Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Hypomagnesemia Workup

  • Author: Tibor Fulop, MD, FASN, FACP; Chief Editor: Vecihi Batuman, MD, FACP, FASN  more...
 
Updated: Jan 04, 2016
 

Approach Considerations

The majority of patients with clinical manifestations of magnesium deficiency have hypomagnesemia. Measurement of serum magnesium is relatively easy, and it has become the method of choice to estimate magnesium content, although its use in evaluating total body stores is limited. Magnesium assessment can also be made via the following:

  • Red cell content
  • Mononuclear cell content
  • Skeletal muscle intracellular conten
  • 24-hour urinary excretion
  • Fractional excretion (FE) of magnesium
  • Intracellular free magnesium ion concentration with fluorescent dye or nuclear magnetic resonance spectroscopy

Two caveats should be considered when serum magnesium is used to diagnose magnesium deficiency. First, although only free magnesium is biologically active, most methods of assessing the serum content measure total magnesium concentration. Because 30% of magnesium is bound to albumin and is therefore inactive, hypoalbuminemic states may lead to spuriously low magnesium values.

The second caveat is that the major physiologic role of magnesium occurs at an intracellular level. Excluding magnesium deposited in the bone, which is poorly mobilized, the extracellular fluid space contains only 2% of total body magnesium and may not always accurately reflect the intracellular magnesium status. A person may have normal serum levels of magnesium but be intracellularly depleted and exhibit signs of magnesium deficiency. Unfortunately, no quick, simple, and accurate test is available to measure intracellular magnesium.

A surrogate for direct intracellular magnesium is the measurement of magnesium retention after acute magnesium loading. This method is useful only when the clinical suggestion of magnesium deficiency is strong in the setting of normomagnesemia (eg, unexplained cardiovascular or neuromuscular abnormalities) and is not helpful in the setting of renal magnesium wasting (as seen with diuretics) or in the presence of renal dysfunction.

A magnesium deficiency is indicated if a patient has reduced excretion (< 80% over 24 h) of an infused magnesium load (2.4 mg/kg of lean body weight given over the initial 4 h). However, the utility of this test is uncertain. Patients with malnutrition, cirrhosis, diarrhea, or long-term diuretic use typically have a positive test, whether or not they have signs or symptoms referable to magnesium depletion. It seems prudent, therefore, to simply administer magnesium to these patients if they have unexplained hypocalcemia and/or hypokalemia.

Protein, potassium, phosphate, and calcium

Because extracellular magnesium is protein bound, the patient's protein status is an important consideration in interpreting magnesium levels.

Hypomagnesemia contributes to hypokalemia. This condition may be due to a hypomagnesemia-induced decline in adenosine triphosphate (ATP) and the subsequent removal of ATP inhibition of the ROMK channels responsible for secretion in the TAL and collecting duct. In addition, hypophosphatemia has been found in patients with hypomagnesemia.

Hypocalcemia is caused by magnesium depletion, but the reason is not known. Some studies link hypomagnesemia to decreased parathyroid hormone levels and end-organ resistance to parathyroid hormone. Alterations in vitamin D metabolism contribute to hypocalcemia.

Electrocardiography and cardiac monitor

Findings in hypomagnesemia are nonspecific. Findings include ST segment depression; tall, peaked T waves; flat T waves or depression in the precordium; U waves; loss of voltage; PR prolongation; and widened QRS.

Next

Excretion Analysis

If hypomagnesemia is confirmed, the diagnosis can usually be obtained from the history. If no cause is apparent, the distinction between gastrointestinal and renal losses can be made by measuring the 24-hour urinary magnesium excretion or the FE of magnesium on a random urine specimen. The latter can be calculated from the following formula:

FEMg = [(UMg x PCr) / (PMg x UCr x 0.7)] x 100

In the above equation, U and P refer to the urine and plasma concentrations of magnesium (Mg) and creatinine (Cr). The plasma magnesium concentration is multiplied by 0.7, since only about 70% of the circulating magnesium is free (not bound to albumin) and therefore capable of being filtered across the glomerulus. The normal renal response to magnesium depletion is to lower magnesium excretion to very low levels. Thus, daily excretion of more than 2mEq (1 mmol or 24 mg) or a calculated FE of magnesium above 3% in a subject with normal renal function indicates renal magnesium wasting.

