Medscape is available in 5 Language Editions – Choose your Edition here.



  • Author: Mary C Mancini, MD, PhD, MMM; Chief Editor: Jeffrey C Milliken, MD  more...
Updated: Dec 17, 2015


Hemothorax is the presence of blood in the pleural space. The source of blood may be the chest wall, lung parenchyma, heart, or great vessels. Although some authors state that a hematocrit value of at least 50% is necessary to differentiate a hemothorax from a bloody pleural effusion, most do not agree on any specific distinction.

Hemothorax is usually a consequence of blunt or penetrating trauma. Much less commonly, it may be a complication of disease, may be iatrogenically induced,[1] or may develop spontaneously.[2]

Prompt identification and treatment of traumatic hemothorax is an essential part of the care of the injured patient. The upright chest radiograph is the ideal primary diagnostic study in the evaluation of hemothorax (see Workup). In cases of hemothorax unrelated to trauma, a careful investigation for the underlying source must be performed while treatment is provided.

Tube thoracostomy drainage is the primary mode of treatment. Video-assisted thoracoscopic surgery (VATS) may be used. Thoracotomy is the procedure of choice for surgical exploration of the chest when massive hemothorax or persistent bleeding is present. (See Treatment.)

Historical background

Hemorrhage from or within the chest has been detailed in numerous medical writings dating back to ancient times. While lesser forms of trauma were commonly treated in the ancient physician's daily practice, major injuries, especially those to the chest, were difficult to treat and often lethal.

By the 18th century, some treatment for hemothorax was available; however, controversy raged about its form. A number of surgeons, including John Hunter in 1794, advocated the creation of an intercostal incision and drainage of the hemothorax. Those of the opposing viewpoint believed that closure of chest wounds without drainage and other conservative forms of management of bloody collections in the chest were proper treatment.

While Hunter's method was effective in evacuating the hemothorax, the creation of an iatrogenic pneumothorax as a result of the procedure was associated with significant morbidity. On the other hand, wound closure or conservative management posed the possible risks of subsequent empyema with sepsis or persistent trapped lung with permanent reduction of pulmonary function.

Observing the advantages and dangers of both forms of therapy, Guthrie, in the early 1800s, gave credence to both viewpoints. He proposed the importance of early evacuation of blood through an existing chest wound; at the same time, he asserted that if bleeding from the chest persisted, the wound should be closed in the hope that existing intrathoracic pressure would halt the bleeding. If the desired effect was accomplished, he advised that the wound be reopened several days later for the evacuation of retained clotted blood or serous fluid.

By the 1870s, early hemothorax evacuation by trocar and cannula or by intercostal incision was considered standard practice. Not long after this, underwater seal drainage was described by a number of different physicians. This basic technique has remained the most common form of treatment for hemothorax and other pleural fluid collections to this day.[3]



Normally, the pleural space, which is between the parietal and visceral pleurae, is only a potential space. Bleeding into the pleural space may result from either extrapleural or intrapleural injury.

Extrapleural injury

Traumatic disruption of the chest wall tissues with violation of the pleural membrane can cause bleeding into the pleural cavity. The most likely sources of significant or persistent bleeding from chest wall injuries are the intercostal and internal mammary arteries. In nontraumatic cases, rare disease processes within the chest wall (eg, bony exostoses) can be responsible.

Intrapleural injury

Blunt or penetrating injury involving virtually any intrathoracic structure can result in hemothorax. Massive hemothorax or exsanguinating hemorrhage may result from injury to major arterial or venous structures contained within the thorax or from the heart itself. These include the aorta and its brachiocephalic branches, the main or branch pulmonary arteries, the superior vena cava and the brachiocephalic veins, the inferior vena cava, the azygos vein, and the major pulmonary veins.

Injury to the heart can produce a hemothorax if a communication exists between the pericardium and the pleural space.

Injury to the pulmonary parenchyma may cause hemothorax, but it is usually self-limited because pulmonary vascular pressure is normally low. Pulmonary parenchymal injury is usually associated with pneumothorax and results in limited hemorrhage.

Hemothorax resulting from metastatic malignant disease is usually from tumor implants that seed the pleural surfaces of the thorax.

Diseases of the thoracic aorta and its major branches, such as dissection or aneurysm formation, account for a large percentage of specific vascular abnormalities that can cause hemothorax. Aneurysms of other intrathoracic arteries such as the internal mammary artery have been described and are possible causes of hemothorax if rupture occurs.

