Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Beta Thalassemia Workup

  • Author: Pooja Advani, MD; Chief Editor: Emmanuel C Besa, MD  more...
 
Updated: Dec 24, 2015
 

Approach Considerations

Thalassemia major is a severe anemia that presents during the first few months after birth, when the patient’s level of fetal hemoglobin decreases. The diagnosis is usually obvious in the right clinical setting of age and ethnic background. In some cases, the brisk erythropoiesis with increased erythroblasts may be mistaken for clonal proliferative disorders such as leukemia or myelodysplasia.

Skeletal abnormalities in patients with longstanding beta thalassemia major include an expanded bone marrow space, resulting in thinning of the bone cortex. These changes are particularly dramatic in the skull, which may show the characteristic “hair-on-end” appearance. Bone changes can also be observed in the long bones, vertebrae, and pelvis.

The liver and biliary tract of patients with thalassemia major may show evidence of extramedullary hematopoiesis and damage secondary to iron overload resulting from multiple transfusion therapy. Transfusion also may result in infection with the hepatitis virus, which leads to cirrhosis and portal hypertension. Gallbladder imaging may show the presence of bilirubin stones.

The heart is a major organ that is affected by iron overload and anemia. Cardiac dysfunction in patients with thalassemia major includes conduction system defects, decreased myocardial function, and fibrosis. Some patients also develop pericarditis. Cardiac MRI is considered the criterion standard for measuring cardiac indices, as well as for evaluating cardiac overload by measurement of T2* (relaxation parameter).[4]

Thalassemia minor usually presents as a mild, asymptomatic microcytic anemia and is detected through routine blood tests in adults as well as in older children. These laboratory findings should be evaluated as indicated.

Next

Laboratory Studies

The diagnosis of beta thalassemia minor usually is suggested by the presence of the following:

  • Mild, isolated microcytic anemia
  • Target cells on the peripheral blood smear (see the images below)
  • A normal red blood cell (RBC) count
    Peripheral smear in beta-zero thalassemia minor sh Peripheral smear in beta-zero thalassemia minor showing microcytes (M), target cells (T), and poikilocytes.
    Peripheral smear from a patient with beta-zero tha Peripheral smear from a patient with beta-zero thalassemia major showing more marked microcytosis (M) and anisopoikilocytosis (P) than in thalassemia minor. Target cells (T) and hypochromia are prominent.

Peripheral smear in beta-zero thalassemia minor showing microcytes (M), target cells (T), and poikilocytes. Peripheral smear from a patient with beta-zero thalassemia major showing more marked microcytosis (M) and anisopoikilocytosis (P) than in thalassemia minor. Target cells (T) and hypochromia are prominent.

Heinz bodies, which represent inclusions within RBCs consisting of denatured hemoglobin (Hb), may also be seen in the peripheral blood.[5]

An elevation of Hb A2, demonstrated by electrophoresis or column chromatography, confirms the diagnosis of beta thalassemia trait. The Hb A2 level in these patients usually is approximately 4-6%. In rare cases of concurrent severe iron deficiency, the increased Hb A2 level may not be observed, although it becomes evident with iron repletion. The increased Hb A2 level also is not observed in patients with the rare delta-beta thalassemia trait. An elevated Hb F level is not specific to patients with the beta thalassemia trait.

Free erythrocyte porphyrin (FEP) tests may be useful in situations in which the diagnosis of beta thalassemia minor is unclear. The FEP level is normal in patients with the beta thalassemia trait, but it is elevated in patients with iron deficiency or lead poisoning.

Alpha thalassemia is characterized by genetic defects in the alpha-globin gene, and this variant has features similar to beta thalassemia (see Diagnostic Considerations). Patients with this disorder have normal Hb A2 levels. Establishing the diagnosis of the alpha thalassemia trait requires measuring either the alpha-beta chain synthesis ratio or performing genetic tests of the alpha-globin cluster (using Southern blot or PCR assay tests).

Iron studies (iron, transferrin, ferritin) are useful in excluding iron deficiency and the anemia of chronic disorders as the cause of the patient's anemia.

Evidence of hemolysis in the form of indirect hyperbilirubinemia, low haptoglobin, and elevated lactate dehydrogenase may be seen as a result of ineffective erythropoiesis and consequent destruction of these RBCs.

Patients may require a bone marrow examination to exclude certain other causes of microcytic anemia. Physicians must perform an iron stain (Prussian blue stain) to diagnose sideroblastic anemia (ringed sideroblasts).

