Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

von Willebrand Disease Medication

  • Author: Eleanor S Pollak, MD; Chief Editor: Srikanth Nagalla, MBBS, MS, FACP  more...
 
Updated: Dec 09, 2015
 

Medication Summary

The two principal drug categories used in the treatment of von Willebrand disease (vWD) are nontransfusional compounds (eg, desmopressin [DDAVP], antifibrinolytics) and transfusional compounds. Whenever possible, avoid transfusions.

DDAVP is the treatment of choice for individuals with vWD type I. Responses to DDAVP are variable in patients with type II disease. Individuals with vWD type III have a virtually complete deficiency of vWF; therefore, because DDAVP acts by releasing stored vWF, the drug has no effect in type III disease.

Next

Coagulation Factors

Class Summary

Replacing coagulation factors are essential to successfully managing bleeding episodes.

von Willebrand factor, recombinant (Vonvendi)

 

Recombinant von Willebrand factor that promotes platelet aggregation and platelet adhesion on damaged vascular endothelium. It is indicated for on-demand treatment and control of bleeding episodes in adults aged 18 years or older with von Willebrand disease.

Antihemophilic factor/von Willebrand factor complex (Alphanate, Humate P, Wilate)

 

When DDAVP cannot raise the vWF level to hemostatically acceptable levels, a blood product containing vWF may be required. VWF, a protein found in normal plasma, is necessary for clot formation; when administered, it can temporarily correct coagulation defects of patients with classic hemophilia (hemophilia A), in whom a deficiency of FVIII exists. The specific activity of different brand products varies. Humate-P and Alphanate are products containing both FVIII and vWF. The dose depends on the patient's weight, the severity of hemorrhage, the severity of deficiency, the presence of inhibitors, and the desired FVIII level.

The clinical effect on the patient is the most important determinant of therapy. When inhibitors are present, dose requirements are extremely variable and are determined by clinical response. The length of treatment and the loading dose depend on the extent and location of the hemorrhage.

Alphanate is indicated for the prevention of excessive bleeding for surgical and/or invasive procedures in vWD when desmopressin is either ineffective or contraindicated. It is not indicated for patients with severe vWD (ie, type III) who are undergoing major surgery.

Humate-P is indicated for the treatment and prevention of spontaneous and trauma-induced bleeding episodes for patients with mild to moderate or severe vWD.

Previous
Next

Antifibrinolytics Agents

Class Summary

Antifibrinolytics may be used to prevent the breakdown of formed blood clots in order to temper hemorrhage. These agents block the formation of plasmin. They may be used to manage mucosal bleeding, particularly in the nasopharynx and in the gastrointestinal and genitourinary tracts. Antifibrinolytics are most often used concomitantly with other medications for dental extractions and oral surgery.

Aminocaproic acid (Amicar)

 

Aminocaproic acid inhibits fibrinolysis via the inhibition of plasminogen activator substances and, to a lesser degree, through antiplasmin activity. Its main disadvantage is that thrombi that form during treatment are not lysed, and its effectiveness is uncertain. Aminocaproic acid has been used to prevent the recurrence of subarachnoid hemorrhage.

Tranexamic acid (Cyklokapron, Lysteda)

 

Tranexamic acid is an alternative to aminocaproic acid. It inhibits fibrinolysis by displacing plasminogen from fibrin.

Previous
Next

Vasopressin-Related

Class Summary

These agents improve platelet function in qualitative disorders.

Desmopressin (DDAVP, Stimate)

 

Desmopressin is the treatment of choice for individuals with vWD type I. It causes a rapid (about 30 min; peaks in 90-120 min), 3- to 5-fold increase in the release of vWF and FVIII from endothelial cells.

Previous
Next

Estrogens

Class Summary

Estrogen may be helpful in reducing menorrhagia. Even in type III disease, in which case vWF and FVIII levels are not necessarily increased, estrogen may mediate changes in the endometrium that lessen menstrual bleeding severity.

Ethinyl estradiol and levonorgestrel (Levora, Nordette, Lutera, Trivora)

 

Ethinyl estradiol reduces the secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary by decreasing the amount of gonadotropin-releasing hormones.

Previous
 
Contributor Information and Disclosures
Author

Eleanor S Pollak, MD Associate Director of Special Coagulation, Associate Professor, Department of Pathology and Laboratory Medicine, Section of Hematology and Coagulation, University of Pennsylvania

Eleanor S Pollak, MD is a member of the following medical societies: American Society of Hematology, College of American Pathologists, National Multiple Sclerosis Society

Disclosure: Nothing to disclose.

Chief Editor

Srikanth Nagalla, MBBS, MS, FACP Director, Clinical Hematology, Cardeza Foundation for Hematologic Research; Assistant Professor of Medicine, Division of Hematology, Associate Program Director, Hematology/Medical Oncology Fellowship, Assistant Program Director, Internal Medicine Residency, Jefferson Medical College of Thomas Jefferson University

Srikanth Nagalla, MBBS, MS, FACP is a member of the following medical societies: American Society of Hematology, Association of Specialty Professors

Disclosure: Nothing to disclose.

