Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Waldenstrom Macroglobulinemia

  • Author: Karen Seiter, MD; Chief Editor: Emmanuel C Besa, MD  more...
 
Updated: Jan 15, 2016
 

Background

Waldenström macroglobulinemia, one of the malignant monoclonal gammopathies, is a chronic, indolent, lymphoproliferative disorder.[1] It is characterized by the presence of a high level of a macroglobulin (immunoglobulin M [IgM]), elevated serum viscosity, and the presence of a lymphoplasmacytic infiltrate in the bone marrow. (See Pathophysiology, Etiology, and Workup.)

A clonal disease of B lymphocytes, Waldenström macroglobulinemia is considered to be a lymphoplasmacytic lymphoma, as defined by the Revised European American Lymphoma Classification (REAL) and World Health Organization (WHO) classification.

The clinical manifestations of Waldenström macroglobulinemia result from the presence of the IgM paraprotein and malignant lymphoplasmacytic cell infiltration of the bone marrow and other tissue sites. The clinical presentation is similar to that of multiple myeloma except that (1) organomegaly is common in Waldenström macroglobulinemia and is uncommon in multiple myeloma and (2) lytic bony disease and renal disease are uncommon in Waldenström macroglobulinemia but are common in multiple myeloma. (See Pathophysiology, Presentation, and Workup.)

Complications

Complications of Waldenström macroglobulinemia include the following:

  • Visual disturbances secondary to hyperviscosity syndrome
  • Diarrhea and malabsorption secondary to gastrointestinal (GI) involvement
  • Renal disease (less common)
  • Amyloidosis of the heart, kidney, liver, lungs, and joints
  • Bleeding manifestations secondary to platelet dysfunction and coagulation factor and fibrinogen abnormalities due to interaction with plasma IgM
  • Raynaud phenomenon secondary to cryoglobulinemia
  • Increased predisposition to infection due to B-cell dysfunction (disease related) or T-cell dysfunction (therapy related, particularly after nucleoside analogues)
  • Cardiac failure
  • Increased incidence of lymphomas, myelodysplasia, and leukemias
Next

Pathophysiology

The clinical manifestations of this disorder result from 2 important factors. First, secretion of the IgM paraprotein leads to hyperviscosity and vascular complications because of physical, chemical, and immunologic properties of the paraprotein. Monoclonal IgM causes hyperviscosity syndrome, cryoglobulinemia types 1 and 2, coagulation abnormalities, sensorimotor peripheral neuropathy, cold agglutinin disease and anemia, primary amyloidosis, and tissue deposition of amorphous IgM in the skin, GI tract, kidneys, and other organs.

Second, neoplastic lymphoplasmacytic cells infiltrate the bone marrow, spleen, and lymph nodes. Less commonly, these cells can infiltrate the liver, lungs, GI tract, kidneys, skin, eyes, and central nervous system (CNS). Infiltration of these organs causes numerous clinical symptoms and signs.

Occasionally, IgM paraprotein has (1) rheumatoid factor activity, (2) antimyelin activity that can contribute to peripheral neuropathy, and (3) immunologically related lupus anticoagulant activity.

A study by Pasricha et al found that bone marrow features, particularly the degree of plasma cell infiltration, correlates with IgM paraprotein concentration at diagnosis. Thus, evaluation of the plasma cell compartment in the bone marrow at baseline and after therapy may be helpful.[2]

Previous
Next

Etiology

No definite etiology exists for Waldenström macroglobulinemia. Environmental, familial, genetic, and viral factors have been reported. IgM monoclonal gammopathies of undetermined significance (MGUS) are considered a precursor of Waldenström macroglobulinemia.

A possible role for genetic factors has been suggested by reports of familial clustering of Waldenström macroglobulinemia. In one study, approximately 20% of 181 serial Waldenström macroglobulinemia patients presenting to a tertiary referral had a first-degree relative with either Waldenström macroglobulinemia or another B-cell lymphoproliferative disease. Reports of familial cases suggest a genetic predisposition.[3, 4]

Hepatitis C, hepatitis G, and human herpesvirus 8 have been implicated, but as yet, no strong data support a causative link between these viruses and Waldenström macroglobulinemia.

Previous
Next

Epidemiology

Waldenström macroglobulinemia is a relatively rare condition, with the 1500 cases diagnosed per year in the United States accounting for approximately 2% of hematologic malignancies. The incidence rate for Waldenström macroglobulinemia in the United States is higher among whites, with people of African descent representing only 5% of all patients. In the United Kingdom, the annual incidence of the disease is 10.3 per million.[5]

Waldenström macroglobulinemia is a disease of elderly individuals. Most patients present in the seventh or eighth decade of life. The median age at diagnosis in the United States is 65 years, with a slight male predominance.