Previous
 
 
Contributor Information and Disclosures
Author

Tibor Fulop, MD, FASN, FACP Professor of Medicine, Department of Medicine, Division of Nephrology, University of Mississippi Medical Center

Tibor Fulop, MD, FASN, FACP is a member of the following medical societies: American College of Physicians, American Society of Diagnostic and Interventional Nephrology, American Society of Hypertension, American Society of Nephrology

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Fresenius Medical Care, Hungary.

Coauthor(s)

Mohit Agarwal, MBBS Fellow, Department of Medicine, Division of Nephrology, University of Mississippi Medical Center

Disclosure: Nothing to disclose.

Chief Editor

Vecihi Batuman, MD, FACP, FASN Huberwald Professor of Medicine, Section of Nephrology-Hypertension, Tulane University School of Medicine; Chief, Renal Section, Southeast Louisiana Veterans Health Care System

Vecihi Batuman, MD, FACP, FASN is a member of the following medical societies: American College of Physicians, American Society of Hypertension, American Society of Nephrology, International Society of Nephrology

Disclosure: Nothing to disclose.

Acknowledgements

Mahendra Agraharkar, MD, MBBS, FACP, FASN Clinical Associate Professor of Medicine, Baylor College of Medicine; President and CEO, Space City Associates of Nephrology

Mahendra Agraharkar, MD, MBBS, FACP, FASN is a member of the following medical societies: American College of Physicians, American Society of Nephrology, and National Kidney Foundation

Disclosure: South Shore DaVita Dialysis Center Ownership interest Other

Jeffrey L Arnold, MD, FACEP Chairman, Department of Emergency Medicine, Santa Clara Valley Medical Center

Jeffrey L Arnold, MD, FACEP is a member of the following medical societies: American Academy of Emergency Medicine and American College of Physicians

Disclosure: Nothing to disclose.

Howard A Blumstein, MD, FAAEM Assistant Professor of Surgery, Medical Director, Department of Emergency Medicine, Wake Forest University School of Medicine

Howard A Blumstein, MD, FAAEM is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, American Medical Association, Emergency Medicine Residents Association, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

George P Chrousos, MD, FAAP, MACP, MACE, FRCP(London) Professor and Chair, First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children's Hospital, Greece; UNESCO Chair on Adolescent Health Care, University of Athens, Greece

George P Chrousos, MD, FAAP, MACP, MACE, FRCP(London) is a member of the following medical societies: American Academy of Pediatrics, American College of Endocrinology, American College of Physicians, American Pediatric Society, American Society for Clinical Investigation, Association of American Physicians, Endocrine Society, Pediatric Endocrine Society, and Society for Pediatric Research

Disclosure: Nothing to disclose.

Mark T Fahlen, MD Inc

Mark T Fahlen, MD is a member of the following medical societies: American College of Physicians and Renal Physicians Association

Disclosure: Nothing to disclose.

Enrique Grisoni, MD Associate Professor, Department of Surgery, Division of Pediatric Surgery, University Hospital of Cleveland, Rainbow Babies and Children's Hospital

Disclosure: Nothing to disclose.

Robin R Hemphill, MD, MPH Associate Professor, Director, Quality and Safety, Department of Emergency Medicine, Emory University School of Medicine

Robin R Hemphill, MD, MPH is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Gunjeet K Kala, MD Clinical Instructor, Division of Pediatric Nephrology, University of Buffalo, State University of New York School of Medicine and Biomedical Sciences, Women and Children's Hospital of Buffalo

Gunjeet K Kala, MD is a member of the following medical societies: American Academy of Pediatrics, American Society of Pediatric Nephrology, and American Society of Pediatric Nephrology

Disclosure: Nothing to disclose.

Stephen Kemp, MD, PhD Professor, Department of Pediatrics, Section of Pediatric Endocrinology, University of Arkansas for Medical Sciences College of Medicine, Arkansas Children's Hospital

Stephen Kemp, MD, PhD is a member of the following medical societies: American Academy of Pediatrics, American Association of Clinical Endocrinologists, American Pediatric Society, Endocrine Society, Phi Beta Kappa, Southern Medical Association, and Southern Society for Pediatric Research

Disclosure: Nothing to disclose.

Nona P Novello, MD Associate Chair, Department of Emergency Medicine, Franklin Square Hospital

Nona P Novello, MD is a member of the following medical societies: American College of Emergency Physicians and Phi Beta Kappa

Disclosure: Nothing to disclose.

