Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Tetralogy of Fallot

  • Author: Shabir Bhimji, MD, PhD; Chief Editor: Park W Willis IV, MD  more...
 
Updated: Dec 06, 2015
 

Practice Essentials

Tetralogy of Fallot, which is one of the most common congenital heart disorders, comprises right ventricular (RV) outflow tract obstruction (RVOTO) (infundibular stenosis), ventricular septal defect (VSD), aorta dextroposition, and RV hypertrophy (see the image below). The mortality rate in untreated patients reaches 50% by age 6 years, but in the present era of cardiac surgery, children with simple forms of tetralogy of Fallot enjoy good long-term survival with an excellent quality of life.

Anatomic findings in tetralogy of Fallot. Anatomic findings in tetralogy of Fallot.

Signs and symptoms

The clinical features of tetralogy of Fallot are directly related to the severity of the anatomic defects. Infants often display the following:

  • Difficulty with feeding
  • Failure to thrive
  • Episodes of bluish pale skin during crying or feeding (ie, "Tet" spells)
  • Exertional dyspnea, usually worsening with age

Physical findings include the following:

  • Most infants are smaller than expected for age
  • Cyanosis of the lips and nail bed is usually pronounced at birth
  • After age 3-6 months, the fingers and toes show clubbing
  • A systolic thrill is usually present anteriorly along the left sternal border
  • A harsh systolic ejection murmur (SEM) is heard over the pulmonic area and left sternal border
  • During cyanotic episodes, murmurs may disappear
  • In individuals with aortopulmonary collaterals, continuous murmurs may be auscultated

The following may also be noted:

  • RV predominance on palpation
  • A bulging left hemithorax
  • Aortic ejection click
  • Squatting position (compensatory mechanism)
  • Scoliosis (common)
  • Retinal engorgement
  • Hemoptysis

See Clinical Presentation for more detail.

Diagnosis

Hemoglobin and hematocrit values are usually elevated in proportion to the degree of cyanosis. Patients with significant cyanosis have the following, in association with a tendency to bleed:

  • Decreased clotting factors
  • Low platelet count
  • Diminished coagulation factors
  • Diminished total fibrinogen
  • Prolonged prothrombin and coagulation times

Arterial blood gas (ABG) results are as follows:

  • Oxygen saturation varies
  • pH and partial pressure of carbon dioxide (pCO2) are normal unless the patient is in extremis

Imaging studies include the following:

  • Echocardiography
  • Chest radiographs
  • Magnetic resonance imaging (MRI)

Echocardiography has the following attributes:

  • Color-flow Doppler echocardiography accurately diagnoses ductus arteriosus, muscular VSD, or atrial septal defect
  • The coronary anatomy can be revealed with some degree of accuracy
  • Valvar alterations can be detected with ease
  • In many institutions, echocardiography is the only diagnostic study used before surgery

Chest radiographs have the following attributes:

  • Often normal initially
  • Diminished vascularity in the lungs and diminished prominence of the pulmonary arteries gradually become apparent
  • The classic boot-shaped heart ( coeur en sabot) is the hallmark of the disorder

MRI has the following attributes:

  • Provides good delineation of the aorta, RVOT, VSDs, RV hypertrophy, and the pulmonary artery and its branches [1]
  • Can also be used to measure intracardiac pressures, gradients, and blood flows

Cardiac catheterization is extremely useful in any of the following instances:

  • The anatomy cannot be completely defined by echocardiography
  • Disease in the pulmonary arteries is a concern
  • Pulmonary vascular hypertension is possible

Cardiac catheterization findings include the following:

  • Assessment of the pulmonary annulus size and pulmonary arteries
  • Assessment of the severity of RVOTO
  • Location of the position and size of the VSD
  • Ruling out possible coronary artery anomalies

See Workup for more detail.