A variety of unusual congenital pulmonary abnormalities, including intralobar and extralobar sequestration,[4] hereditary telangiectasia, and congenital arteriovenous malformations, can cause hemothorax.

Hemothorax can result from a pathologic process within the abdomen if blood escaping from the lesion is able to traverse the diaphragm through one of the normal hiatal openings or a congenital or acquired opening.



Bleeding into the pleural space can occur with virtually any disruption of the tissues of the chest wall and pleura or the intrathoracic structures. The physiologic response to the development of a hemothorax is manifested in two major areas: hemodynamic and respiratory. The degree of hemodynamic response is determined by the amount and rapidity of blood loss.

Hemodynamic response

Hemodynamic changes vary, depending on the amount of bleeding and the rapidity of blood loss. Blood loss of up to 750 mL in a 70-kg man should cause no significant hemodynamic change. Loss of 750-1500 mL in the same individual will cause the early symptoms of shock (ie, tachycardia, tachypnea, and a decrease in pulse pressure).

Significant signs of shock with signs of poor perfusion occur with loss of blood volume of 30% or more (1500-2000 mL). Because the pleural cavity of a 70-kg man can hold 4 L of blood or more, exsanguinating hemorrhage can occur without external evidence of blood loss.

Respiratory response

The space-occupying effect of a large accumulation of blood within the pleural space may hamper normal respiratory movement. In trauma cases, abnormalities of ventilation and oxygenation may result, especially if associated with injuries to the chest wall.

A large enough collection of blood causes the patient to experience dyspnea and may produce the clinical finding of tachypnea. The volume of blood required to produce these symptoms in a given individual varies depending on a number of factors, including organs injured, severity of injury, and underlying pulmonary and cardiac reserve.

Dyspnea is a common symptom in cases in which hemothorax develops in an insidious manner, such as those secondary to metastatic disease. Blood loss in such cases is not so acute as to produce a visible hemodynamic response, and dyspnea is often the predominant complaint.

Physiologic resolution of hemothorax

Blood that enters the pleural cavity is exposed to the motion of the diaphragm, lungs, and other intrathoracic structures. This results in some degree of defibrination of the blood so that incomplete clotting occurs. Within several hours of cessation of bleeding, lysis of existing clots by pleural enzymes begins.

Lysis of red blood cells results in a marked increase in the protein concentration of the pleural fluid and an increase in the osmotic pressure within the pleural cavity. This elevated intrapleural osmotic pressure produces an osmotic gradient between the pleural space and the surrounding tissues that favors transudation of fluid into the pleural space. In this way, a small and asymptomatic hemothorax can progress into a large and symptomatic bloody pleural effusion.

Late physiologic sequelae of unresolved hemothorax

Two pathologic states are associated with the later stages of hemothorax: empyema and fibrothorax. Empyema results from bacterial contamination of the retained hemothorax. If undetected or improperly treated, this can lead to bacteremia and septic shock.

Fibrothorax results when fibrin deposition develops in an organized hemothorax and coats both the parietal and visceral pleural surfaces. This adhesive process traps the lung in position and prevents it from expanding fully. Persistent atelectasis of portions of the lung and reduced pulmonary function result from this process.



By far the most common cause of hemothorax is trauma. Penetrating injuries of the lungs, heart, great vessels, or chest wall are obvious causes of hemothorax; they may be accidental, deliberate, or iatrogenic in origin.[5] In particular, central venous catheter and thoracostomy tube placement are cited as primary iatrogenic causes.[6, 7, 8]

Blunt chest trauma can occasionally result in hemothorax by laceration of internal vessels.[9] Because of the relatively more elastic chest wall of infants and children, rib fractures may be absent in such cases.[10, 11]

The causes of nontraumatic or spontaneous hemothorax include the following:

  • Neoplasia (primary or metastatic)
  • Blood dyscrasias, including complications of anticoagulation
  • Pulmonary embolism with infarction
  • Torn pleural adhesions in association with spontaneous pneumothorax
  • Bullous emphysema
  • Necrotizing infections
  • Pulmonary arteriovenous fistulae
  • Hereditary hemorrhagic telangiectasia [12]
  • Nonpulmonary intrathoracic vascular pathology (eg, thoracic aortic aneurysm or aneurysm of the internal mammary artery)
  • Intralobar and extralobar sequestration [4]
  • Abdominal pathology (eg, pancreatic pseudocyst, splenic artery aneurysm, or hemoperitoneum)
  • Catamenial [13]