Previous
Next

Prognosis

Waldenström macroglobulinemia is an indolent disorder, and patients survive for a median of approximately 78 months. Kaplan-Meier survival curves of patients with Waldenström macroglobulinemia do not show a plateau.[6]

Different studies have been performed to assess prognosis. Patients with a nodular type of bone marrow involvement tend to do better than those with diffuse involvement.

Poor prognostic factors include the following:

  • Age older than 65 years
  • Hemoglobin value of less than 10 g/dL
  • Albumin level less than 4.0 g/dL
  • Elevated beta-2-microglobulin level

A study by Kastritis et al found that despite the evolution of treatment to include nucleoside analogues and other novel agents, no significant improvement in the outcome of patients with Waldenström macroglobulinemia has been noted since the late 20th century.[7]

In contrast, a study by Castillo et al that was based on the Surveillance, Epidemiology and End Results database found that relative survival rates were higher in patients diagnosed with Waldenström macroglobulinemia during 2001-2010 than those diagnosed during 1980-2000: 5-year relative survival rates were 78% versus 67%, respectively, and 10-year relative survival rates were 66% versus 49%, respectively. Relative survival improved in whites and other races, but not in blacks.[8]

Morbidity and mortality

The most important causes of death in Waldenström macroglobulinemia include progression of the proliferative process, infection, cardiac failure, renal failure, strokes, and GI bleeding. Transformation to a more aggressive immunoblastic variant is less common (6% of cases).

Treon et al reported that somatic mutations in MYD88 and CXCR4 in patients with Waldenström macroglobulinemia are determinants of clinical presentation and overall survival. Patients with MYD88 (L265P) and CXCR4 with warts, hypogammaglobulinemia, infections and myelokathexis (WHIM) syndrome/nonsense (NS) mutations had significantly higher bone marrow disease involvement and symptomatic disease requiring therapy, including hyperviscosity syndrome.[9]

Patients with MYD88 (L265P) and WHIM/frameshift (FS) CXCR4 mutations or wild type CXCR4 had intermediate bone marrow involvement, while those with wild type MYD88 and CXCR4 had the lowest bone marrow disease burden. Risk of death was not affected by CXCR4 mutation status, but was markedly increased by wild type MYD88 status (hazard ratio 10.54).[9]

Previous
 
 
Contributor Information and Disclosures
Author

Karen Seiter, MD Professor, Department of Internal Medicine, Division of Oncology/Hematology, New York Medical College

Karen Seiter, MD is a member of the following medical societies: American Association for Cancer Research, American College of Physicians, American Society of Hematology

Disclosure: Received honoraria from Novartis for speaking and teaching; Received consulting fee from Novartis for speaking and teaching; Received honoraria from Celgene for speaking and teaching.

Coauthor(s)

Doris Ponce, MD Fellow, Department of Hematology/Oncology, New York Medical College

Doris Ponce, MD is a member of the following medical societies: American College of Physicians, American Medical Association, American Society of Hematology, American Society of Clinical Oncology

Disclosure: Nothing to disclose.

Chief Editor

Emmanuel C Besa, MD Professor Emeritus, Department of Medicine, Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University

Emmanuel C Besa, MD is a member of the following medical societies: American Association for Cancer Education, American Society of Clinical Oncology, American College of Clinical Pharmacology, American Federation for Medical Research, American Society of Hematology, New York Academy of Sciences

Disclosure: Nothing to disclose.

Acknowledgements

Wendy Hu, MD Consulting Staff, Department of Hematology/Oncology and Bone Marrow Transplantation, Huntington Memorial Medical Center

Wendy Hu, MD is a member of the following medical societies: American Association for the Advancement of Science, American College of Physicians, American Society for Blood and Marrow Transplantation, American Society of Hematology, and Physicians for Social Responsibility

Disclosure: Nothing to disclose.

Koyamangalath Krishnan, MD, FRCP, FACP Paul Dishner Endowed Chair of Excellence in Medicine, Professor of Medicine and Chief of Hematology-Oncology, James H Quillen College of Medicine at East Tennessee State University

Koyamangalath Krishnan, MD, FRCP, FACP is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians-American Society of Internal Medicine, American Society of Hematology, and Royal College of Physicians

Disclosure: Nothing to disclose.

Vijay Ramu, MBBS Staff Physician, Department of Internal Medicine, East Tennessee State University

Vijay Ramu, MBBS is a member of the following medical societies: American College of Physicians

Disclosure: Nothing to disclose.