Management

Acute treatment for hypercyanosis is as follows:

  • Place the baby on the mother's shoulder with the infant's knees tucked up underneath; this provides a calming effect, reduces systemic venous return, and increases systemic vascular resistance (SVR)
  • Oxygen is of limited value, as the primary abnormality is reduced pulmonary blood flow
  • Morphine sulfate, 0.1-0.2 mg/kg intramuscularly (IM) or subcutaneously (SC), may reduce the ventilatory drive and decrease systemic venous return
  • Phenylephrine, 0.02 mg/kg IV, is used to increase SVR
  • Dexmedetomidine infusion has been used, but requires caution and careful titration [2]
  • General anesthesia is a last resort

Most infants with tetralogy of Fallot require some type of surgical procedure. Surgery is preferably done at or about 12 months of age. Primary correction is the ideal operation and is usually performed under cardiopulmonary bypass. Palliative procedures (eg, placement of the modified Blalock-Taussig shunt) may be necessary in patients with contraindications to primary repair, which include the following:

  • The presence of an anomalous coronary artery
  • Very low birth weight
  • Small pulmonary arteries
  • Multiple VSDs
  • Multiple coexisting intracardiac malformations

See Treatment and Medication for more detail.

Next

Background

Tetralogy of Fallot (TOF) is one of the most common congenital heart disorders (CHDs). This condition is classified as a cyanotic heart disorder, because tetralogy of Fallot results in an inadequate flow of blood to the lungs for oxygenation (right-to-left shunt) (see the following image). Patients with tetralogy of Fallot initially present with cyanosis shortly after birth, thereby attracting early medical attention.

Anatomic findings in tetralogy of Fallot. Anatomic findings in tetralogy of Fallot.

Typical features

The 4 features typical of tetralogy of Fallot include right ventricular (RV) outflow tract obstruction (RVOTO) (infundibular stenosis), ventricular septal defect (VSD), aorta dextroposition, and right ventricular hypertrophy. Occasionally, a few children also have an atrial septal defect (ASD), which makes up the pentad of Fallot. The basic pathology of tetralogy is due to the underdevelopment of the right ventricular infundibulum, which results in an anterior-leftward malalignment of the infundibular septum. This malalignment determines the degree of RVOTO.

The clinical features of tetralogy of Fallot are generally typical, and a preliminary clinical diagnosis can almost always be made. Because most infants with this disorder require surgery, it is fortunate that the availability of cardiopulmonary bypass (CPB), cardioplegia, and surgical techniques is now well established. Most surgical series report excellent clinical results with low morbidity and mortality rates.

See also Tetralogy of Fallot With Pulmonary Stenosis, Tetralogy of Fallot With Pulmonary Atresia, and Tetralogy of Fallot With Absent Pulmonary Valve.

Historical information

Louis Arthur Fallot, after whom the name tetralogy of Fallot is derived, was not the first person to recognize the condition. Stensen first described it in 1672; however, it was Fallot who first accurately described the clinical and complete pathologic features of the defects.

Although the disorder was clinically diagnosed much earlier, no treatment was available until the 1940s. Cardiologist Helen Taussig recognized that cyanosis progressed and inevitably led to death in infants with tetralogy of Fallot. She postulated that the cyanosis was due to inadequate pulmonary blood flow. Her collaboration with Alfred Blalock led to the first type of palliation for these infants. In 1944, Blalock operated on an infant with tetralogy of Fallot and created the first Blalock-Taussig shunt between the subclavian artery and the pulmonary artery (see the image below).

This image shows completed blocking with a Taussig This image shows completed blocking with a Taussig shunt

The pioneering Blalock-Taussig shunt surgical technique opened a new era in neonatal cardiac surgery. Development of the Potts shunt (from the descending aorta to the left pulmonary artery), the Glenn shunt (from the superior vena cava to the right pulmonary artery), and the Waterston shunt (from the ascending aorta to the right pulmonary artery) followed.

Scott performed the first open correction in 1954. Less than half a year later, Lillehei performed the first successful open repair for tetralogy of Fallot using controlled cross-circulation, with another patient serving as oxygenator and blood reservoir. The following year, with the advent of cardiopulmonary bypass by Gibbons, another historic era of cardiac surgery was established. Since then, numerous advances in surgical technique and myocardial preservation have evolved in the treatment of tetralogy of Fallot.

Previous
Next

Anatomy

Patients with tetralogy of Fallot (TOF) can present with a broad range of anatomic deformities. Fallot initially described 4 major defects consisting of[3] : (1) pulmonary artery stenosis, (2) ventricular septal defect (VSD), (3) deviation of the aortic origin to the right, and (4) right ventricular hypertrophy (RV).

