Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Robotic-Assisted Laparoscopic Pyeloplasty

  • Author: Chandru P Sundaram, MD; Chief Editor: Edward David Kim, MD, FACS  more...
 
Updated: Jul 07, 2016
 

Background

This topic reviews the technique and application of robotic-assisted laparoscopic pyeloplasty (RLP). Open pyeloplasty has been the criterion standard for pyeloplasty, achieving excellent long-term success rates of over 90%,[1] despite the disadvantages of longer hospital stay, increased postoperative pain, and slower return to normal activities as compared with laparoscopic renal surgery.[2]

Two other forms of surgical options emerged offering minimally invasive techniques. The first was antegrade endopyelotomy through a percutaneous tract.[3, 4] The second was retrograde endopyelotomy, in which retrograde access is obtained by using fluoroscopy and small-caliber ureteroscopes.[5, 6] The main attraction of retrograde endopyelotomy is the avoidance of percutaneous access, which allows the procedure to be performed with less morbidity and a shorter inpatient convalescence period or none at all.[7]

The first laparoscopic pyeloplasty was reported in 1993.[8, 9] Many series showed that laparoscopic pyeloplasty was comparable to open pyeloplasty.[10, 11, 12] Long-term series with a minimum of 2 years’ follow-up reported excellent success rates (96-98%).[13, 4, 14] Laparoscopic pyeloplasty also achieved good success (eg, 83% in 36 patients) after previous failed procedures (eg, antegrade or retrograde endopyelotomy, balloon dilatation, and open pyeloplasty).[15]

Despite the low morbidity of the procedure, the long-term results of endopyelotomy could not be compared with those of open or laparoscopic pyeloplasty.[16] The benefit of quick recovery from surgery after endopyelotomy could also be matched by the minimally invasive laparoscopic approach. For these reasons, endopyelotomy gradually took a smaller role in the first-line management of ureteropelvic junction obstruction (UPJO).[17, 18]

Excellent results notwithstanding, laparoscopic pyeloplasty did not replace open pyeloplasty the way laparoscopic nephrectomy replaced open nephrectomy—mainly because of the steep learning curve required to master advanced laparoscopic skills such as intracorporal suturing, which can be time-consuming and imprecise in the initial learning stages. The development of RLP has reduced the obstacles to learning intracorporeal suturing, which is the main reconstructive step in pyeloplasty. In 2009, RLP surpassed open surgery as the most widely used approach for pyeloplasty in the United States.[19]

Next

Indications

Most adult patients present with ipsilateral flank pain that was attributed to UPJO. Subsequent imaging with intravenous pyelography (IVP), computed tomography (CT) with excretory phase, and functional radionuclide scanning (eg, mercaptoacetyltriglycine [MAG3] renal scan) typically yields radiographic evidence of obstruction at the ureteropelvic junction (UPJ). Other clinical presentations include worsening renal function, a history of urinary tract infection[link “urinary tract infection” to Medscape topic Urinary Tract Infection in Males], and development of stones in the ipsilateral kidney.[20]

When patients present with 1 of these clinical scenarios, together with 1 or more radiographic indicators of obstruction at the UPJ, the case can be made for surgical intervention.

Previous
Next

Contraindications

Active urinary tract infection should be excluded before surgery. Appropriate antibiotics should be started,* and a negative culture should be obtained preoperatively. Attempts should be made to exclude an upper tract urothelial carcinoma, either radiologically or with a preoperative ureteroscopy, if necessary. If the kidney[link “kidney” to Medscape topic Kidney Anatomy] is nonfunctional, nephrectomy[link “nephrectomy” to Medscape topic Partial Nephrectomy] should be considered.

Relative contraindications for RLP include the presence of a long stricture, in which case alternative techniques (eg, ureterocalicostomy or ureteral substitution) should be considered. YV plasty or Fenger plasty may be considered when a crossing vessel is not present and the UPJ anatomy is suitable.

Previous
Next

Technical Considerations

Best practices

Transposition of crossing vessels

Lower-pole crossing vessels, found in 20-50% of patients with UPJO, may compress or distort the UPJ, causing ureteral outflow obstruction (see the image below).[21] The causal relationship between UPJO and crossing vessels is not always clear, but some surgical implications certainly exist. Apart from being a source of hemorrhage during endopyelotomy, the presence of crossing vessels can be a negative prognostic factor in endopyelotomy for the treatment of UPJO.[22]

Lower-pole crossing vessels causing ureteropelvic Lower-pole crossing vessels causing ureteropelvic junction obstruction.