Helbert Rondon-Berrios, MD Nephrology Fellow, Renal-Electrolyte Division, University of Pittsburgh Medical Center

Helbert Rondon-Berrios, MD is a member of the following medical societies: American College of Physicians, American Society of Nephrology, National Kidney Foundation, and Renal Physicians Association

Disclosure: Nothing to disclose.

Karl S Roth, MD Professor and Chair, Department of Pediatrics, Creighton University School of Medicine

Karl S Roth, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American College of Nutrition, American Pediatric Society, American Society for Clinical Nutrition, American Society of Nephrology, Association of American Medical Colleges, Medical Society of Virginia, New York Academy of Sciences, Sigma Xi, Society for Pediatric Research, andSouthern Society for Pediatric Research

Disclosure: Nothing to disclose.

Erik D Schraga, MD Staff Physician, Department of Emergency Medicine, Mills-Peninsula Emergency Medical Associates

Disclosure: Nothing to disclose.

James H Sondheimer, MD, FACP Associate Professor of Medicine, Wayne State University School of Medicine; Medical Director of Hemodialysis, Harper University Hospital at Detroit Medical Center; Medical Director, DaVita Greenview Dialysis (Southfield)

James H Sondheimer, MD, FACP is a member of the following medical societies: American College of Physicians and American Society of Nephrology

Disclosure: Nothing to disclose.

James E Springate, MD Associate Professor of Pediatrics, University of Buffalo, State University of New York School of Medicine and Biomedical Sciences; Attending Physician, Department of Pediatrics, Division of Pediatric Nephrology, Women and Children's Hospital of Buffalo

James E Springate, MD is a member of the following medical societies: American Academy of Pediatrics, American Physiological Society, American Society of Pediatric Nephrology, International Pediatric Transplant Association, and Society for Pediatric Research

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Christie P Thomas, MBBS, FRCP, FASN, FAHA Professor, Department of Internal Medicine, Division of Nephrology, Medical Director, Kidney and Kidney/Pancreas Transplant Program, University of Iowa Hospitals and Clinics

Christie P Thomas, MBBS, FRCP, FASN, FAHA is a member of the following medical societies: American College of Physicians, American Federation for Medical Research, American Heart Association, American Society of Nephrology, American Society of Transplantation, American Thoracic Society, International Society of Nephrology, and Royal College of Physicians

Disclosure: Genzyme Grant/research funds Other

Mary L Windle, PharmD, Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. Whang R, Ryder KW. Frequency of hypomagnesemia and hypermagnesemia. Requested vs routine. JAMA. 1990 Jun 13. 263(22):3063-4. [Medline].

  2. Konrad M. Disorders of magnesium metabolism. Geary D, Shaefer F. Comprehensive Pediatric Nephrology. Philadelphia PA: Mosby Elsevier; 2008. 461-475.

  3. Martin KJ, González EA, Slatopolsky E. Clinical consequences and management of hypomagnesemia. J Am Soc Nephrol. 2009 Nov. 20(11):2291-5. [Medline].

  4. Drueke TB, Lacour B. Magnesium homeostasis and disorders of magnesium metabolism. Feehally J, Floege J, Johnson RJ, eds. Comprehensive Clinical Nephrology. 3rd ed. Philadelphia, PA: Mosby; 2007. 136-8.

  5. Groenestege WM, Thébault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007 Aug. 117(8):2260-7. [Medline].

  6. Thebault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol. 2009 Jan. 20(1):78-85. [Medline].

  7. Groenestege WM, Hoenderop JG, van den Heuvel L, Knoers N, Bindels RJ. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J Am Soc Nephrol. 2006 Apr. 17(4):1035-43. [Medline].

  8. Xi Q, Hoenderop JG, Bindels RJ. Regulation of magnesium reabsorption in DCT. Pflugers Arch. 2009 May. 458(1):89-98. [Medline].

  9. Agus ZS. Hypomagnesemia. J Am Soc Nephrol. 1999 Jul. 10(7):1616-22. [Medline].

  10. Cole DE, Quamme GA. Inherited disorders of renal magnesium handling. J Am Soc Nephrol. 2000 Oct. 11(10):1937-47. [Medline].

  11. Konrad M, Weber S. Recent advances in molecular genetics of hereditary magnesium-losing disorders. J Am Soc Nephrol. 2003 Jan. 14(1):249-60. [Medline].

  12. Konrad M, Schlingmann KP, Gudermann T. Insights into the molecular nature of magnesium homeostasis. Am J Physiol Renal Physiol. 2004 Apr. 286(4):F599-605. [Medline].