In the present day, however, the most important features of tetralogy of Fallot are recognized as (1) the right ventricular (RV) outflow tract obstruction (RVOTO), which is nearly always infundibular and/or valvular, and (2) an unrestricted VSD associated with malalignment of the conal septum (see the following image).

Anatomic findings in tetralogy of Fallot. Anatomic findings in tetralogy of Fallot.

Right ventricle outflow tract obstruction

Clinically, most patients with tetralogy of Fallot have an increased resistance to right ventricle emptying because of the pulmonary outflow tract obstruction. The anterior displacement and rotation of the infundibular septum causes RV obstruction of variable degree and location. The obstruction may be adjacent to the pulmonary valve, causing additional obstruction.

Pulmonary arteries

The pulmonary arteries can vary in size and distribution, and they may be atretic or hypoplastic. Rarely, the left pulmonary artery is absent. In some individuals, a varying degree of stenosis of the peripheral pulmonary arteries occurs, which further restricts pulmonary blood flow.

Pulmonary atresia results in no communication between the RV and the main pulmonary artery; in this case, pulmonary blood flow is maintained by either the ductus arteriosus or collateral circulation from the bronchial vessels. With minimal RVOTO, pulmonary vascular disease may develop secondary to excessive pulmonary blood flow from the large left-to-right shunt or large aortopulmonary collaterals.

In up to 75% of children with tetralogy of Fallot, some degree of pulmonary valve stenosis may occur. Stenosis is usually due to leaflet tethering rather than commissural fusion. The pulmonary annulus is narrowed in virtually every case.

Aorta

True dextroposition and abnormal rotation of the aortic root result in aortic overriding (ie, an aorta that, to varying degrees, originates from the RV). In some cases, more than 50% of the aorta may thus originate from the RV. A right aortic arch may occur, which may lead to an abnormal origin of the arch vessels.

Associated anomalies

Associated defects are also common. The coexistence of an atrial septal defect (ASD) occurs often enough to prompt its inclusion in a so-called pentalogy of Fallot. Other possible defects include patent ductus arteriosus (PDA), atrioventricular septal defects (AVSD), muscular VSD, anomalous pulmonary venous return, anomalous coronary arteries, absent pulmonary valve, aorticopulmonary window, and aortic incompetence.

The coronary anatomy may also be abnormal. Among these abnormalities is the origin of the left anterior descending (LAD) coronary artery from the proximal right coronary artery (PRCA), which crosses the RV outflow at variable distances from the pulmonary valve annulus. The anomalous LAD coronary artery is observed in 9% of cases of tetralogy of Fallot, and this abnormality makes placement of a patch across the pulmonary annulus risky, possibly requiring an external conduit. During the VSD repair, the anomalous LAD coronary artery is prone to injury. Occasionally, all coronary arteries arise from a single left main coronary ostium.

Previous
Next

Etiology and Pathophysiology

The cause(s) of most congenital heart diseases (CHDs) are unknown, although genetic studies suggest a multifactorial etiology. A study from Portugal reported that methylene tetrahydrofolate reductase (MTHFR) gene polymorphism can be considered a susceptibility gene for tetralogy of Fallot.[4, 5]  A more recent study has reported that VEGF genetic polymorphisms, -2578C>A and -634C>G, may be associated with an increased risk for tetralogy of Fallot, whereas the risk is potentially reduced with 936C>T polymorphism.[6]

Prenatal factors associated with a higher incidence of tetralogy of Fallot (TOF) include maternal rubella (or other viral illnesses) during pregnancy, poor prenatal nutrition, maternal alcohol use, maternal age older than 40 years, maternal phenylketonuria (PKU) birth defects, and diabetes. Children with Down syndrome also have a higher incidence of tetralogy of Fallot, as do infants with fetal hydantoin syndrome or fetal carbamazepine syndrome.

As one of the conotruncal malformations, tetralogy of Fallot can be associated with a spectrum of lesions known as CATCH 22 (cardiac defects, abnormal facies, thymic hypoplasia, cleft palate, hypocalcemia). Cytogenetic analysis may demonstrate deletions of a segment of chromosome band 22q11 (DiGeorge critical region). Ablation of cells of the neural crest has been shown to reproduce conotruncal malformations.

These abnormalities are associated with the DiGeorge syndrome and branchial arch abnormalities.