In pyeloplasty, crossing vessels may be encountered when the renal pelvis is approached from the upper ureter. Mobilizing these vessels fully and preserving them during dissection is important. Inadvertent ligation of a crossing artery would lead to infarction of the corresponding lower pole parenchyma. In view of these surgical implications, crossing vessels should be identified in the preoperative CT evaluation.

In dismembered pyeloplasty, crossing vessels can be transposed posteriorly before anastomosis is completed. After the ureter is widely mobilized and dismembered, the crossing vessel is transposed posteriorly and its position tested to ensure that the final position is not causing tension on the anastomotic line (see the video below).

Robotic-assisted laparoscopic pyeloplasty: posterior transposition.

Transposition is not required in all situations. Occasionally, adequate mobilization by itself is sufficient to relieve the obstruction, and the anastomosis can be completed with the crossing vessel in its native anterior position relative to the UPJ, with a more cephalad final position (see the video below).

Robotic-assisted laparoscopic pyeloplasty: without transposition.

Two studies comparing success rates in patients who had anterior crossing vessels that were transposed with success rates in those who had crossing vessels that were not transposed found no significant differences in radiographic success.[23, 24] Whether transposition of crossing vessels is indicated should be decided intraoperatively on the basis of the surgeon’s assessment after adequate mobilization (see the video below).

Robotic-assisted laparoscopic pyeloplasty: assessment of transposition.

Placement of ureteral stents

Ureteral stents are commonly placed after reconstructive procedures to allow adequate drainage while suture lines heal, thereby avoiding urine leakage in the postoperative period. At the authors’ institution, a ureteral stent is inserted during retrograde pyelography (RVP) just before the surgical procedure. The anastomosis is completed with the preinserted stent in place.

This technique is straightforward and obviates any guide wire manipulation, genitalia access during surgery, flexible cystoscopy, patient repositioning, or C-arm use. In the authors’ view, the stent does not interfere with anastomosis. In fact, with the additional use of a 5-French infant feeding tube, the stent can be used to ensure that the spatulation of the ureter is sufficient to provide a widely patent anastomosis (see the image below).

Use of 5-French infant feeding tube and indwelling Use of 5-French infant feeding tube and indwelling stent to assess adequacy of spatulation.

Many techniques of stent insertion have been described, including the following:

  • Cystoscopic-assisted intraoperative stent insertion [25]
  • Antegrade placement of the stent over a guide wire through the assistant port [26]
  • Use of a preinserted open-ended ureteral catheter to insert a guide wire in a retrograde manner and exchange it for a ureteral stent [27]

With improved anastomotic technique made possible by the dexterity of the robotic arms, watertight closure can be achieved without an indwelling stent in some cases. In one study, of 17 stentless RLPs performed, 2 cases required postoperative stent insertion in the early postoperative period because of increased output from the drain.[28] In 1 of the 2, no leakage was demonstrated on RPG during stent placement, suggesting a transient obstruction from a blood clot.

The authors would routinely place a ureteral stent unless previous experience indicates that the patient cannot tolerate a stent, in which case they would counsel the patient on the risks of urine leakage and possible postoperative stent insertion before performing a stentless procedure.

Alternatives to dismembered pyeloplasty

In cases in which the renal pelvis is small with no redundancy, dismembering the ureter may not achieve a tension-free anastomosis. In such cases, YV plasty or Fenger plasty may be considered. In a YV plasty, the 2 limbs of the Y are made along 2 walls of the pelvis, and the long limb is carried down across the UPJ to the upper ureter. The apex of the V flap created is joined to the most caudal end of the ureteric incision (see the video below).

Robotic-assisted laparoscopic pyeloplasty: YV plasty.

In a Fenger plasty, the UPJ is incised in a longitudinal fashion and then closed transversely (see the video below). If the obstruction is long and the renal pelvis has adequate redundancy, a flap (eg, Culp-Deweerd) can be created from the redundant pelvis to bridge the ureteral gap.

