Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Combined B-Cell and T-Cell Disorders Medication

  • Author: Francisco J Hernandez-Ilizaliturri, MD; Chief Editor: Emmanuel C Besa, MD  more...
 
Updated: Apr 14, 2015
 

Medication Summary

The goals of pharmacotherapy are to reduce morbidity and to prevent complications.

Next

Blood Products/Immunoglobulins

Class Summary

Blood products/immunoglobulins provide immediate passive immunity. These agents can be used as replacement therapy in patients with antibody-deficiency states.

Immune globulin, intravenous (Gamimune, Gammagard, Sandoglobulin, Gammar-P)

 

Provide an immediate rise of antibodies that have a proven protective effect against bacterial and viral infection (passive immunity). Because antibodies are not produced by the host, these products must be readministered monthly. This treatment may increase CSF IgG (10%).

Previous
Next

Metabolic Enzymes

Class Summary

Metabolic enzymes are used to replace ADA.

Pegademase bovine (Adagen)

 

ADA is an enzyme of the purine salvage pathway that is responsible for adenosine and deoxyadenosine deamination to inosine and deoxyinosine, respectively. ADA deficiency leads to accumulation of the metabolites dATP and 2'-deoxyadenosine, both of which are toxic to lymphocytes.

Treatment is indicated in patients with SCID secondary to ADA deficiency whose conditions proved refractory to bone marrow transplantation or who are not candidates for transplantation. Individualize therapy (based on plasma levels) to achieve the following: trough plasma levels of 15-35 mmol/h/mL and a decline in erythrocyte dATP to < 0.005-0.015 mmol/mL packed erythrocytes or to < 1% of total erythrocyte adenine nucleotide content (ATP + dATP). Plasma levels >35 mmol/h/mL are not associated with additional clinical benefit. This treatment has no role in preparatory regimen for bone marrow transplantation.

Previous
 
 
Contributor Information and Disclosures
Author

Francisco J Hernandez-Ilizaliturri, MD Associate Professor of Medicine, Department of Medicine, Assistant Professor of Immunology, Department of Immunology, Roswell Park Cancer Institute, University of Buffalo State University of New York School of Medicine and Biomedical Sciences

Francisco J Hernandez-Ilizaliturri, MD is a member of the following medical societies: American Association for Cancer Research, American Society of Hematology

Disclosure: Nothing to disclose.

Coauthor(s)

Issam Makhoul, MD Associate Professor, Department of Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences

Issam Makhoul, MD is a member of the following medical societies: American Society of Clinical Oncology, American Society of Hematology

Disclosure: Nothing to disclose.

David Claxton, MD Professor of Medicine, Department of Internal Medicine, Section of Hematology-Oncology, Hershey Medical Center, Pennsylvania State University College of Medicine

Disclosure: Nothing to disclose.

Mohammad Muhsin Chisti, MD, FACP Assistant Professor of Hematology and Oncology, Karmanos Cancer Institute, Michigan State University College of Human Medicine

Mohammad Muhsin Chisti, MD, FACP is a member of the following medical societies: American College of Physicians, American Medical Association, American Society of Clinical Oncology, American Society of Hematology, Medical Society of the State of New York

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Marcel E Conrad, MD Distinguished Professor of Medicine (Retired), University of South Alabama College of Medicine

Marcel E Conrad, MD is a member of the following medical societies: Alpha Omega Alpha, American Association for the Advancement of Science, American Association of Blood Banks, American Chemical Society, American College of Physicians, American Physiological Society, American Society for Clinical Investigation, American Society of Hematology, Association of American Physicians, Association of Military Surgeons of the US, International Society of Hematology, Society for Experimental Biology and Medicine, SWOG

Disclosure: Partner received none from No financial interests for none.

Chief Editor

Emmanuel C Besa, MD Professor Emeritus, Department of Medicine, Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University

Emmanuel C Besa, MD is a member of the following medical societies: American Association for Cancer Education, American Society of Clinical Oncology, American College of Clinical Pharmacology, American Federation for Medical Research, American Society of Hematology, New York Academy of Sciences

Disclosure: Nothing to disclose.