Acknowledgements

Marcel E Conrad, MD (Retired) Distinguished Professor of Medicine, University of South Alabama

Marcel E Conrad, MD is a member of the following medical societies: Alpha Omega Alpha, American Association for the Advancement of Science, American Association of Blood Banks, American Chemical Society, American College of Physicians, American Physiological Society, American Society for Clinical Investigation, American Society of Hematology, Association of American Physicians, Association of Military Surgeons of the US, International Society of Hematology, Society for Experimental Biology and Medicine, and Southwest Oncology Group

Disclosure: No financial interests None None

Koyamangalath Krishnan, MD, FRCP, FACP Paul Dishner Endowed Chair of Excellence in Medicine, Professor of Medicine and Chief of Hematology-Oncology, Program Director, Hematology-Oncology Fellowship, James H Quillen College of Medicine at East Tennessee State University

Koyamangalath Krishnan, MD, FRCP, FACP is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians-American Society of Internal Medicine, American Society of Hematology, and Royal College of Physicians

Disclosure: Nothing to disclose.

Steven Stein, MD, Assistant Professor, Department of Medicine, Division of Hematology/Oncology, University of Pennsylvania

Steven Stein, MD is a member of the following medical societies: American College of Physicians-American Society of Internal Medicine and American Society of Hematology

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD, Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Reference Salary Employment

References
  1. Udvardy ML, Szekeres-Csiki K, Hársfalvi J. Novel evaluation method for densitometric curves of von Willebrand factor multimers and a new parameter (M(MW)) to describe the degree of multimersation. Thromb Haemost. 2009 Aug. 102(2):412-7. [Medline].

  2. [Guideline] Laffan MA, Lester W, O'Donnell JS, Will A, Tait RC, Goodeve A, et al. The diagnosis and management of von Willebrand disease: a United Kingdom Haemophilia Centre Doctors Organization guideline approved by the British Committee for Standards in Haematology. Br J Haematol. 2014 Aug 12. [Medline]. [Full Text].

  3. Sutherland MS, Cumming AM, Bowman M, et al. A novel deletion mutation is recurrent in von Willebrand disease types 1 and 3. Blood. 2009 Jul 30. 114(5):1091-8. [Medline].

  4. Stuijver DJ, Piantanida E, van Zaane B, Galli L, Romualdi E, Tanda ML, et al. Acquired von Willebrand syndrome in patients with overt hypothyroidism: a prospective cohort study. Haemophilia. 2014 May. 20(3):326-32. [Medline].

  5. Waldow HC, Westhoff-Bleck M, Widera C, Templin C, von Depka M. Acquired von Willebrand syndrome in adult patients with congenital heart disease. Int J Cardiol. 2014 Aug 1. [Medline].

  6. Byams VR, Kouides PA, Kulkarni R, et al. Surveillance of female patients with inherited bleeding disorders in United States Haemophilia Treatment Centres. Haemophilia. 2011 Jul. 17 Suppl 1:6-13. [Medline].

  7. Sanders YV, Giezenaar MA, Laros-van Gorkom BA, Meijer K, van der Bom JG, Cnossen MH, et al. von Willebrand disease and aging: an evolving phenotype. J Thromb Haemost. 2014 Jul. 12(7):1066-75. [Medline].

  8. [Guideline] Nichols WL, Hultin MB, James AH, et al, and the NHLBI von Willebrand Disease Expert Panel. The Diagnosis, Evaluation, and Management of von Willebrand Disease. Bethesda, Md: National Heart, Lung, and Blood Institute. NIH publication no. 08-5832. December 2007. [Full Text].

  9. Rodeghiero F, Castaman G, Tosetto A. How I treat von Willebrand disease. Blood. 2009 Aug 6. 114(6):1158-65. [Medline]. [Full Text].

  10. Sanders YV, Fijnvandraat K, Boender J, Mauser-Bunschoten EP, van der Bom JG, et al. Bleeding spectrum in children with moderate or severe von Willebrand disease: Relevance of pediatric-specific bleeding. Am J Hematol. 2015 Sep 16. [Medline].

  11. Roberts JC, Flood VH. Laboratory diagnosis of von Willebrand disease. Int J Lab Hematol. 2015 May. 37 Suppl 1:11-7. [Medline].

  12. Hayward CP, Moffat KA, Graf L. Technological advances in diagnostic testing for von Willebrand disease: new approaches and challenges. Int J Lab Hematol. 2014 Jun. 36(3):334-40. [Medline].

  13. Gill JC, Castaman G, Windyga J, Kouides P, Ragni M, Leebeek FW, et al. Hemostatic efficacy, safety, and pharmacokinetics of a recombinant von Willebrand factor in severe von Willebrand disease. Blood. 2015 Oct 22. 126 (17):2038-46. [Medline]. [Full Text].

  14. Franchini M, Targher G, Montagnana M, Lippi G. Antithrombotic prophylaxis in patients with von Willebrand disease undergoing major surgery: when is it necessary?. J Thromb Thrombolysis. 2009 Aug. 28(2):215-9. [Medline].

  15. Neff AT. Current controversies in the diagnosis and management of von Willebrand disease. Ther Adv Hematol. 2015 Aug. 6 (4):209-16. [Medline].

  16. Di Paola J, Lethagen S, Gill J, et al. Presurgical pharmacokinetic analysis of a von Willebrand factor/factor VIII (VWF/FVIII) concentrate in patients with von Willebrand's disease (VWD) has limited value in dosing for surgery. Haemophilia. 2011 Sep. 17(5):752-8. [Medline].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.