The hemodynamics of tetralogy of Fallot depend on the degree of right ventricular (RV) outflow tract obstruction (RVOTO). The ventricular septal defect (VSD) is usually nonrestrictive, and the RV and left ventricular (LV) pressures are equalized. If the obstruction is severe, the intracardiac shunt is from right to left, and pulmonary blood flow may be markedly diminished. In this instance, blood flow may depend on the patent ductus arteriosus (PDA) or bronchial collaterals.

Previous
Next

Epidemiology

Tetralogy of Fallot (TOF) represents approximately 10% of cases of congenital heart disease (CHD), occurs in 3-6 infants for every 10,000 births, and is the most common cause of cyanotic CHD. This disorder accounts for one third of all CHD in patients younger than 15 years.

In most cases, tetralogy of Fallot is sporadic and nonfamilial. The incidence in siblings of affected parents is 1-5%, and it occurs more commonly in males than in females. The disorder is associated with extracardiac anomalies such as cleft lip and palate, hypospadias, and skeletal and craniofacial abnormalities. Genetic studies indicate that in some patients with tetralogy of Fallot, there may be 22q11.2 deletion and other submicroscopic copy number alterations.[7]

Tetralogy of Fallot is also observed in other mammals, including horses and rats.

Previous
Next

Prognosis

Early surgery is not indicated for all infants with tetralogy of Fallot (TOF), although, without surgery, the natural progression of the disorder indicates a poor prognosis. The progression of the disorder depends on the severity of right ventricular (RV) outflow tract obstruction (RVOTO).

In the present era of cardiac surgery, children with simple forms of tetralogy of Fallot enjoy good long-term survival with an excellent quality of life. Late outcome data suggest that most survivors are in New York Heart Association (NYHA) classification I, although maximal exercise capability is reduced in some.

Sudden death from ventricular arrhythmias has been reported in 1-5% of patients at a later stage in life, and the cause remains unknown. It has been suspected that ventricular dysfunction may be the cause. One study found left ventricular longitudinal dysfunction to be associated with a greater risk of developing life-threatening arrhythmias.[8] Continued cardiac monitoring into adult life is necessary. For some time, it has been suspected that certain children may have inherited a predispostion to developing long QT syndrome. A 2012 study by Chiu confirmed this suspicion.[9]

If left untreated, patients with tetralogy of Fallot face additional risks that include paradoxical emboli leading to stroke, pulmonary embolus, and subacute bacterial endocarditis. It is well known that children with congenital heart disease are prone to stroke. In most of these children the causes of stroke have been related to thromboemboli, prolonged hypotension/anoxix and polycythemia. What is often forgotten is that residual shunts or a patent foramen ovale are also known causes of strokes. The investigation of strokes in these children usually begins with a CT scan of the brain followed by an ECHO.[10]

Without surgery, mortality rates gradually increase, ranging from 30% at age 2 years to 50% by age 6 years. The mortality rate is highest in the first year and then remains constant until the second decade. No more than 20% of patients can be expected to reach the age of 10 years, and fewer than 5-10% of patients are alive by the end of their second decade.

Most individuals who survive to age 30 years develop congestive heart failure (CHF), although individuals whose shunts produce minimal hemodynamic compromise have been noted, albeit rarely, and these individuals achieve a normal life span. However, cases of survival of patients into their 80s have been reported. Due to advanced surgical techniques, a 40% reduction in deaths associated with tetralogy of Fallot was noted from 1979 to 2005.[11]

As might be expected, individuals with tetralogy of Fallot and pulmonary atresia have the worst prognoses, and only 50% survive to age 1 year and 8% to age 10 years.

Previous
 
 
Contributor Information and Disclosures
Author

Shabir Bhimji, MD, PhD Cardiothoracic and Vascular Surgeon, Saudi Arabia and Middle East Hospitals

Shabir Bhimji, MD, PhD is a member of the following medical societies: American Cancer Society, American College of Chest Physicians, American Lung Association, Texas Medical Association

Disclosure: Nothing to disclose.