Acknowledgements

James O Ballard, MD Kienle Chair for Humane Medicine, Professor, Departments of Humanities, Medicine, and Pathology, Division of Hematology/Oncology, Milton S Hershey Medical Center, Pennsylvania State University College of Medicine

James O Ballard, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, and American Society of Hematology

Disclosure: Nothing to disclose.

References
  1. Cavazzana-Calvo M, Fischer A. Gene therapy for severe combined immunodeficiency: are we there yet?. J Clin Invest. 2007 Jun. 117(6):1456-65. [Medline]. [Full Text].

  2. Khiong K, Murakami M, Kitabayashi C, et al. Homeostatically proliferating CD4 T cells are involved in the pathogenesis of an Omenn syndrome murine model. J Clin Invest. 2007 May. 117(5):1270-81. [Medline]. [Full Text].

  3. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000 Apr 28. 288(5466):669-72. [Medline].

  4. Sinha S, Schwartz RA. Severe combined immunodeficiency. Medscape Reference. Updated August 21, 2006. [Full Text].

  5. Bonilla FA, Geha RS. 2. Update on primary immunodeficiency diseases. J Allergy Clin Immunol. 2006 Feb. 117(2 suppl mini-primer):S435-41. [Medline].

  6. Cachafeiro T, Escobar G, Bakos L, Bakos R. Chronic cutaneous cytomegalovirus infection in a patient with severe combined immunodeficiency syndrome. Br J Dermatol. 2013 Sep 6. [Medline].

  7. Bacalhau S, Freitas C, Valente R, Barata D, Neves C, Schäfer K, et al. Successful Handling of Disseminated BCG Disease in a Child with Severe Combined Immunodeficiency. Case Report Med. 2011. 2011:527569. [Medline]. [Full Text].

  8. Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn Screening for Severe Combined Immunodeficiency; The Wisconsin Experience (2008-2011). J Clin Immunol. 2011 Nov 10. [Medline].

  9. Somech R, Lev A, Simon AJ, Korn D, Garty BZ, Amariglio N, et al. Newborn screening for severe T and B cell immunodeficiency in Israel: a pilot study. Isr Med Assoc J. 2013 Aug. 15(8):404-9. [Medline].

  10. Kelly BT, Tam JS, Verbsky JW, Routes JM. Screening for severe combined immunodeficiency in neonates. Clin Epidemiol. 2013 Sep 16. 5:363-369. [Medline]. [Full Text].

  11. Rozmus J, Junker A, Thibodeau ML, Grenier D, Turvey SE, Yacoub W, et al. Severe Combined Immunodeficiency (SCID) in Canadian Children: A National Surveillance Study. J Clin Immunol. 2013 Oct 12. [Medline].

  12. Levy J, Espanol-Boren T, Thomas C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997 Jul. 131(1 pt 1):47-54. [Medline].

  13. Zhang C, Zhang ZY, Wu JF, Tang XM, Yang XQ, Jiang LP, et al. Clinical characteristics and mutation analysis of X-linked severe combined immunodeficiency in China. World J Pediatr. 2011 Nov 21. [Medline].

  14. Ridanpaa M, van Eenennaam H, Pelin K, et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell. 2001 Jan 26. 104(2):195-203. [Medline]. [Full Text].

  15. Chin T, Alonazi N. B-cell and T-cell combined disorders. Medscape Reference. Updated April 5, 2007. [Full Text].

  16. Bertrand Y, Landais P, Friedrich W, et al. Influence of severe combined immunodeficiency phenotype on the outcome of HLA non-identical, T-cell-depleted bone marrow transplantation: a retrospective European survey from the European Group for Bone Marrow Transplantation and the European Society for Immunodeficiency. J Pediatr. 1999 Jun. 134(6):740-8. [Medline].

  17. Buckley RH, Schiff SE, Schiff RI, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999 Feb 18. 340(7):508-16. [Medline]. [Full Text].

  18. Gennery AR, Flood TJ, Abinun M, Cant AJ. Bone marrow transplantation does not correct the hyper IgE syndrome. Bone Marrow Transplant. 2000 Jun. 25(12):1303-5. [Medline].

  19. Kohn DB. Adenosine deaminase gene therapy protocol revisited. Mol Ther. 2002 Feb. 5(2):96-7. [Medline]. [Full Text].

  20. Casanova JL, Abel L. Primary immunodeficiencies: a field in its infancy. Science. 2007 Aug 3. 317(5838):617-9. [Medline].

