autoimmune hemolytic anemia among 120 908 US veterans with hepatitis C virus infection. Arch Intern Med. 2009 Feb 23. 169(4):357-63. [Medline]. [Full Text].

  18. Zamvar V, McClean P, Odeka E, Richards M, Davison S. Hepatitis E virus infection with nonimmune hemolytic anemia. J Pediatr Gastroenterol Nutr. 2005 Feb. 40(2):223-5. [Medline].

  19. Naik R. Warm autoimmune hemolytic anemia. Hematol Oncol Clin North Am. 2015 Jun. 29 (3):445-53. [Medline].

  20. Mayer B, Yürek S, Kiesewetter H, Salama A. Mixed-type autoimmune hemolytic anemia: differential diagnosis and a critical review of reported cases. Transfusion. 2008 Oct. 48(10):2229-34. [Medline].

  21. Sanz J, Arriaga F, Montesinos P, Ortí G, Lorenzo I, Cantero S, et al. Autoimmune hemolytic anemia following allogeneic hematopoietic stem cell transplantation in adult patients. Bone Marrow Transplant. 2007 May. 39(9):555-61. [Medline].

  22. George JN. The thrombotic thrombocytopenic purpura and hemolytic uremic syndromes: overview of pathogenesis (Experience of The Oklahoma TTP-HUS Registry, 1989-2007). Kidney Int Suppl. 2009 Feb. S8-S10. [Medline].

  23. Lechner K, Obermeier HL. Cancer-related microangiopathic hemolytic anemia: clinical and laboratory features in 168 reported cases. Medicine (Baltimore). 2012 Jul. 91 (4):195-205. [Medline].

  24. Gehrs BC, Friedberg RC. Autoimmune hemolytic anemia. Am J Hematol. 2002 Apr. 69(4):258-71. [Medline].

  25. Dhingra KK, Jain D, Mandal S, Khurana N, Singh T, Gupta N. Evans syndrome: a study of six cases with review of literature. Hematology. 2008 Dec. 13(6):356-60. [Medline].

  26. Garratty G. Immune hemolytic anemia associated with negative routine serology. Semin Hematol. 2005 Jul. 42(3):156-64. [Medline].

  27. Kamesaki T, Oyamada T, Omine M, Ozawa K, Kajii E. Cut-off value of red-blood-cell-bound IgG for the diagnosis of Coombs-negative autoimmune hemolytic anemia. Am J Hematol. 2009 Feb. 84(2):98-101. [Medline]. [Full Text].

  28. Kamesaki T, Toyotsuji T, Kajii E. Characterization of direct antiglobulin test-negative autoimmune hemolytic anemia: A study of 154 cases. Am J Hematol. 2013 Feb. 88(2):93-6. [Medline].

  29. Ferrer G, Navarro A, Hodgson K, et al. MicroRNA expression in chronic lymphocytic leukemia developing autoimmune hemolytic anemia. Leuk Lymphoma. 2013 Jan 29. [Medline].

  30. Jubinsky PT, Rashid N. Successful treatment of a patient with mixed warm and cold antibody mediated Evans syndrome and glucose intolerance. Pediatr Blood Cancer. 2005 Sep. 45(3):347-50. [Medline].

  31. Birgens H, Frederiksen H, Hasselbalch HC, Rasmussen IH, Nielsen OJ, Kjeldsen L, et al. A phase III randomized trial comparing glucocorticoid monotherapy versus glucocorticoid and rituximab in patients with autoimmune haemolytic anaemia. Br J Haematol. 2013 Nov. 163 (3):393-9. [Medline].

  32. Berentsen S, Tjønnfjord GE. Diagnosis and treatment of cold agglutinin mediated autoimmune hemolytic anemia. Blood Rev. 2012 May. 26(3):107-15. [Medline].

  33. Dierickx D, Kentos A, Delannoy A. The role of rituximab in adults with warm antibody autoimmune hemolytic anemia. Blood. 2015 May 21. 125 (21):3223-9. [Medline]. [Full Text].