The Mentzer index is defined as mean corpuscular volume per red cell count. An index of less than 13 suggests that the patient has the thalassemia trait, and an index of more than 13 suggests that the patient has iron deficiency.

Previous
Next

Prenatal Diagnosis

Prenatal diagnosis is possible through analysis of deoxyribonucleic acid (DNA) obtained via chorionic villi sampling at 8-10 weeks’ fetal gestation or by amniocentesis at 14-20 weeks’ gestation. In most laboratories, the DNA is amplified using the PCR assay test and then is analyzed for the presence of the thalassemia mutation using a panel of oligonucleotide probes corresponding to known thalassemia mutations.

Since the genetic defects are quite variable, family genotyping usually must be completed for diagnostic linkage (segregation) analysis. With the anticipated availability of large-scale mutation screening by DNA chip technology, extensive pedigree analyses may be obviated.

Physicians can perform fetal blood sampling for Hb chain synthesis at 18-22 weeks’ gestation, but this procedure is not as reliable as DNA analysis sampling methods. Genetic therapy strategies are currently in the early stages of development.

Previous
 
 
Contributor Information and Disclosures
Author

Pooja Advani, MD Clinical Fellow, Department of Hematology/Oncology, Mayo Clinic

Pooja Advani, MD is a member of the following medical societies: American Society of Hematology, American Society of Clinical Oncology, Florida Society of Clinical Oncology

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Marcel E Conrad, MD Distinguished Professor of Medicine (Retired), University of South Alabama College of Medicine

Marcel E Conrad, MD is a member of the following medical societies: Alpha Omega Alpha, American Association for the Advancement of Science, American Association of Blood Banks, American Chemical Society, American College of Physicians, American Physiological Society, American Society for Clinical Investigation, American Society of Hematology, Association of American Physicians, Association of Military Surgeons of the US, International Society of Hematology, Society for Experimental Biology and Medicine, SWOG

Disclosure: Partner received none from No financial interests for none.

Chief Editor

Emmanuel C Besa, MD Professor Emeritus, Department of Medicine, Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University

Emmanuel C Besa, MD is a member of the following medical societies: American Association for Cancer Education, American Society of Clinical Oncology, American College of Clinical Pharmacology, American Federation for Medical Research, American Society of Hematology, New York Academy of Sciences

Disclosure: Nothing to disclose.

Acknowledgements

Kenichi Takeshita, MD Adjunct Associate Professor, Department of Medicine, Division of Hematology, New York University School of Medicine; Medical Director, Clinical Research and Development, Celgene

Kenichi Takeshita, MD is a member of the following medical societies: American Society of Hematology

Disclosure: Nothing to disclose.

References
  1. Rachmilewitz EA, Giardina PJ. How I treat thalassemia. Blood. 2011 Sep 29. 118(13):3479-88. [Medline].

  2. Galanello R, Sanna S, Perseu L, Sollaino MC, Satta S, Lai ME, et al. Amelioration of Sardinian beta0 thalassemia by genetic modifiers. Blood. 2009 Oct 29. 114(18):3935-7. [Medline]. [Full Text].

  3. Nemtsas P, Arnaoutoglou M, Perifanis V, Koutsouraki E, Orologas A. Neurological complications of beta-thalassemia. Ann Hematol. 2015 Aug. 94 (8):1261-5. [Medline].

  4. Pennell DJ, Udelson JE, Arai AE, Bozkurt B, Cohen AR, Galanello R. Cardiovascular function and treatment in ß-thalassemia major: a consensus statement from the American Heart Association. Circulation. 2013 Jul 16. 128(3):281-308. [Medline].

  5. Jacob HS, Winterhalter KH. The role of hemoglobin heme loss in Heinz body formation: studies with a partially heme-deficient hemoglobin and with genetically unstable hemoglobins. J Clin Invest. 1970 Nov. 49 (11):2008-16. [Medline]. [Full Text].

  6. Rivella S. β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015 Apr. 100 (4):418-30. [Medline]. [Full Text].

  7. Rachmilewitz EA, Giardina PJ. How I treat thalassemia. Blood. 2011 Sep 29. 118(13):3479-88. [Medline].

  8. Hapgood G, Walsh T, Cukierman R, Paul E, Cheng K, Bowden DK. Erythropoiesis is not equally suppressed in transfused males and females with β-thalassemia major: are there clinical implications?. Haematologica. 2015 Aug. 100 (8):e292-4. [Medline]. [Full Text].