  21. Husain M, Grunebaum E, Naqvi A, et al. Burkitt's lymphoma in a patient with adenosine deaminase deficiency-severe combined immunodeficiency treated with polyethylene glycol-adenosine deaminase. J Pediatr. 2007 Jul. 151(1):93-5. [Medline].

  22. Atluri S, Neville K, Davis M, et al. Epstein-Barr-associated leiomyomatosis and T-cell chimerism after haploidentical bone marrow transplantation for severe combined immunodeficiency disease. J Pediatr Hematol Oncol. 2007 Mar. 29(3):166-72. [Medline].

  23. Chapel H, Puel A, von Bernuth H, Picard C, Casanova JL. Shigella sonnei meningitis due to interleukin-1 receptor-associated kinase-4 deficiency: first association with a primary immune deficiency. Clin Infect Dis. 2005 May 1. 40(9):1227-31. [Medline]. [Full Text].

  24. Chun HJ, Zheng L, Ahmad M, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002 Sep 26. 419(6905):395-9. [Medline].

  25. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999 Dec. 93(3):190-7. [Medline].

  26. Cooper MD, Lanier LL, Conley ME, Puck JM. Immunodeficiency disorders. Hematology Am Soc Hematol Educ Program. 2003. 314-30. [Medline]. [Full Text].

  27. Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity. Immunol Rev. 2003 Jun. 193:10-21. [Medline].

  28. Fischer A, Le Deist F, Hacein-Bey-Abina S, et al. Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunol Rev. 2005 Feb. 203:98-109. [Medline].

  29. Gennery AR, Cant AJ. Diagnosis of severe combined immunodeficiency. J Clin Pathol. 2001 Mar. 54(3):191-5. [Medline]. [Full Text].

  30. Hadzic N, Pagliuca A, Rela M, et al. Correction of the hyper-IgM syndrome after liver and bone marrow transplantation. N Engl J Med. 2000 Feb 3. 342(5):320-4. [Medline]. [Full Text].

  31. Hermanns P, Bertuch AA, Bertin TK, et al. Consequences of mutations in the non-coding RMRP RNA in cartilage-hair hypoplasia. Hum Mol Genet. 2005 Dec 1. 14(23):3723-40. [Medline]. [Full Text].

  32. Kohn DB. Gene therapy for genetic haematological disorders and immunodeficiencies. J Intern Med. 2001 Apr. 249(4):379-90. [Medline]. [Full Text].

  33. Kuska B. Wiskott-Aldrich syndrome: molecular pieces slide into place. J Natl Cancer Inst. 2000 Jan 5. 92(1):9-11. [Medline]. [Full Text].

  34. Notarangelo LD, Forino C, Mazzolari E. Stem cell transplantation in primary immunodeficiencies. Curr Opin Allergy Clin Immunol. 2006 Dec. 6(6):443-8. [Medline].

  35. Revy P, Malivert L, de Villartay JP. Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system. Curr Opin Allergy Clin Immunol. 2006 Dec. 6(6):416-20. [Medline].

  36. Torgerson TR, Ochs HD. Regulatory T cells in primary immunodeficiency diseases. Curr Opin Allergy Clin Immunol. 2007 Dec. 7(6):515-21. [Medline].

  37. Zhu Q, Watanabe C, Liu T, et al. Wiskott-Aldrich syndrome/X-linked thrombocytopenia: WASP gene mutations, protein expression, and phenotype. Blood. 1997 Oct 1. 90(7):2680-9. [Medline]. [Full Text].

 
Previous
Next
 
Table 1. Classification of SCID
Pathophysiology Cells Affected Inheritance Genes Involved
Premature cell death T, B, NK AR ADA
Defective cytokine–dependent survival signaling T, NK AR



γ c type-XL



JAK3, IL7RA (T cells only), γ c
Defective V(D)J rearrangement T, B AR RAG1, RAG2, Artemis
Defective pre-TCR and TCR signaling T AR CD3 δ, CD3 ζ, CD3 ε,



CD45



AR = autosomal recessive; JAK3 =Janus tyrosine kinase 3; RAG1, RAG2 = recombinase activating gene 1 and 2, respectively; TCR = T-cell receptor; XL = X-linked; V(D)J = variable diversity joining.
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.