Coauthor(s)

Mary C Mancini, MD, PhD, MMM Professor and Chief of Cardiothoracic Surgery, Department of Surgery, Louisiana State University School of Medicine in Shreveport

Mary C Mancini, MD, PhD, MMM is a member of the following medical societies: American Association for Thoracic Surgery, American College of Surgeons, American Surgical Association, Society of Thoracic Surgeons, Phi Beta Kappa

Disclosure: Nothing to disclose.

Chief Editor

Park W Willis IV, MD Sarah Graham Distinguished Professor of Medicine and Pediatrics, University of North Carolina at Chapel Hill School of Medicine

Park W Willis IV, MD is a member of the following medical societies: American Society of Echocardiography

Disclosure: Nothing to disclose.

Acknowledgements

David FM Brown, MD Associate Professor, Division of Emergency Medicine, Harvard Medical School; Vice Chair, Department of Emergency Medicine, Massachusetts General Hospital

David FM Brown, MD is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Disclosure: lippincott Royalty textbook royalty; wiley Royalty textbook royalty

David A Donson, MD Assistant Medical Director, Department of Emergency Medicine, Maimonides Medical Center

David A Donson, MD is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Theodore J Gaeta, DO, MPH, FACEP Clinical Associate Professor, Department of Emergency Medicine, Weill Cornell Medical College; Vice Chairman and Program Director of Emergency Medicine Residency Program, Department of Emergency Medicine, New York Methodist Hospital; Academic Chair, Adjunct Professor, Department of Emergency Medicine, St George's University School of Medicine

Theodore J Gaeta, DO, MPH, FACEP is a member of the following medical societies: Alliance for Clinical Education, American College of Emergency Physicians, Clerkship Directors in Emergency Medicine, Council of Emergency Medicine Residency Directors, New York Academy of Medicine, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Ronald J Oudiz, MD, FACP, FACC, FCCP Professor of Medicine, University of California, Los Angeles, David Geffen School of Medicine; Director, Liu Center for Pulmonary Hypertension, Division of Cardiology, LA Biomedical Research Institute at Harbor-UCLA Medical Center

Ronald J Oudiz, MD, FACP, FACC, FCCP is a member of the following medical societies: American College of Cardiology, American College of Chest Physicians, American College of Physicians, American Heart Association, and American Thoracic Society

Disclosure: Actelion Grant/research funds Clinical Trials + honoraria; Ikaria Grant/research funds Clinical Trials + honoraria; Gilead Grant/research funds Clinical Trials + honoraria; Pfizer Grant/research funds Clinical Trials + honoraria; United Therapeutics Grant/research funds Clinical Trials + honoraria; Lilly Grant/research funds Clinical Trials + honoraria; Lung LLC Clinical Trials + honoraria; Bayer Grant/research funds Consulting; Medtronic Consulting fee Consulting; Novartis Consulting fee Consulting

Kurt Pflieger, MD, FAAP Active Staff, Department of Pediatrics, Lake Pointe Medical Center

Kurt Pflieger, MD, FAAP is a member of the following medical societies: American Academy of Pediatrics, American College of Emergency Physicians, American Heart Association, and Texas Medical Association

Disclosure: Nothing to disclose.

Gary Edward Sander, MD, PhD, FACC, FAHA, FACP, FASH Professor of Medicine, Director of CME Programs, Team Leader, Root Cause Analysis, Tulane University Heart and Vascular Institute; Director of In-Patient Cardiology, Tulane Service, University Hospital; Visiting Physician, Medical Center of Louisiana at New Orleans; Faculty, Pennington Biomedical Research Institute, Louisiana State University; Professor, Tulane University School of Medicine

Gary Edward Sander, MD, PhD, FACC, FAHA, FACP, FASH is a member of the following medical societies: Alpha Omega Alpha, American Chemical Society, American College of Cardiology, American College of Chest Physicians, American College of Physicians, American Federation for Clinical Research, American Federation for Medical Research, American Heart Association, American Society for Pharmacology and Experimental Therapeutics, American Society of Hypertension,American Thoracic Society, Heart Failure Society of America, Louisiana State Medical Society, National Lipid Association, and Southern Society for Clinical Investigation

Disclosure: Forest Labs Honoraria Speaking and teaching

Gary Setnik, MD Chair, Department of Emergency Medicine, Mount Auburn Hospital; Assistant Professor, Division of Emergency Medicine, Harvard Medical School