Case reports involve associated disorders such as hemorrhagic disease of the newborn (eg, vitamin K deficiency), Henoch-Schönlein purpura, and beta thalassemia/hemoglobin E disease.[14, 15, 16, 17] Congenital cystic adenomatoid malformations occasionally result in hemothorax.[18] A case of massive spontaneous hemothorax has been reported with Von Recklinghausen disease.[19] Spontaneous internal thoracic artery hemorrhage was reported in a child with type IV Ehlers-Danlos syndrome.

Hemothorax has also been reported in association with costal cartilaginous anomalies.[20, 21, 22, 23] Rib tumors have rarely been reported in association with hemothorax. Intrathoracic rupture of an osteosarcoma of a rib caused hemorrhagic shock in a 13-year-old girl.[24]

Hemothorax has been noted to complicate a small fraction of spontaneous pneumothorax cases. Although rare, it is more likely to occur in young adolescent males and can be life-threatening secondary to massive bleeding.[25]



Quantifying the frequency of hemothorax in the general population is difficult. A very small hemothorax can be associated with a single rib fracture and may go undetected or require no treatment. Because most major hemothoraces are related to trauma, a rough estimate of their occurrence may be gleaned from trauma statistics.

Approximately 150,000 deaths occur from trauma each year. Approximately three times this number of individuals are permanently disabled because of trauma, and the majority of this combined group have sustained multiple trauma. Chest injuries occur in approximately 60% of multiple-trauma cases; therefore, a rough estimate of the occurrence of hemothorax related to trauma in the United States approaches 300,000 cases per year.[26]

In a 34-month period at a large level-1 trauma center, 2086 children younger than 15 years were admitted with blunt or penetrating trauma; 104 (4.4%) had thoracic trauma.[27] Of the patients with thoracic trauma, 15 had hemopneumothorax (26.7% mortality), and 14 had hemothorax (57.1% mortality). Many of these patients had other severe extrathoracic injuries. Nontraumatic hemothorax carries a much lower mortality.

In another series of children with penetrating chest injuries (ie, stab or gunshot wounds), the morbidity was 8.51% (8 of 94).[28] Complications included atelectasis (3), intrathoracic hematoma (3), wound infection (3), pneumonia (2), air leak for more than 5 days (2), and septicemia (1). Note that these statistics apply only to traumatic hemothorax.



At present, the general outcome for patients with traumatic hemothorax is good. Mortality associated with cases of traumatic hemothorax is directly related to the nature and severity of the injury. Morbidity is also related to these factors and to the risks associated with retained hemothorax, namely empyema and fibrothorax/trapped lung. Empyema occurs in approximately 5% of cases. Fibrothorax occurs in about 1% of cases.

Retained hemothorax with or without one of the aforementioned complications occurs in 10-20% of patients who sustain a traumatic hemothorax, and most of these patients require evacuation of this collection. Prognosis after the treatment of one of these complications is excellent.

Short-term and long-term outcome for individuals who develop a nontraumatic hemothorax is directly related to the underlying cause of the hemothorax.

Contributor Information and Disclosures

Mary C Mancini, MD, PhD, MMM Professor and Chief of Cardiothoracic Surgery, Department of Surgery, Louisiana State University School of Medicine in Shreveport

Mary C Mancini, MD, PhD, MMM is a member of the following medical societies: American Association for Thoracic Surgery, American College of Surgeons, American Surgical Association, Society of Thoracic Surgeons, Phi Beta Kappa

Disclosure: Nothing to disclose.


Thomas Scanlin, MD Chief, Division of Pulmonary Medicine and Cystic Fibrosis Center, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School

Thomas Scanlin, MD is a member of the following medical societies: American Association for the Advancement of Science, Society for Pediatric Research, American Society for Biochemistry and Molecular Biology, American Thoracic Society, Society for Pediatric Research

Disclosure: Nothing to disclose.