Paul Schick, MD Emeritus Professor, Department of Internal Medicine, Jefferson Medical College of Thomas Jefferson University; Research Professor, Department of Internal Medicine, Drexel University College of Medicine; Adjunct Professor of Medicine, Lankenau Hospital

Paul Schick, MD is a member of the following medical societies: American College of Physicians, American Heart Association, American Society of Hematology, International Society on Thrombosis and Haemostasis, and New York Academy of Sciences

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Harsha Vyas, MD Fellow, Section of Hematology and Oncology, Wake Forest University School of Medicine

Harsha Vyas, MD is a member of the following medical societies: American College of Physicians, American Society of Clinical Oncology, and American Society of Hematology

Disclosure: Nothing to disclose.

References
  1. Vogt RF, Marti GE. Overview of monoclonal gammopathies of undetermined significance. Br J Haematol. 2007 Dec. 139(5):687-9. [Medline].

  2. Pasricha SR, Juneja SK, Westerman DA, Came NA. Bone-marrow plasma cell burden correlates with IgM paraprotein concentration in Waldenstrom macroglobulinaemia. J Clin Pathol. 2011 Jun. 64(6):520-3. [Medline].

  3. Adamia S, Pilarski PM, Belch AR, Pilarski LM. Genetic abnormalities in Waldenstrom's macroglobulinemia. Clin Lymphoma Myeloma. 2009 Mar. 9(1):30-2. [Medline].

  4. Ogmundsdottir HM, Einarsdottir HK, Steingrimsdottir H, Haraldsdottir V. Familial predisposition to monoclonal gammopathy of unknown significance, Waldenström's macroglobulinemia, and multiple myeloma. Clin Lymphoma Myeloma. 2009 Mar. 9(1):27-9. [Medline].

  5. Wang H, Chen Y, Li F, Delasalle K, Wang J, Alexanian R, et al. Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: A large population-based study. Cancer. 2011 Dec 2. [Medline].

  6. Kastritis E, Zervas K, Repoussis P, et al. Prognostication in young and old patients with Waldenstrom's macroglobulinemia: importance of the International Prognostic Scoring System and of serum lactate dehydrogenase. Clin Lymphoma Myeloma. 2009 Mar. 9(1):50-2. [Medline].

  7. Kastritis E, Kyrtsonis MC, Hatjiharissi E, et al. No significant improvement in the outcome of patients with Waldenström's macroglobulinemia treated over the last 25 years. Am J Hematol. 2011 Jun. 86(6):479-83. [Medline].

  8. Castillo JJ, Olszewski AJ, Cronin AM, Hunter ZR, Treon SP. Survival trends in Waldenström macroglobulinemia: an analysis of the Surveillance, Epidemiology and End Results database. Blood. 2014 Jun 19. 123(25):3999-4000. [Medline].

  9. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014 May 1. 123(18):2791-6. [Medline].

  10. Merlini G, Baldini L, Broglia C, Comelli M, Goldaniga M, Palladini G, et al. Prognostic factors in symptomatic Waldenstrom's macroglobulinemia. Semin Oncol. 2003 Apr. 30(2):211-5. [Medline].

  11. Menke MN, Feke GT, McMeel JW, Treon SP. Ophthalmologic techniques to assess the severity of hyperviscosity syndrome and the effect of plasmapheresis in patients with Waldenström's macroglobulinemia. Clin Lymphoma Myeloma. 2009 Mar. 9(1):100-3. [Medline].

  12. Varghese AM, Rawstron AC, Ashcroft AJ, Moreton P, Owen RG. Assessment of bone marrow response in Waldenstrom's macroglobulinemia. Clin Lymphoma Myeloma. 2009 Mar. 9(1):53-5. [Medline].

  13. Katzmann JA, Kyle RA, Benson J, et al. Screening panels for detection of monoclonal gammopathies. Clin Chem. 2009 Aug. 55(8):1517-22. [Medline].

  14. Poulain S, Ertault M, Leleu X, et al. SDF1/CXCL12 (-801GA) polymorphism is a prognostic factor after treatment initiation in Waldenstrom macroglobulinemia. Leuk Res. 2009 Sep. 33(9):1204-7. [Medline].

  15. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014 Mar 13. 123(11):1637-46. [Medline].

  16. Jonhson SA, Birchall J, Luckie C. Guidelines on the management of waldenstrom macroglobulinaemia. British Society for Haematol. 2006. 132:683-97.

  17. [Guideline] Dimopoulos MA, Kastritis E, Owen RG, Kyle RA, Landgren O, Morra E, et al. Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus. Blood. 2014 Aug 28. 124(9):1404-1411. [Medline].

  18. Menke MN, Feke GT, McMeel JW, Treon SP. Effect of plasmapheresis on hyperviscosity-related retinopathy and retinal hemodynamics in patients with Waldenstrom's macroglobulinemia. Invest Ophthalmol Vis Sci. 2008 Mar. 49(3):1157-60. [Medline]. [Full Text].

  19. Leleu X, Tamburini J, Roccaro A, et al. Balancing risk versus benefit in the treatment of Waldenstrom's macroglobulinemia patients with nucleoside analogue-based therapy. Clin Lymphoma Myeloma. 2009 Mar. 9(1):71-3. [Medline].