Gary Setnik, MD is a member of the following medical societies: American College of Emergency Physicians, National Association of EMS Physicians, and Society for Academic Emergency Medicine

Disclosure: SironaHealth Salary Management position; South Middlesex EMS Consortium Salary Management position; ProceduresConsult.com Royalty Other

Mark Spektor, DO Medical Director, Department of Emergency Medicine, Maimonides Medical Center

Mark Spektor, DO is a member of the following medical societies: American College of Emergency Physicians, American College of Physician Executives, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Boechat MI, Ratib O, Williams PL, Gomes AS, Child JS, Allada V. Cardiac MR imaging and MR angiography for assessment of complex tetralogy of Fallot and pulmonary atresia. Radiographics. 2005 Nov-Dec. 25(6):1535-46. [Medline].

  2. Senzaki H, Ishido H, Iwamoto Y, et al. Sedation of hypercyanotic spells in a neonate with tetralogy of Fallot using dexmedetomidine. J Pediatr (Rio J). 2008 Jul-Aug. 84(4):377-80. [Medline].

  3. Anderson RH, Weinberg PM. The clinical anatomy of tetralogy of fallot. Cardiol Young. 2005 Feb. 15 Suppl 1:38-47. [Medline].

  4. Marinho C, Alho I, Guerra A, Rego C, Areias J, Bicho M. The methylenetetrahydrofolate reductase gene variant (C677T) as a susceptibility gene for tetralogy of Fallot. Rev Port Cardiol. 2009 Jul-Aug. 28(7-8):809-12. [Medline].

  5. Lee CN, Su YN, Cheng WF, Lin MT, Wang JK, Wu MH, et al. Association of the C677T methylenetetrahydrofolate reductase mutation with congenital heart diseases. Acta Obstet Gynecol Scand. 2005 Dec. 84(12):1134-40. [Medline].

  6. Li X, Liu CL, Li XX, Li QC, Ma LM, Liu GL. VEGF gene polymorphisms are associated with risk of tetralogy of Fallot. Med Sci Monit. 2015 Nov 12. 21:3474-82. [Medline].

  7. Rauch R, Hofbeck M, Zweier C, Koch A, Zink S, Trautmann U, et al. Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet. 2010 May. 47(5):321-31. [Medline].

  8. Diller GP, Kempny A, Liodakis E, Alonso-Gonzalez R, Inuzuka R, Uebing A, et al. Left Ventricular Longitudinal Function Predicts Life-Threatening Ventricular Arrhythmia and Death in Adults with Repaired Tetralogy of Fallot. Circulation. 2012 Apr 11. [Medline].

  9. Chiu SN, Wu MH, Su MJ, Wang JK, Lin MT, Chang CC, et al. Coexisting mutations/polymorphisms of the long QT syndrome genes in patients with repaired Tetralogy of Fallot are associated with the risks of life-threatening events. Hum Genet. 2012 Mar 11. [Medline].

  10. Rodan L, McCrindle BW, Manlhiot C, MacGregor DL, Askalan R, Moharir M, et al. Stroke recurrence in children with congenital heart disease. Ann Neurol. Feb 2012.

  11. Pillutla P, Shetty KD, Foster E. Mortality associated with adult congenital heart disease: Trends in the US population from 1979 to 2005. Am Heart J. 2009 Nov. 158(5):874-9. [Medline].

  12. Tanel RE. ECGs in the ED. Pediatr Emerg Care. 2007 Jun. 23(6):428-9. [Medline].

  13. [Guideline] Witte KK, Pepper CB, Cowan JC, Thomson JD, English KM, Blackburn ME. Implantable cardioverter-defibrillator therapy in adult patients with tetralogy of Fallot. Europace. 2008 Aug. 10(8):926-30. [Medline].

  14. Khairy P, Harris L, Landzberg MJ, Viswanathan S, Barlow A, Gatzoulis MA, et al. Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation. 2008 Jan 22. 117(3):363-70. [Medline].

  15. Chrysostomou C, Sanchez De Toledo J, Avolio T, Motoa MV, Berry D, Morell VO, et al. Dexmedetomidine use in a pediatric cardiac intensive care unit: can we use it in infants after cardiac surgery?. Pediatr Crit Care Med. 2009 Nov. 10(6):654-60. [Medline].