Denise Serebrisky, MD Associate Professor, Department of Pediatrics, Albert Einstein College of Medicine; Director, Division of Pulmonary Medicine, Lewis M Fraad Department of Pediatrics, Jacobi Medical Center/North Central Bronx Hospital; Director, Jacobi Asthma and Allergy Center for Children, Jacobi Medical Center

Denise Serebrisky, MD is a member of the following medical societies: American Thoracic Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Shreekanth V Karwande, MBBS Chair, Professor, Department of Surgery, Division of Cardiothoracic Surgery, University of Utah School of Medicine and Medical Center

Shreekanth V Karwande, MBBS is a member of the following medical societies: American Association for Thoracic Surgery, American College of Chest Physicians, American College of Surgeons, American Heart Association, Society of Critical Care Medicine, Society of Thoracic Surgeons, Western Thoracic Surgical Association

Disclosure: Nothing to disclose.

Chief Editor

Jeffrey C Milliken, MD Chief, Division of Cardiothoracic Surgery, University of California at Irvine Medical Center; Clinical Professor, Department of Surgery, University of California, Irvine, School of Medicine

Jeffrey C Milliken, MD is a member of the following medical societies: Alpha Omega Alpha, American Association for Thoracic Surgery, American College of Cardiology, American College of Chest Physicians, American College of Surgeons, American Heart Association, American Society for Artificial Internal Organs, California Medical Association, International Society for Heart and Lung Transplantation, Phi Beta Kappa, Society of Thoracic Surgeons, SWOG, Western Surgical Association

Disclosure: Nothing to disclose.

Additional Contributors

Charles Callahan, DO Professor, Chief, Department of Pediatrics and Pediatric Pulmonology, Tripler Army Medical Center

Charles Callahan, DO is a member of the following medical societies: American Academy of Pediatrics, American College of Chest Physicians, American College of Osteopathic Pediatricians, American Thoracic Society, Association of Military Surgeons of the US, Christian Medical and Dental Associations

Disclosure: Nothing to disclose.


The authors and editors of Medscape Drugs & Diseases gratefully acknowledge the contributions of previous authors Jane M Eggerstedt, MD, and Allen Fagenholz, MD, to the development and writing of the source articles.

  1. May J, Ades A. Porous diaphragm syndrome: haemothorax secondary to haemoperitoneum following laparoscopic hysterectomy. BMJ Case Rep. 2013 Dec 5. 2013:[Medline].

  2. Tatebe S, Kanazawa H, Yamazaki Y, Aoki E, Sakurai Y. Spontaneous hemopneumothorax. Ann Thorac Surg. 1996 Oct. 62(4):1011-5. [Medline].

  3. Rusch VW, Ginsberg RJ. Chest wall, pleura, lung and mediastinum. In: Schwartz SI, ed. Principles of Surgery. 7th ed. New York, NY: McGraw-Hill; 1999:667-790:

  4. Di Crescenzo V, Laperuta P, Napolitano F, Carlomagno C, Garzi A, Vitale M. Pulmonary sequestration presented as massive left hemothorax and associated with primary lung sarcoma. BMC Surg. 2013 Oct 8. 13 Suppl 2:S34. [Medline]. [Full Text].

  5. Broderick SR. Hemothorax: Etiology, diagnosis, and management. Thorac Surg Clin. 2013 Feb. 23(1):89-96, vi-vii. [Medline].

  6. Johnson EM, Saltzman DA, Suh G, Dahms RA, Leonard AS. Complications and risks of central venous catheter placement in children. Surgery. 1998 Nov. 124(5):911-6. [Medline].

  7. Waddington MS, Mullins GC. Early complication of pediatric central venous cannulation. Paediatr Anaesth. 2005 Nov. 15(11):1001-5. [Medline].

  8. Lesher AP, Kratz JM, Smith CD. Removal of embedded central venous catheters. J Pediatr Surg. 2008 Jun. 43(6):1030-4. [Medline].

  9. Ota H, Kawai H, Matsuo T. Video-Assisted Minithoracotomy for Blunt Diaphragmatic Rupture Presenting As a Delayed Hemothorax. Ann Thorac Cardiovasc Surg. 2013 Nov 8. [Medline].

  10. Nakayama DK, Ramenofsky ML, Rowe MI. Chest injuries in childhood. Ann Surg. 1989 Dec. 210(6):770-5. [Medline]. [Full Text].

  11. Sharma OP, Hagler S, Oswanski MF. Prevalence of delayed hemothorax in blunt thoracic trauma. Am Surg. 2005 Jun. 71(6):481-6. [Medline].