Robotic-assisted laparoscopic pyeloplasty: Fenger plasty.
Previous
Next

Outcomes

Now that RLP has been found to achieve success rates similar to those of open pyeloplasty while also providing the benefits of minimally invasive surgery, it is fast becoming the operative technique of choice for patients presenting with UPJO.

Single-center comparative series showed RLP to be equivalent to standard laparoscopic pyeloplasty in terms of operating time, complication rate, and success rate.[29, 30, 31] A meta-analysis of 8 series reported a significantly shorter hospital stay and a nonsignificantly reduced operating time for RLP, as well as similar success rates and complication rates for the 2 techniques.[31] The largest multicenter series of LP and RALP in 575 pediatric patients also found shorter hospitalization time and lower postoperative complication rates with RALP (3.2% vs 7.7%).[32] A study on 77 patients with symptomatic UPJO found that patients with equivocal diuretic renography were significantly less likely to have subjective resolution of symptoms than patients in the obstructed group.[33]  The results from some of the largest reported series of RLP are summarized in the Table below.[34, 35, 36, 37, 38, 39, 40]

Table. Reported Results of Robotic-Assisted Laparoscopic Pyeloplasty (Open Table in a new window)

Study (N) Follow-up (mo) Success Operating Time (min) Complications Hospital Stay (days)
Erdeljan et al 2010 (88) - 93% radiographic patency; 93% pain resolution 167 5 major: migrated stent, urinoma 2.5
Etafy et al 2011 (61) 18 81% radiographic patency and pain resolution 335 4.9% clogged stent; urine leak 2
Gupta et al 2010 (85) 13.6 96.5% radiographic patency and pain resolution 121 3 urine leaks; 2 conversions; 1 port-site hernia; 1 volvulus 2.5
Mufarrij et al 2008 (140; 3 centers) 29 95.7% radiographic resolution 217 7% major (7 were stent migration); 2 urine leaks 2.1
Schwentner et al 2007 (92) 39.1 96.7% radiographic patency 108 2 urine leaks; 1 bleeding 4.6
Minnillo et al 2011 (155) 31.7 96% stable or improved hydronephrosis 198 7.7% major complications 1.9
Lucas et al 2010 (485; multiple centers) 11 96.7% radiographic patency; 95.4% symptom improvement 204 5.4% overall; 1.8% urine leak
Previous
 
 
Contributor Information and Disclosures
Author

Chandru P Sundaram, MD Professor of Urology, Residency Program Director, Director of Minimally Invasive Surgery, Department of Urology, Indiana University School of Medicine

Chandru P Sundaram, MD is a member of the following medical societies: American Urological Association, Endourological Society, Society of Laparoendoscopic Surgeons

Disclosure: Nothing to disclose.

Coauthor(s)

Keng-Siang Png, MBBS Fellow in Minimally Invasive Surgery and Laparoscopy, Department of Urology, Indiana University School of Medicine

Disclosure: Nothing to disclose.

Clinton D Bahler, MD Fellow in Minimally Invasive Surgery, Department of Urology, Indiana University School of Medicine

Disclosure: Nothing to disclose.

Chief Editor

Edward David Kim, MD, FACS Professor of Surgery, Division of Urology, University of Tennessee Graduate School of Medicine; Consulting Staff, University of Tennessee Medical Center

Edward David Kim, MD, FACS is a member of the following medical societies: American College of Surgeons, Tennessee Medical Association, Sexual Medicine Society of North America, American Society for Reproductive Medicine, American Society of Andrology, American Urological Association

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Repros.

Acknowledgements

Clinton D. Bahler, MD

Fellow in Minimally-Invasive Surgery and Laparoscopy, Department of Urology, Indiana University School of Medicine

References
  1. Scardino PT, Scardino PL. Obstruction at the ureteropelvic junction. H B, editor. The ureter. 2nd ed. New York: Springer Verlag; 1981. 697.

  2. Burgess NA, Koo BC, Calvert RC, Hindmarsh A, Donaldson PJ, Rhodes M. Randomized trial of laparoscopic v open nephrectomy. J Endourol. 2007 Jun. 21(6):610-3. [Medline].