  34. McLeod C, Fleeman N, Kirkham J, Bagust A, Boland A, Chu P, et al. Deferasirox for the treatment of iron overload associated with regular blood transfusions (transfusional haemosiderosis) in patients suffering with chronic anaemia: a systematic review and economic evaluation. Health Technol Assess. 2009 Jan. 13(1):iii-iv, ix-xi, 1-121. [Medline]. [Full Text].

  35. Burke JR. Low-dose subcutaneous recombinant erythropoietin in children with chronic renal failure. Australian and New Zealand Paediatric Nephrology Association. Pediatr Nephrol. 1995 Oct. 9(5):558-61. [Medline].

  36. Arbach O, Funck R, Seibt F, Salama A. Erythropoietin May Improve Anemia in Patients with Autoimmune Hemolytic Anemia Associated with Reticulocytopenia. Transfus Med Hemother. 2012 Jun. 39(3):221-223. [Medline]. [Full Text].

  37. Schettler V, Wieland E. A case report of darbepoetin treatment in a patient with sickle cell disease and chronic renal failure undergoing regular hemodialysis procedures that induce a dose-dependent extension of blood transfusion intervals. Ther Apher Dial. 2009 Feb. 13(1):80-2. [Medline].

  38. Ball AM, Winstead PS. Recombinant human erythropoietin therapy in critically ill Jehovah's Witnesses. Pharmacotherapy. 2008 Nov. 28(11):1383-90. [Medline].

  39. Tchernia G, Delhommeau F, Perrotta S, Cynober T, Bader-Meunier B, Nobili B, et al. Recombinant erythropoietin therapy as an alternative to blood transfusions in infants with hereditary spherocytosis. Hematol J. 2000. 1(3):146-52. [Medline].

  40. Hosono S, Hosono A, Mugishima H, Nakano Y, Minato M, Okada T, et al. Successful recombinant erythropoietin therapy for a developing anemic newborn with hereditary spherocytosis. Pediatr Int. 2006 Apr. 48(2):178-80. [Medline].

  41. Morrison JF, Neufeld EJ, Grace RF. The use of erythropoietin-stimulating agents versus supportive care in newborns with hereditary spherocytosis: a single centre's experience. Eur J Haematol. 2014 Aug. 93(2):161-4. [Medline]. [Full Text].

  42. Balestracci A, Martin SM, Toledo I, Alvarado C, Wainsztein RE. Early erythropoietin in post-diarrheal hemolytic uremic syndrome: a case-control study. Pediatr Nephrol. 2014 Aug 21. [Medline].

  43. Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect. 2012 Mar. 14(3):238-46. [Medline]. [Full Text].

  44. Bienvenu AL, Picot S. Cerebral malaria: protection by erythropoietin. Methods Mol Biol. 2013. 982:315-24. [Medline].

  45. Hamilton JW, Jones FG, McMullin MF. Glucose-6-phosphate dehydrogenase Guadalajara--a case of chronic non-spherocytic haemolytic anaemia responding to splenectomy and the role of splenectomy in this disorder. Hematology. 2004 Aug. 9(4):307-9. [Medline].

  46. Reynaud Q, Durieu I, Dutertre M, Ledochowski S, Durupt S, Michallet AS, et al. Efficacy and safety of rituximab in auto-immune hemolytic anemia: A meta-analysis of 21 studies. Autoimmun Rev. 2015 Apr. 14 (4):304-13. [Medline].

  47. Packman CH, Leddy JP. Drug-related immune hemolytic anemia. Beutler E, Lichtman MA, Coller BS, Kipps TJ, eds. Williams Hematology. 5th ed. New York, NY: McGraw Hill; 1995. 691-6.

 
Previous
Next
 
Polychromasia.
Spherocytes. One arrow points to a spherocyte; the other, to a normal RBC with central pallor.
Schistocytes (thrombotic thrombocytopenic purpura).
Peripheral blood smear with sickled cells at 1000X magnification. Image courtesy of Ulrich Woermann, MD.
Supra vital stain in hemoglobin H disease that reveals Heinz bodies (golf ball appearance).
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.