  20. Treon SP, Tripsas CK, Yang G, Cao Y, Xu L, Hunter Z, et al. A prospective multicenter study Of The Bruton’s tyrosine kinase inhibitor ibrutinib in patients with relapsed or refractory Waldenström’s macroglobulinemia (abstract 251). Presented at the 55th American Society of Hematology Annual Meeting and Exposition. New Orleans, LA. December 7-10, 2013. [Full Text].

  21. Treon SP, Hansen M, Branagan AR. Polymorphisms in FcgammaRIIIA (CD16) receptor expression are associated with the clinical response to rituximab in waldenstrom's macroglobulinemia. J Clin Oncol. 2005. 23:474-81.

  22. Dhodapkar MV, Jacobson JL, Gertz MA. Prognostic factors and response to fludarabine therapy in patients with Waldenstrom macroglobulinemia: results of United States intergroup trial (Southwest Oncology Group S9003). Blood. 2001. 98:41-48.

  23. Johnson SA, Owen RG, Oscier DG. Phase III study of chlorambucil versus fludarabine as initial therapy for Waldenstrom's macroglobulinemia and related disorders. Clin Lymphoma. 2005. 4:294-97.

  24. Dimopoulos MA, Kastritis E, Roussou M, et al. Rituximab-based treatments in Waldenstrom's macroglobulinemia. Clin Lymphoma Myeloma. 2009 Mar. 9(1):59-61. [Medline].

  25. Kyle, RA, Treon SP, Alexanian R. Prognostic markers and criteria to initiate therapy in Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia. Seminars in Oncology. 2003. 30:116-120.

  26. Tedeschi A, Alamos SM, Ricci F, Greco A, Morra E. Fludarabine-based combination therapies for Waldenstrom's macroglobulinemia. Clin Lymphoma Myeloma. 2009 Mar. 9(1):67-70. [Medline].

  27. Treon SP, Hunter Z, Barnagan AR. CHOP plus rituximab therapy in Waldenstrom's macroblobulinemia. Clin Lymphoma. 2005. 4:273-7.

  28. Tedeschi A, Benevolo G, Varettoni M, Battista ML, Zinzani PL, Visco C, et al. Fludarabine plus cyclophosphamide and rituximab in Waldenstrom macroglobulinemia: An effective but myelosuppressive regimen to be offered to patients with advanced disease. Cancer. 2011 Jul 5. [Medline].

  29. Coleman M, Leonard J, Lyons L, Szelenyi H, Niesvizky R. Treatment of Waldenstrom's macroglobulinemia with clarithromycin, low-dose thalidomide, and dexamethasone. Semin Oncol. 2003 Apr. 30(2):270-4. [Medline].

  30. Ghobrial IM, Hong F, Padmanabhan S, et al. Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia. J Clin Oncol. 2010 Mar 10. 28(8):1422-8. [Medline]. [Full Text].

  31. Ghobrial IM, Gertz M, Laplant B, et al. Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory Waldenstrom macroglobulinemia. J Clin Oncol. 2010 Mar 10. 28(8):1408-14. [Medline]. [Full Text].

  32. Treon SP, Soumerai JD, Hunter ZR, et al. Long-term follow-up of symptomatic patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia treated with the anti-CD52 monoclonal antibody alemtuzumab. Blood. 2011 Jul 14. 118(2):276-81. [Medline]. [Full Text].

  33. Leblond V, Levy V, Maloisel F. Multicenter, randomized comparative trial of fludarabine and the combination of cyclophosphamide-doxorubicin-prednisone in 92 patients with Waldenstrom macroglobulinemia in first relapse or with primary refractory disease. Blood. 2001. 98:2640-4.

  34. Desikan R, Dhodapkar M, Siegel D, et al. High-dose therapy with autologous haemopoietic stem cell support for Waldenstrom's macroglobulinaemia. Br J Haematol. 1999 Jun. 105(4):993-6. [Medline].

  35. Treon SP, Morel P, Leblond V, Fermand JP. Report of the Third International Workshop on Waldenstrom's macroglobulinemia. Clin Lymphoma. 2005 Mar. 5(4):215-6. [Medline].

 
Previous
Next
 
Purpura from Waldenström macroglobulinemia is evident in the forearm of a 65-year-old man who presented with a purpuric rash on all of his extremities. Although the patient had a history of hepatitis C, the possibility of hepatitis C cryoglobulinemia was excluded because the rash extended well beyond the hands and feet, and blood testing identified a type I cryoglobulinemia. Image courtesy of Jason Kolfenbach, MD, and Kevin Deane, MD, Division of Rheumatology, University of Colorado Denver School of Medicine.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.