  13. Blanchard A, Jeunemaitre X, Coudol P, Dechaux M, Froissart M, May A, et al. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int. 2001 Jun. 59(6):2206-15. [Medline].

  14. Müller D, Kausalya PJ, Bockenhauer D, Thumfart J, Meij IC, Dillon MJ, et al. Unusual clinical presentation and possible rescue of a novel claudin-16 mutation. J Clin Endocrinol Metab. 2006 Aug. 91(8):3076-9. [Medline].

  15. Lal-Nag M, Morin PJ. The claudins. Genome Biol. 2009. 10(8):235. [Medline].

  16. Weber S, Schneider L, Peters M, Misselwitz J, Rönnefarth G, Böswald M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001 Sep. 12(9):1872-81. [Medline].

  17. Kausalya PJ, Amasheh S, Günzel D, Wurps H, Müller D, Fromm M, et al. Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest. 2006 Apr. 116(4):878-91. [Medline]. [Full Text].

  18. Knoers NV. Inherited forms of renal hypomagnesemia: an update. Pediatr Nephrol. 2009 Apr. 24(4):697-705. [Medline].

  19. Huang CL. The transient receptor potential superfamily of ion channels. J Am Soc Nephrol. 2004 Jul. 15(7):1690-9. [Medline].

  20. Hoenderop JG, Bindels RJ. Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol. 2005 Jan. 16(1):15-26. [Medline].

  21. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002 Jun. 31(2):166-70. [Medline].

  22. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002 Jun. 31(2):171-4. [Medline].

  23. Schlingmann KP, Sassen MC, Weber S, Pechmann U, Kusch K, Pelken L, et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol. 2005 Oct. 16(10):3061-9. [Medline].

  24. Groenestege WM, Thébault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S, et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007 Aug. 117(8):2260-7. [Medline]. [Full Text].

  25. Wagner CA. Disorders of renal magnesium handling explain renal magnesium transport. J Nephrol. 2007 Sep-Oct. 20(5):507-10. [Medline].

  26. Schrag D, Chung KY, Flombaum C, Saltz L. Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst. 2005 Aug 17. 97(16):1221-4. [Medline].

  27. Thebault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol. 2009 Jan. 20(1):78-85. [Medline]. [Full Text].

  28. Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Barni S. Risk of anti-EGFR monoclonal antibody-related hypomagnesemia: systematic review and pooled analysis of randomized studies. Expert Opin Drug Saf. 2012 May. 11 Suppl 1:S9-19. [Medline].

  29. Chen P, Wang L, Li H, Liu B, Zou Z. Incidence and risk of hypomagnesemia in advanced cancer patients treated with cetuximab: A meta-analysis. Oncol Lett. 2013 Jun. 5(6):1915-1920. [Medline]. [Full Text].

  30. Geven WB, Monnens LA, Willems HL, Buijs WC, ter Haar BG. Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int. 1987 May. 31(5):1140-4. [Medline].

  31. Meij IC, Koenderink JB, van Bokhoven H, Assink KF, Groenestege WT, de Pont JJ, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat Genet. 2000 Nov. 26(3):265-6. [Medline].

  32. Meij IC, Koenderink JB, De Jong JC, De Pont JJ, Monnens LA, Van Den Heuvel LP, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Ann N Y Acad Sci. 2003 Apr. 986:437-43. [Medline].

  33. Wang WH, Lu M, Hebert SC. Cytochrome P-450 metabolites mediate extracellular Ca(2+)-induced inhibition of apical K+ channels in the TAL. Am J Physiol. 1996 Jul. 271(1 Pt 1):C103-11. [Medline].

  34. Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev. 2005 Jan. 85(1):319-71. [Medline]. [Full Text].

  35. Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996 Oct 10. 335(15):1115-22. [Medline].

  36. Okazaki R, Chikatsu N, Nakatsu M, Takeuchi Y, Ajima M, Miki J, et al. A novel activating mutation in calcium-sensing receptor gene associated with a family of autosomal dominant hypocalcemia. J Clin Endocrinol Metab. 1999 Jan. 84(1):363-6. [Medline].

  37. Nijenhuis T, Renkema KY, Hoenderop JG, Bindels RJ. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Am Soc Nephrol. 2006 Mar. 17(3):617-26. [Medline].