  16. Shepard SM, Tejman-Yarden S, Khanna S, Davis CK, Batra AS. Dexmedetomidine-related atrial standstill and loss of capture in a pediatric patient after congenital heart surgery. Crit Care Med. 2011 Jan. 39(1):187-9. [Medline].

  17. Al Habib HF, Jacobs JP, Mavroudis C, Tchervenkov CI, O'Brien SM, Mohammadi S, et al. Contemporary patterns of management of tetralogy of Fallot: data from the Society of Thoracic Surgeons Database. Ann Thorac Surg. 2010 Sep. 90(3):813-9; discussion 819-20. [Medline].

  18. Gustafson RA, Murray GF, Warden HE, Hill RC, Rozar GE Jr. Early primary repair of tetralogy of Fallot. Ann Thorac Surg. 1988 Mar. 45(3):235-41. [Medline].

  19. Park CS, Lee JR, Lim HG, Kim WH, Kim YJ. The long-term result of total repair for tetralogy of Fallot. Eur J Cardiothorac Surg. 2010 Sep. 38(3):311-7. [Medline].

  20. Robinson JD, Rathod RH, Brown DW, et al. The evolving role of intraoperative balloon pulmonary valvuloplasty in valve-sparing repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2011 Dec. 142(6):1367-73. [Medline].

  21. Davidson J, Tong S, Hancock H, Hauck A, da Cruz E, Kaufman J. Prospective validation of the vasoactive-inotropic score and correlation to short-term outcomes in neonates and infants after cardiothoracic surgery. Intensive Care Med. 2012 Apr 14. [Medline].

  22. Pacifico AD, Kirklin JK, Colvin EV, McConnell ME, Kirklin JW. Transatrial-transpulmonary repair of tetralogy of Fallot. Semin Thorac Cardiovasc Surg. 1990 Jan. 2(1):76-82. [Medline].

  23. Menting ME, van den Bosch AE, McGhie JS, et al. Assessment of ventricular function in adults with repaired Tetralogy of Fallot using myocardial deformation imaging. Eur Heart J Cardiovasc Imaging. 2015 Dec. 16 (12):1347-57. [Medline].

  24. Lindsey CW, Parks WJ, Kogon BE, Sallee D 3rd, Mahle WT. Pulmonary valve replacement after tetralogy of Fallot repair in preadolescent patients. Ann Thorac Surg. 2010 Jan. 89(1):147-51. [Medline].

  25. Yao Q, Hu XH, Shen QL, et al. Differential effect of the ratio of right ventricular volume to left ventricular volume in children with repaired tetralogy of Fallot. Cardiology. 2016. 133 (3):135-40. [Medline].

  26. Kanter KR, Kogon BE, Kirshbom PM, Carlock PR. Symptomatic neonatal tetralogy of Fallot: repair or shunt?. Ann Thorac Surg. 2010 Mar. 89(3):858-63. [Medline].

  27. Tsang FH, Li X, Cheung YF, Chau KT, Cheng LC. Pulmonary valve replacement after surgical repair of tetralogy of Fallot. Hong Kong Med J. 2010 Feb. 16(1):26-30. [Medline].

  28. Aboulhosn J, Child JS. Management after childhood repair of tetralogy of fallot. Curr Treat Options Cardiovasc Med. 2006 Dec. 8(6):474-83. [Medline].

  29. Aboulhosn J, Child JS. Management after childhood repair of tetralogy of fallot. Curr Treat Options Cardiovasc Med. 2006 Dec. 8(6):474-83. [Medline].

  30. Devore GR, Polanko B. Tomographic ultrasound imaging of the fetal heart: a new technique for identifying normal and abnormal cardiac anatomy. J Ultrasound Med. 2005 Dec. 24(12):1685-96. [Medline].

  31. Duro RP, Moura C, Leite-Moreira A. Anatomophysiologic basis of tetralogy of Fallot and its clinical implications. Rev Port Cardiol. 2010 Apr. 29(4):591-630. [Medline].

  32. Fox D, Devendra GP, Hart SA, Krasuski RA. When 'blue babies' grow up: What you need to know about tetralogy of Fallot. Cleve Clin J Med. 2010 Nov. 77(11):821-8. [Medline].