  3. Badlani G, Eshghi M, Smith AD. Percutaneous surgery for ureteropelvic junction obstruction (endopyelotomy): technique and early results. J Urol. 1986 Jan. 135(1):26-8. [Medline].

  4. Motola JA, Badlani GH, Smith AD. Results of 212 consecutive endopyelotomies: an 8-year followup. J Urol. 1993 Mar. 149(3):453-6. [Medline].

  5. Gerber GS, Kim JC. Ureteroscopic endopyelotomy in the treatment of patients with ureteropelvic junction obstruction. Urology. 2000 Feb. 55(2):198-202; discussion 202-3. [Medline].

  6. Conlin MJ, Bagley DH. Ureteroscopic endopyelotomy at a single setting. J Urol. 1998 Mar. 159(3):727-31. [Medline].

  7. Shalhav AL, Giusti G, Elbahnasy AM, Hoenig DM, McDougall EM, Smith DS. Adult endopyelotomy: impact of etiology and antegrade versus retrograde approach on outcome. J Urol. 1998 Sep. 160(3 Pt 1):685-9. [Medline].

  8. Kavoussi LR, Peters CA. Laparoscopic pyeloplasty. J Urol. 1993 Dec. 150(6):1891-4. [Medline].

  9. Schuessler WW, Grune MT, Tecuanhuey LV, Preminger GM. Laparoscopic dismembered pyeloplasty. J Urol. 1993 Dec. 150(6):1795-9. [Medline].

  10. Bauer JJ, Bishoff JT, Moore RG, Chen RN, Iverson AJ, Kavoussi LR. Laparoscopic versus open pyeloplasty: assessment of objective and subjective outcome. J Urol. 1999 Sep. 162(3 Pt 1):692-5. [Medline].

  11. Eden CG, Cahill D, Allen JD. Laparoscopic dismembered pyeloplasty: 50 consecutive cases. BJU Int. 2001 Oct. 88(6):526-31. [Medline].

  12. Klingler HC, Remzi M, Janetschek G, Kratzik C, Marberger MJ. Comparison of open versus laparoscopic pyeloplasty techniques in treatment of uretero-pelvic junction obstruction. Eur Urol. 2003 Sep. 44(3):340-5. [Medline].

  13. Janetschek G, Peschel R, Bartsch G. Laparoscopic Fenger plasty. J Endourol. 2000 Dec. 14(10):889-93. [Medline].

  14. Turk IA, Davis JW, Winkelmann B, Deger S, Richter F, Fabrizio MD. Laparoscopic dismembered pyeloplasty--the method of choice in the presence of an enlarged renal pelvis and crossing vessels. Eur Urol. 2002 Sep. 42(3):268-75. [Medline].

  15. Sundaram CP, Grubb RL 3rd, Rehman J, Yan Y, Chen C, Landman J. Laparoscopic pyeloplasty for secondary ureteropelvic junction obstruction. J Urol. 2003 Jun. 169(6):2037-40. [Medline].

  16. Brooks JD, Kavoussi LR, Preminger GM, Schuessler WW, Moore RG. Comparison of open and endourologic approaches to the obstructed ureteropelvic junction. Urology. 1995 Dec. 46(6):791-5. [Medline].

  17. Yong D, Albala DM. Endopyelotomy in the age of laparoscopic and robotic-assisted pyeloplasty. Curr Urol Rep. 2010 Mar. 11(2):74-9. [Medline].

  18. Gallo F, Schenone M, Giberti C. Ureteropelvic junction obstruction: which is the best treatment today?. J Laparoendosc Adv Surg Tech A. 2009 Oct. 19(5):657-62. [Medline].

  19. Monn MF, Bahler CD, Schneider EB, Sundaram CP. Emerging trends in robotic pyeloplasty for the management of ureteropelvic junction obstruction in adults. J Urol. 2013 Apr. 189(4):1352-7. [Medline].

  20. Hsu TH, Streem SB, Nakada SY. Management of upper urinary tract obstruction. Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell-Walsh Urology. 9th ed. Philadelphia: Saunders Elsevier; 2007.

  21. Grasso M, Caruso RP, Phillips CK. UPJ Obstruction in the Adult Population: Are Crossing Vessels Significant?. Rev Urol. 2001. 3(1):42-51. [Medline].