  38. Rude RK, Oldham SB, Singer FR. Functional hypoparathyroidism and parathyroid hormone end-organ resistance in human magnesium deficiency. Clin Endocrinol (Oxf). 1976 May. 5(3):209-24. [Medline].

  39. Kelepouris E, Agus ZS. Hypomagnesemia: renal magnesium handling. Semin Nephrol. 1998 Jan. 18(1):58-73. [Medline].

  40. Khan AM, Lubitz SA, Sullivan LM, Sun JX, Levy D, Vasan RS. Low serum magnesium and the development of atrial fibrillation in the community: the Framingham Heart Study. Circulation. 2013 Jan 1. 127(1):33-8. [Medline].

  41. Ho KM, Sheridan DJ, Paterson T. Use of intravenous magnesium to treat acute onset atrial fibrillation: a meta-analysis. Heart. 2007 Nov. 93(11):1433-40. [Medline]. [Full Text].

  42. Agus ZS, Morad M. Modulation of cardiac ion channels by magnesium. Annu Rev Physiol. 1991. 53:299-307. [Medline].

  43. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997 Apr 17. 336(16):1117-24. [Medline].

  44. Gartside PS, Glueck CJ. The important role of modifiable dietary and behavioral characteristics in the causation and prevention of coronary heart disease hospitalization and mortality: the prospective NHANES I follow-up study. J Am Coll Nutr. 1995 Feb. 14(1):71-9. [Medline].

  45. Liao F, Folsom AR, Brancati FL. Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 1998 Sep. 136(3):480-90. [Medline].

  46. Woods KL, Fletcher S. Long-term outcome after intravenous magnesium sulphate in suspected acute myocardial infarction: the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet. 1994 Apr 2. 343(8901):816-9. [Medline].

  47. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. Lancet. 1995 Mar 18. 345(8951):669-85. [Medline].

  48. Early administration of intravenous magnesium to high-risk patients with acute myocardial infarction in the Magnesium in Coronaries (MAGIC) Trial: a randomised controlled trial. Lancet. 2002 Oct 19. 360(9341):1189-96. [Medline].

  49. Aglio LS, Stanford GG, Maddi R, Boyd JL 3rd, Nussbaum S, Chernow B. Hypomagnesemia is common following cardiac surgery. J Cardiothorac Vasc Anesth. 1991 Jun. 5(3):201-8. [Medline].

  50. England MR, Gordon G, Salem M, Chernow B. Magnesium administration and dysrhythmias after cardiac surgery. A placebo-controlled, double-blind, randomized trial. JAMA. 1992 Nov 4. 268(17):2395-402. [Medline].

  51. Wilkes NJ, Mallett SV, Peachey T, Di Salvo C, Walesby R. Correction of ionized plasma magnesium during cardiopulmonary bypass reduces the risk of postoperative cardiac arrhythmia. Anesth Analg. 2002 Oct. 95(4):828-34, table of contents. [Medline].

  52. Dorman BH, Sade RM, Burnette JS, Wiles HB, Pinosky ML, Reeves ST, et al. Magnesium supplementation in the prevention of arrhythmias in pediatric patients undergoing surgery for congenital heart defects. Am Heart J. 2000 Mar. 139(3):522-8. [Medline].

  53. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004 Dec. 15(12):710-6. [Medline].

  54. Tucker KL, Hannan MT, Kiel DP. The acid-base hypothesis: diet and bone in the Framingham Osteoporosis Study. Eur J Nutr. 2001 Oct. 40(5):231-7. [Medline].

  55. Ryder KM, Shorr RI, Bush AJ, Kritchevsky SB, Harris T, Stone K, et al. Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects. J Am Geriatr Soc. 2005 Nov. 53(11):1875-80. [Medline].

  56. Richette P, Ayoub G, Lahalle S, Vicaut E, Badran AM, Joly F, et al. Hypomagnesemia associated with chondrocalcinosis: a cross-sectional study. Arthritis Rheum. 2007 Dec 15. 57(8):1496-501. [Medline].

  57. Montagnana M, Lippi G, Targher G, Salvagno GL, Guidi GC. Relationship between hypomagnesemia and glucose homeostasis. Clin Lab. 2008. 54(5-6):169-72. [Medline].

  58. Curiel-García JA, Rodríguez-Morán M, Guerrero-Romero F. Hypomagnesemia and mortality in patients with type 2 diabetes. Magnes Res. 2008 Sep. 21(3):163-6. [Medline].