  33. He GW. Current strategy of repair of tetralogy of Fallot in children and adults: emphasis on a new technique to create a monocusp-patch for reconstruction of the right ventricular outflow tract. J Card Surg. 2008 Nov-Dec. 23(6):592-9. [Medline].

  34. Hörer J, Friebe J, Schreiber C, Kostolny M, Cleuziou J, Holper K, et al. Correction of tetralogy of Fallot and of pulmonary atresia with ventricular septal defect in adults. Ann Thorac Surg. 2005 Dec. 80(6):2285-91. [Medline].

  35. Hövels-Gürich HH, Konrad K, Skorzenski D, Minkenberg R, Herpertz-Dahlmann B, Messmer BJ, et al. Long-term behavior and quality of life after corrective cardiac surgery in infancy for tetralogy of Fallot or ventricular septal defect. Pediatr Cardiol. 2007 Sep-Oct. 28(5):346-54. [Medline].

  36. Kantorova A, Zbieranek K, Sauer H, Lilje C, Haun C, Hraska V. Primary early correction of tetralogy of Fallot irrespective of age. Cardiol Young. 2008 Apr. 18(2):153-7. [Medline].

  37. Laidman J. Fluconazole Linked to Increased Risk for Rare Birth Defect. Medscape Medical News. Available at http://www.medscape.com/viewarticle/810149. Accessed: September 5, 2013.

  38. Miatton M, De Wolf D, François K, Thiery E, Vingerhoets G. Intellectual, neuropsychological, and behavioral functioning in children with tetralogy of Fallot. J Thorac Cardiovasc Surg. 2007 Feb. 133(2):449-55. [Medline].

  39. Mølgaard-Nielsen D, Pasternak B, Hviid A. Use of oral fluconazole during pregnancy and the risk of birth defects. N Engl J Med. 2013 Aug 29. 369(9):830-9. [Medline].

  40. Patel CR, Agamanolis DP, Stewart JW. Prenatal diagnosis of tetralogy of Fallot with obstructed supracardiac totally anomalous pulmonary venous connection. Cardiol Young. 2005 Dec. 15(6):656-9. [Medline].

  41. Redington AN. Determinants and assessment of pulmonary regurgitation in tetralogy of Fallot: practice and pitfalls. Cardiol Clin. 2006 Nov. 24(4):631-9, vii. [Medline].

  42. Sakamoto T, Nagase Y, Hasegawa H, Shin'oka T, Tomimatsu H, Kurosawa H. One-stage intracardiac repair in combination with external stenting of the trachea and right bronchus for tetralogy of Fallot with an absent pulmonary valve and tracheobronchomalacia. J Thorac Cardiovasc Surg. 2005 Dec. 130(6):1717-8. [Medline].

  43. Srivastava S, Salem Y, Chatterjee S, Helen Ko H, Lai WW, Parness IA, et al. Echocardiographic Myocardial Deformation Evaluation of Right Ventricular Function in Comparison with CMRI in Repaired Tetralogy of Fallot: A Cross-Sectional and Longitudinal Validation Study. Echocardiography. 2013 Feb. 30(2):196-202. [Medline].

  44. Starr JP. Tetralogy of fallot: yesterday and today. World J Surg. 2010 Apr. 34(4):658-68. [Medline].

  45. Aguayo-Gomez A, Arteaga-Vazquez J, Svyryd Y, et al. Identification of copy number variations in isolated tetralogy of Fallot. Pediatr Cardiol. 2015 Dec. 36 (8):1642-6. [Medline].

 
Previous
Next
 
Anatomic findings in tetralogy of Fallot.
Typical preoperative electrocardiogram (ECG) for tetralogy of Fallot.
Typical findings on postoperative electrocardiogram (ECG) for tetralogy of Fallot.
Uplifted apex and absence of pulmonary artery segment typifies the "coeur en sabot" (ie, boot-shaped heart) of tetralogy of Fallot.
This angiogram shows a catheter in the right ventricle—severe infundibular stenosis.
This image shows completed blocking with a Taussig shunt
An opening in the right ventricle exposes ventricular septal defect
Interrupted pledgetted sutures are used to close a ventricular septal defect.
This image shows a closed ventricular septal defect and closure of right ventriculotomy with Gore-Tex.
Gore-Tex is used for complete closure of right ventriculotomy.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.