  12. Cottin V, Chinet T, Lavolé A, Corre R, Marchand E, Reynaud-Gaubert M, et al. Pulmonary arteriovenous malformations in hereditary hemorrhagic telangiectasia: a series of 126 patients. Medicine (Baltimore). 2007 Jan. 86(1):1-17. [Medline].

  13. Rousset P, Rousset-Jablonski C, Alifano M, Mansuet-Lupo A, Buy JN, Revel MP. Thoracic endometriosis syndrome: CT and MRI features. Clin Radiol. 2013 Dec 10. [Medline].

  14. Sinniah D, Nagalingam I. Hemothorax in the newborn. Clin Pediatr (Phila). 1972 Feb. 11(2):84-5. [Medline].

  15. Huybrechts S, Wojciechowski M, Poot S, Van Reempts P, Ramet J. Hemothorax as presentation of late vitamin-K-deficient bleeding in a 1-month-old infant with homozygous alpha-1-antitrypsin deficiency. Eur J Pediatr. 2007 Oct. 166(10):1081-2. [Medline].

  16. Hammoudeh M, Qaddoumi NK. Pleural haemorrhage in Henoch Schonlein purpura. Clin Rheumatol. 1993 Dec. 12(4):538-9. [Medline].

  17. Tantraworasin A, Saeteng S. Massive hemothorax due to intrathoracic extramedullary hematopoiesis in a patient with beta thalassemia hemoglobin E disease. J Med Assoc Thai. 2013 Jul. 96(7):866-9. [Medline].

  18. Laberge JM, Puligandla P, Flageole H. Asymptomatic congenital lung malformations. Semin Pediatr Surg. 2005 Feb. 14(1):16-33. [Medline].

  19. Vaziri M, Mehrazma M. Massive spontaneous hemothorax associated with Von Recklinghausen's disease. Ann Thorac Surg. 2006 Oct. 82(4):1500-1. [Medline].

  20. Propper RA, Young LW, Wood BP. Hemothorax as a complication of costal cartilaginous exostoses. Pediatr Radiol. 1980 Apr. 9(3):135-7. [Medline].

  21. Tomares SM, Jabra AA, Conrad CK, Beauchamp N, Phoon CK, Carroll JL. Hemothorax in a child as a result of costal exostosis. Pediatrics. 1994 Mar. 93(3):523-5. [Medline].

  22. Jin W, Hyun SY, Ryoo E, Lim YS, Kim JK. Costal osteochondroma presenting as haemothorax and diaphragmatic laceration. Pediatr Radiol. 2005 Jul. 35(7):706-9. [Medline].

  23. Cowles RA, Rowe DH, Arkovitz MS. Hereditary multiple exostoses of the ribs: an unusual cause of hemothorax and pericardial effusion. J Pediatr Surg. 2005 Jul. 40(7):1197-200. [Medline].

  24. Osawa H, Yoshii S, Takahashi W, Hosaka S, Ishikawa N, Mizutani E, et al. Hemorrhagic shock due to intrathoracic rupture of an osteosarcoma of the rib. Ann Thorac Cardiovasc Surg. 2001 Aug. 7(4):232-4. [Medline].

  25. Kim ES, Kang JY, Pyo CH, Jeon EY, Lee WB. 12-year experience of spontaneous hemopneumothorax. Ann Thorac Cardiovasc Surg. 2008 Jun. 14(3):149-53. [Medline].

  26. Richardson JD, Miller FB, Carrillo EH, Spain DA. Complex thoracic injuries. Surg Clin North Am. 1996 Aug. 76(4):725-48. [Medline].

  27. Peclet MH, Newman KD, Eichelberger MR, Gotschall CS, Garcia VF, Bowman LM. Thoracic trauma in children: an indicator of increased mortality. J Pediatr Surg. 1990 Sep. 25(9):961-5; discussion 965-6. [Medline].

  28. Inci I, Ozcelik C, Nizam O, Eren N, Ozgen G. Penetrating chest injuries in children: a review of 94 cases. J Pediatr Surg. 1996 May. 31(5):673-6. [Medline].

  29. Bohosiewicz J, Kudela G, Koszutski T. Results of Nuss procedures for the correction of pectus excavatum. Eur J Pediatr Surg. 2005 Feb. 15(1):6-10. [Medline].