  59. Rasheed H, Elahi S, Ajaz H. Serum magnesium and atherogenic lipid fractions in type II diabetic patients of Lahore, Pakistan. Biol Trace Elem Res. 2012 Aug. 148(2):165-9. [Medline].

  60. Rodríguez-Morán M, Simental Mendía LE, Zambrano Galván G, Guerrero-Romero F. The role of magnesium in type 2 diabetes: a brief based-clinical review. Magnes Res. 2011 Dec. 24(4):156-62. [Medline].

  61. Lima Mde L, Cruz T, Rodrigues LE, Bomfim O, Melo J, Correia R, et al. Serum and intracellular magnesium deficiency in patients with metabolic syndrome--evidences for its relation to insulin resistance. Diabetes Res Clin Pract. 2009 Feb. 83(2):257-62. [Medline].

  62. Rodríguez-Hernández H, Gonzalez JL, Rodríguez-Morán M, Guerrero-Romero F. Hypomagnesemia, insulin resistance, and non-alcoholic steatohepatitis in obese subjects. Arch Med Res. 2005 Jul-Aug. 36(4):362-6. [Medline].

  63. Song Y, Sesso HD, Manson JE, Cook NR, Buring JE, Liu S. Dietary magnesium intake and risk of incident hypertension among middle-aged and older US women in a 10-year follow-up study. Am J Cardiol. 2006 Dec 15. 98(12):1616-21. [Medline].

  64. Sakaguchi Y, Shoji T, Hayashi T, Suzuki A, Shimizu M, Mitsumoto K. Hypomagnesemia in type 2 diabetic nephropathy: a novel predictor of end-stage renal disease. Diabetes Care. 2012 Jul. 35(7):1591-7. [Medline].

  65. Van Laecke S, Maréchal C, Verbeke F, Peeters P, Van Biesen W, Devuyst O. The relation between hypomagnesaemia and vascular stiffness in renal transplant recipients. Nephrol Dial Transplant. 2011 Jul. 26(7):2362-9. [Medline].

  66. Guerrero-Romero F, Bermudez-Peña C, Rodríguez-Morán M. Severe hypomagnesemia and low-grade inflammation in metabolic syndrome. Magnes Res. 2011 Jun. 24(2):45-53. [Medline].

  67. Katcher HI, Legro RS, Kunselman AR, Gillies PJ, Demers LM, Bagshaw DM, et al. The effects of a whole grain-enriched hypocaloric diet on cardiovascular disease risk factors in men and women with metabolic syndrome. Am J Clin Nutr. 2008 Jan. 87(1):79-90. [Medline].

  68. Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007 May 14. 167(9):956-65. [Medline].

  69. Mauskop A, Varughese J. Why all migraine patients should be treated with magnesium. J Neural Transm. 2012 May. 119(5):575-9. [Medline].

  70. Beasley R, Aldington S. Magnesium in the treatment of asthma. Curr Opin Allergy Clin Immunol. 2007 Feb. 7(1):107-10. [Medline].

  71. Gontijo-Amaral C, Ribeiro MA, Gontijo LS, Condino-Neto A, Ribeiro JD. Oral magnesium supplementation in asthmatic children: a double-blind randomized placebo-controlled trial. Eur J Clin Nutr. 2007 Jan. 61(1):54-60. [Medline].

  72. Praga M, Vara J, González-Parra E, Andrés A, Alamo C, Araque A, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int. 1995 May. 47(5):1419-25. [Medline].

  73. Shah GM, Kirschenbaum MA. Renal magnesium wasting associated with therapeutic agents. Miner Electrolyte Metab. 1991. 17(1):58-64. [Medline].

  74. Inose R, Takahashi K, Nishikawa T, Nagayama K. Analysis of Factors Influencing the Development of Hypomagnesemia in Patients Receiving Cetuximab Therapy for Head and Neck Cancer. Yakugaku Zasshi. 2015. 135 (12):1403-7. [Medline].

  75. Cheungpasitporn W, Thongprayoon C, Kittanamongkolchai W, Srivali N, Edmonds PJ, Ungprasert P, et al. Proton pump inhibitors linked to hypomagnesemia: a systematic review and meta-analysis of observational studies. Ren Fail. 2015 Aug. 37 (7):1237-41. [Medline].

  76. Kieboom BC, Kiefte-de Jong JC, Eijgelsheim M, Franco OH, Kuipers EJ, Hofman A, et al. Proton Pump Inhibitors and Hypomagnesemia in the General Population: A Population-Based Cohort Study. Am J Kidney Dis. 2015 Nov. 66 (5):775-82. [Medline]. [Full Text].