  9. Thomas ED, Buckner CD, Sanders JE, Papayannopoulou T, Borgna-Pignatti C, De Stefano P. Marrow transplantation for thalassaemia. Lancet. 1982 Jul 31. 2(8292):227-9. [Medline].

  10. Lucarelli G, Galimberti M, Polchi P. Marrow transplantation in patients with thalassemia responsive to iron chelation therapy. N Engl J Med. 1993 Sep 16. 329(12):840-4. [Medline]. [Full Text].

  11. Elalfy MS, Saber MM, Adly AA, Ismail EA, Tarif M, Ibrahim F, et al. Role of vitamin C as an adjuvant therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload. Eur J Haematol. 2015 May 28. [Medline].

  12. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011 Apr 28. 117(17):4425-33. [Medline]. [Full Text].

  13. Maggio A, Vitrano A, Lucania G, Capra M, Cuccia L, Gagliardotto F, et al. Long-term use of deferiprone significantly enhances left-ventricular ejection function in thalassemia major patients. Am J Hematol. 2012 Jul. 87(7):732-3. [Medline].

  14. Cassinerio E, Roghi A, Pedrotti P, Brevi F, Zanaboni L, Graziadei G, et al. Cardiac iron removal and functional cardiac improvement by different iron chelation regimens in thalassemia major patients. Ann Hematol. 2012 May 10. [Medline].

  15. Olivieri NF, Brittenham GM, McLaren CE, et al. Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major. N Engl J Med. 1998 Aug 13. 339(7):417-23. [Medline]. [Full Text].

  16. [Guideline] Angelucci E, Barosi G, Camaschella C, et al. Italian Society of Hematology practice guidelines for the management of iron overload in thalassemia major and related disorders. Haematologica. 2008 May. 93(5):741-52. [Medline].

  17. Taher AT, Porter J, Viprakasit V, Kattamis A, Chuncharunee S, Sutcharitchan P, et al. Deferasirox reduces iron overload significantly in nontransfusion-dependent thalassemia: 1-year results from a prospective, randomized, double-blind, placebo-controlled study. Blood. 2012 Aug 2. 120(5):970-7. [Medline].

  18. Taher AT, Porter JB, Viprakasit V et al. Deferasirox continues to reduce iron overload in non-transfusion-dependent thalassemia: a one-year, open-label extension to a one-year, randomized double-blind, placebo-controlled study (THALASSA). Poster presented at the 54th American Society of Hematology Annual Meeting and Exposition in Atlanta, GA (8-11 December 2012). Abstract #3258.

  19. Pennell DJ, Porter JB, Piga A, Lai Y, El-Beshlawy A, Belhoul KM, et al. A 1-year randomized controlled trial of deferasirox vs deferoxamine for myocardial iron removal in ß-thalassemia major (CORDELIA). Blood. 2014 Mar 6. 123(10):1447-54. [Medline]. [Full Text].

  20. Elalfy M et al, 55th Annual ASH Annual Meeting abstracts, 2013, abstract# 559.

  21. Yesim A et al, 55th ASH Annual Meeting abstracts, 2013, abstract # 2257.

  22. Italia KY, Jijina FJ, Merchant R, et al. Response to hydroxyurea in beta thalassemia major and intermedia: experience in western India. Clin Chim Acta. 2009 Sep. 407(1-2):10-5. [Medline].

  23. Wilber A, Nienhuis AW, Persons DA. Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood. 2011 Apr 14. 117(15):3945-53. [Medline]. [Full Text].

  24. Raechel P et al, 55th Annual ASH Meeting abstracts, 2013, abstract # 1022.

  25. Perrine SP, Pace BS, Faller DV. Targeted fetal hemoglobin induction for treatment of beta hemoglobinopathies. Hematol Oncol Clin North Am. 2014 Apr. 28(2):233-48. [Medline].

  26. Maria-Domenica C, 55th Annual ASH Meeting abstracts, 2013, abstract # 3448.

  27. Fibach E, Rachmilewitz EA. Does erythropoietin have a role in the treatment of ß-hemoglobinopathies?. Hematol Oncol Clin North Am. 2014 Apr. 28(2):249-63. [Medline].

  28. Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human ß-thalassaemia. Nature. 2010 Sep 16. 467(7313):318-22. [Medline].

 
Previous
Next
 
Peripheral smear in beta-zero thalassemia minor showing microcytes (M), target cells (T), and poikilocytes.
Peripheral smear from a patient with beta-zero thalassemia major showing more marked microcytosis (M) and anisopoikilocytosis (P) than in thalassemia minor. Target cells (T) and hypochromia are prominent.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.