  22. Van Cangh PJ, Nesa S. Endopyelotomy. Prognostic factors and patient selection. Urol Clin North Am. 1998 May. 25(2):281-8. [Medline].

  23. Boylu U, Oommen M, Lee BR, Thomas R. Ureteropelvic junction obstruction secondary to crossing vessels-to transpose or not? The robotic experience. J Urol. 2009 Apr. 181(4):1751-5. [Medline].

  24. Canes D, Desai MM, Haber GP, Colombo JR, Turna B, Kaouk JH. Is routine transposition of anterior crossing vessels during laparoscopic dismembered pyeloplasty necessary?. J Endourol. 2009 Mar. 23(3):469-73. [Medline].

  25. Wayment RO, Waller CJ, Kramer BA, Schwartz BF. Intraoperative cystoscopic stent placement in robot-assisted pyeloplasty: a novel and efficient technique. J Endourol. 2009 Apr. 23(4):583-6; discussion 586-7. [Medline].

  26. Peschel R, Neururer R, Bartsch G, Gettman MT. Robotic pyeloplasty: technique and results. Urol Clin North Am. 2004 Nov. 31(4):737-41. [Medline].

  27. Mendez-Torres F, Woods M, Thomas R. Technical modifications for robot-assisted laparoscopic pyeloplasty. J Endourol. 2005 Apr. 19(3):393-6. [Medline].

  28. Sethi AS, Regan SM, Sundaram CP. Robot-assisted laparoscopic pyeloplasty with and without a ureteral stent. J Endourol. 2011 Feb. 25(2):239-43. [Medline].

  29. Bird VG, Leveillee RJ, Eldefrawy A, Bracho J, Aziz MS. Comparison of robot-assisted versus conventional laparoscopic transperitoneal pyeloplasty for patients with ureteropelvic junction obstruction: a single-center study. Urology. 2011 Mar. 77(3):730-4. [Medline].

  30. Bernie JE, Venkatesh R, Brown J, Gardner TA, Sundaram CP. Comparison of laparoscopic pyeloplasty with and without robotic assistance. JSLS. 2005 Jul-Sep. 9(3):258-61. [Medline].

  31. Braga LH, Pace K, DeMaria J, Lorenzo AJ. Systematic review and meta-analysis of robotic-assisted versus conventional laparoscopic pyeloplasty for patients with ureteropelvic junction obstruction: effect on operative time, length of hospital stay, postoperative complications, and success rate. Eur Urol. 2009 Nov. 56(5):848-57. [Medline].

  32. Silay MS, Spinoit AF, Undre S, et al. Global minimally invasive pyeloplasty study in children: Results from the Pediatric Urology Expert Group of the European Association of Urology Young Academic Urologists working party. J Pediatr Urol. 2016 May 12. [Medline].

  33. Fontenot PA Jr, Capoccia TR, Wilson B, Arthur A, Duchene DA. Robotic-assisted Laparoscopic Pyeloplasty: Analysis of Symptomatic Patients With Equivocal Renal Scans. Urology. 2016 Jul. 93:92-6. [Medline].

  34. Mufarrij PW, Woods M, Shah OD, Palese MA, Berger AD, Thomas R, et al. Robotic dismembered pyeloplasty: a 6-year, multi-institutional experience. J Urol. 2008 Oct. 180(4):1391-6. [Medline].

  35. Schwentner C, Pelzer A, Neururer R, Springer B, Horninger W, Bartsch G. Robotic Anderson-Hynes pyeloplasty: 5-year experience of one centre. BJU Int. 2007 Oct. 100(4):880-5. [Medline].

  36. Lucas SM, Sundaram CP, Leveillee RJ, Bird VG. Laparoscopic and robotic pyeloplasty collaborative group: Analysis of factors influencing success in 800 patients. J Endourol. 2010. 24(S1):A31-A2.

  37. Gupta NP, Nayyar R, Hemal AK, Mukherjee S, Kumar R, Dogra PN. Outcome analysis of robotic pyeloplasty: a large single-centre experience. BJU Int. 2010 Apr. 105(7):980-3. [Medline].

  38. Erdeljan P, Caumartin Y, Warren J, Nguan C, Nott L, Luke PP. Robot-assisted pyeloplasty: follow-up of first Canadian experience with comparison of outcomes between experienced and trainee surgeons. J Endourol. 2010 Sep. 24(9):1447-50. [Medline].