  77. Hoorn EJ, van der Hoek J, de Man RA, Kuipers EJ, Bolwerk C, Zietse R. A case series of proton pump inhibitor-induced hypomagnesemia. Am J Kidney Dis. 2010 Jul. 56(1):112-6. [Medline].

  78. De Marchi S, Cecchin E, Basile A, Bertotti A, Nardini R, Bartoli E. Renal tubular dysfunction in chronic alcohol abuse--effects of abstinence. N Engl J Med. 1993 Dec 23. 329(26):1927-34. [Medline].

  79. Brasier AR, Nussbaum SR. Hungry bone syndrome: clinical and biochemical predictors of its occurrence after parathyroid surgery. Am J Med. 1988 Apr. 84(4):654-60. [Medline].

  80. Chrun LR, João PR. Hypomagnesemia after spinal fusion. J Pediatr (Rio J). 2012 May. 88(3):227-32. [Medline].

  81. Agarwal M, Csongrádi E, Koch CA, Juncos LA, Echols V, Tapolyai M, et al. Severe Symptomatic Hypocalcemia after Denosumab Administration in an End-Stage Renal Disease Patient on Peritoneal Dialysis with Controlled Secondary Hyperparathyroidism. Br J Med Medical Res. 2013. 3(4):1398-1406. [Full Text].

  82. Chernow B, Bamberger S, Stoiko M, Vadnais M, Mills S, Hoellerich V, et al. Hypomagnesemia in patients in postoperative intensive care. Chest. 1989 Feb. 95(2):391-7. [Medline].

  83. Tong GM, Rude RK. Magnesium deficiency in critical illness. J Intensive Care Med. 2005 Jan-Feb. 20(1):3-17. [Medline].

  84. William JH, Danziger J. Magnesium Deficiency and Proton-Pump Inhibitor Use: A Clinical Review. J Clin Pharmacol. 2015 Nov 18. 36(5):405-13. [Medline].

  85. Zipursky J, Macdonald EM, Hollands S, Gomes T, Mamdani MM, Paterson JM, et al. Proton pump inhibitors and hospitalization with hypomagnesemia: a population-based case-control study. PLoS Med. 2014 Sep. 11(9):e1001736. [Medline]. [Full Text].

  86. Shalev H, Phillip M, Galil A, Carmi R, Landau D. Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child. 1998 Feb. 78(2):127-30. [Medline]. [Full Text].

  87. Strømme JH, Steen-Johnsen J, Harnaes K, Hofstad F, Brandtzaeg P. Familial hypomagnesemia--a follow-up examination of three patients after 9 to 12 years of treatment. Pediatr Res. 1981 Aug. 15(8):1134-9. [Medline].

  88. Riveira-Munoz E, Chang Q, Godefroid N, Hoenderop JG, Bindels RJ, Dahan K, et al. Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J Am Soc Nephrol. 2007 Apr. 18(4):1271-83. [Medline].

  89. Bettinelli A, Bianchetti MG, Girardin E, Caringella A, Cecconi M, Appiani AC, et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. J Pediatr. 1992 Jan. 120(1):38-43. [Medline].

  90. Kamel KS, Harvey E, Douek K, Parmar MS, Halperin ML. Studies on the pathogenesis of hypokalemia in Gitelman's syndrome: role of bicarbonaturia and hypomagnesemia. Am J Nephrol. 1998. 18(1):42-9. [Medline].

  91. Benigno V, Canonica CS, Bettinelli A, von Vigier RO, Truttmann AC, Bianchetti MG. Hypomagnesaemia-hypercalciuria-nephrocalcinosis: a report of nine cases and a review. Nephrol Dial Transplant. 2000 May. 15(5):605-10. [Medline].

  92. Ekinci Z, Karabas L, Konrad M. Hypomagnesemia-hypercalciuria-nephrocalcinosis and ocular findings: a new claudin-19 mutation. Turk J Pediatr. 2012 Mar-Apr. 54(2):168-70. [Medline].

  93. Naeem M, Hussain S, Akhtar N. Mutation in the tight-junction gene claudin 19 (CLDN19) and familial hypomagnesemia, hypercalciuria, nephrocalcinosis (FHHNC) and severe ocular disease. Am J Nephrol. 2011. 34(3):241-8. [Medline].