  30. Issaivanan M, Baranwal P, Abrol S, Bajwa G, Baldauf M, Shukla M. Spontaneous hemopneumothorax in children: case report and review of literature. Pediatrics. 2006 Oct. 118(4):e1268-70. [Medline].

  31. Parry GW, Morgan WE, Salama FD. Management of haemothorax. Ann R Coll Surg Engl. 1996 Jul. 78(4):325-6. [Medline]. [Full Text].

  32. Miller LA. Chest wall, lung, and pleural space trauma. Radiol Clin North Am. 2006 Mar. 44(2):213-24, viii. [Medline].

  33. Mandavia DP, Joseph A. Bedside echocardiography in chest trauma. Emerg Med Clin North Am. 2004 Aug. 22(3):601-19. [Medline].

  34. Trupka A, Waydhas C, Hallfeldt KK, Nast-Kolb D, Pfeifer KJ, Schweiberer L. Value of thoracic computed tomography in the first assessment of severely injured patients with blunt chest trauma: results of a prospective study. J Trauma. 1997 Sep. 43(3):405-11; discussion 411-2. [Medline].

  35. Chardoli M, Hasan-Ghaliaee T, Akbari H, Rahimi-Movaghar V. Accuracy of chest radiography versus chest computed tomography in hemodynamically stable patients with blunt chest trauma. Chin J Traumatol. 2013 Dec 1. 16(6):351-4. [Medline].

  36. Moore MA, Wallace EC, Westra SJ. The imaging of paediatric thoracic trauma. Pediatr Radiol. 2009 May. 39(5):485-96. [Medline].

  37. Chang YT, Dai ZK, Kao EL, Chuang HY, Cheng YJ, Chou SH, et al. Early video-assisted thoracic surgery for primary spontaneous hemopneumothorax. World J Surg. 2007 Jan. 31(1):19-25. [Medline].

  38. Heniford BT, Carrillo EH, Spain DA, Sosa JL, Fulton RL, Richardson JD. The role of thoracoscopy in the management of retained thoracic collections after trauma. Ann Thorac Surg. 1997 Apr. 63(4):940-3. [Medline].

  39. Liu DW, Liu HP, Lin PJ, Chang CH. Video-assisted thoracic surgery in treatment of chest trauma. J Trauma. 1997 Apr. 42(4):670-4. [Medline].

  40. Mancini M, Smith LM, Nein A, Buechter KJ. Early evacuation of clotted blood in hemothorax using thoracoscopy: case reports. J Trauma. 1993 Jan. 34(1):144-7. [Medline].

  41. Meyer DM, Jessen ME, Wait MA, Estrera AS. Early evacuation of traumatic retained hemothoraces using thoracoscopy: a prospective, randomized trial. Ann Thorac Surg. 1997 Nov. 64(5):1396-400; discussion 1400-1. [Medline].

  42. Navsaria PH, Vogel RJ, Nicol AJ. Thoracoscopic evacuation of retained posttraumatic hemothorax. Ann Thorac Surg. 2004 Jul. 78(1):282-5; discussion 285-6. [Medline].

  43. Inci I, Ozçelik C, Ulkü R, Tuna A, Eren N. Intrapleural fibrinolytic treatment of traumatic clotted hemothorax. Chest. 1998 Jul. 114(1):160-5. [Medline].

  44. [Guideline] Department of Surgical Education, Orlando Regional Medical Center. Tissue plasminogen activator in traumatic hemothorax. Available at Accessed: October 14, 2014.

  45. Chou YP, Kuo LC, Soo KM, Tarng YW, Chiang HI, Huang FD, et al. The role of repairing lung lacerations during video-assisted thoracoscopic surgery evacuations for retained haemothorax caused by blunt chest trauma. Eur J Cardiothorac Surg. 2013 Nov 15. [Medline].

  46. Ernstgård L, Sjögren B, Gunnare S, Johanson G. Blood and exhaled air can be used for biomonitoring of hydrofluorocarbon exposure. Toxicol Lett. 2013 Dec 1. 225(1):102-109. [Medline].

Left hemothorax in patient with rib fractures.
Upright posteroanterior chest radiograph of patient with right hemothorax.
Contrast-enhanced CT scan of patient with right hemothorax.
Insertion of chest tube. Video courtesy of Therese Canares, MD, and Jonathan Valente, MD, Rhode Island Hospital, Brown University.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.