  39. Etafy M, Pick D, Said S, Hsueh T, Kerbl D, Mucksavage P. Robotic pyeloplasty: the University of California-Irvine experience. J Urol. 2011 Jun. 185(6):2196-200. [Medline].

  40. Minnillo BJ, Cruz JA, Sayao RH, et al. Long-term experience and outcomes of robotic assisted laparoscopic pyeloplasty in children and young adults. J Urol. 2011 Apr. 185(4):1455-60. [Medline].

  41. Rabah DM, Al-Hathal N, Al-Fuhaid T, Raza S, Al-Yami F, Al-Taweel W. Computed tomography angiogram: accuracy in renal surgery. Int J Urol. 2009 Jan. 16(1):58-60. [Medline].

  42. Whitaker RH. Methods of assessing obstruction in dilated ureters. Br J Urol. 1973 Feb. 45(1):15-22. [Medline].

  43. Gupta NP, Mukherjee S, Nayyar R, Hemal AK, Kumar R. Transmesocolic robot-assisted pyeloplasty: single center experience. J Endourol. 2009 Jun. 23(6):945-8. [Medline].

  44. Patel T, Kellner CP, Katsumi H, Gupta M. Efficacy of endopyelotomy in patients with secondary ureteropelvic junction obstruction. J Endourol. 2011 Apr. 25(4):587-91. [Medline].

 
Previous
Next
 
Robotic-assisted laparoscopic pyeloplasty: posterior transposition.
Robotic-assisted laparoscopic pyeloplasty: without transposition.
Robotic-assisted laparoscopic pyeloplasty: assessment of transposition.
Robotic-assisted laparoscopic pyeloplasty: YV plasty.
Robotic-assisted laparoscopic pyeloplasty: Fenger plasty.
Robotic-assisted laparoscopic pyeloplasty: mobilization of crossing vessels.
Robotic-assisted laparoscopic pyeloplasty: retraction sutures.
Robotic-assisted laparoscopic pyeloplasty: placement of stay sutures.
Robotic-assisted laparoscopic pyeloplasty: dismemberment and spatulation.
Robotic-assisted laparoscopic pyeloplasty: infant feeding tube.
Robotic-assisted laparoscopic pyeloplasty: anastomosis.
CT scan showing hydronephrosis from ureteropelvic junction obstruction.
Coronal section of CT showing lower-pole crossing vessels.
MAG3 renogram of right ureteropelvic junction obstruction.
Preoperative RPG showing ureteropelvic junction obstruction.
RPG demonstrating polyps at ureteropelvic junction.
Intraoperative view of ureteropelvic junction polyps causing ureteropelvic junction obstruction.
Lower-pole crossing vessels causing ureteropelvic junction obstruction.
Use of 5-French infant feeding tube and indwelling stent to assess adequacy of spatulation.
Patient position before draping.
Patient cart position.
Diagram of port placement with robotic laparoscope placed laterally.
Intraoperative view of port placement.
Table. Reported Results of Robotic-Assisted Laparoscopic Pyeloplasty
Study (N) Follow-up (mo) Success Operating Time (min) Complications Hospital Stay (days)
Erdeljan et al 2010 (88) - 93% radiographic patency; 93% pain resolution 167 5 major: migrated stent, urinoma 2.5
Etafy et al 2011 (61) 18 81% radiographic patency and pain resolution 335 4.9% clogged stent; urine leak 2
Gupta et al 2010 (85) 13.6 96.5% radiographic patency and pain resolution 121 3 urine leaks; 2 conversions; 1 port-site hernia; 1 volvulus 2.5
Mufarrij et al 2008 (140; 3 centers) 29 95.7% radiographic resolution 217 7% major (7 were stent migration); 2 urine leaks 2.1
Schwentner et al 2007 (92) 39.1 96.7% radiographic patency 108 2 urine leaks; 1 bleeding 4.6
Minnillo et al 2011 (155) 31.7 96% stable or improved hydronephrosis 198 7.7% major complications 1.9
Lucas et al 2010 (485; multiple centers) 11 96.7% radiographic patency; 95.4% symptom improvement 204 5.4% overall; 1.8% urine leak
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.