  94. Faguer S, Chauveau D, Cintas P, Tack I, Cointault O, Rostaing L. Renal, ocular, and neuromuscular involvements in patients with CLDN19 mutations. Clin J Am Soc Nephrol. 2011 Feb. 6(2):355-60. [Medline].

  95. Stuiver M, Lainez S, Will C, Terryn S, Günzel D, Debaix H. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am J Hum Genet. 2011 Mar 11. 88(3):333-43. [Medline].

  96. Geven WB, Monnens LA, Willems JL, Buijs W, Hamel CJ. Isolated autosomal recessive renal magnesium loss in two sisters. Clin Genet. 1987 Dec. 32(6):398-402. [Medline].

  97. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest. 2005 Jun. 115(6):1651-8. [Medline]. [Full Text].

  98. Nijenhuis T, Hoenderop JG, Bindels RJ. Downregulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol. 2004 Mar. 15(3):549-57. [Medline].

  99. Chou CL, Chen YH, Chau T, Lin SH. Acquired bartter-like syndrome associated with gentamicin administration. Am J Med Sci. 2005 Mar. 329(3):144-9. [Medline].

  100. Ledeganck KJ, Boulet GA, Bogers JJ, Verpooten GA, De Winter BY. The TRPM6/EGF pathway is downregulated in a rat model of cisplatin nephrotoxicity. PLoS One. 2013. 8(2):e57016. [Medline]. [Full Text].

  101. Santi M, Milani GP, Simonetti GD, Fossali EF, Bianchetti MG, Lava SA. Magnesium in cystic fibrosis-Systematic review of the literature. Pediatr Pulmonol. 2015 Dec 10. [Medline].

  102. Guerrera MP, Volpe SL, Mao JJ. Therapeutic uses of magnesium. Am Fam Physician. 2009 Jul 15. 80(2):157-62. [Medline].

  103. Cheungpasitporn W, Thongprayoon C, Qian Q. Dysmagnesemia in Hospitalized Patients: Prevalence and Prognostic Importance. Mayo Clin Proc. 2015 Aug. 90 (8):1001-10. [Medline]. [Full Text].

  104. Lacson E Jr, Wang W, Ma L, Passlick-Deetjen J. Serum Magnesium and Mortality in Hemodialysis Patients in the United States: A Cohort Study. Am J Kidney Dis. 2015 Dec. 66 (6):1056-66. [Medline].

  105. Velissaris D, Karamouzos V, Pierrakos C, Aretha D, Karanikolas M. Hypomagnesemia in Critically Ill Sepsis Patients. J Clin Med Res. 2015 Dec. 7 (12):911-8. [Medline]. [Full Text].

  106. Naderi AS, Reilly RF Jr. Hereditary etiologies of hypomagnesemia. Nat Clin Pract Nephrol. 2008 Feb. 4(2):80-9. [Medline].

  107. Navarro J, Oster JR, Gkonos PJ, Ruiz JP, Rhamy RK, Perez GO. Tetany induced on separate occasions by administration of potassium and magnesium in a patient with hungry-bone syndrome. Miner Electrolyte Metab. 1991. 17(5):340-4. [Medline].

  108. Kraft MD, Btaiche IF, Sacks GS, Kudsk KA. Treatment of electrolyte disorders in adult patients in the intensive care unit. Am J Health Syst Pharm. 2005 Aug 15. 62(16):1663-82. [Medline].

 
Previous
Next
 
A: Magnesium reabsorption in the thick ascending limb of the loop of Henle. The driving force for the reabsorption against a concentration gradient is a lumen-positive voltage gradient generated by the reabsorption of NaCl. Terms: FHHNC (familial hypomagnesemia with hypercalciuria and nephrocalcinosis); ADH (autosomal-dominant hypocalcemia); FHH/NSHPT (familial hypomagnesemia/neonatal severe hyperparathyroidism). B: Magnesium reabsorption in the distal convoluted tubule. Active transcellular transport is mediated by an apical entry through a magnesium channel and a basolateral exit, presumably via a Na+/Mg2+ exchange mechanism. Terms: HSH (hypomagnesemia with secondary hypocalcemia); GS (Gitelman syndrome); IDH (isolated dominant hypomagnesemia). Source: Konrad M, Schlingmann KP, Gudermann T: Insights into the molecular nature of magnesium homeostasis. Am J Physiol Renal Physiol 2004; 286: F599-F605.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.