Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Candidiasis Treatment & Management

  • Author: Jose A Hidalgo, MD; Chief Editor: Michael Stuart Bronze, MD  more...
 
Updated: Aug 18, 2015
 

Medical Care

The treatments used to manage Candida infections vary substantially and are based on the anatomic location of the infection, the patients' underlying disease and immune status, the patients' risk factors for infection, the specific species of Candida responsible for infection, and, in some cases, the susceptibility of the Candida species to specific antifungal drugs.

There have been significant changes in the management of candidiasis in the last few years, particularly related to the appropriate use of echinocandins and expanded-spectrum azoles for candidemia, other forms of invasive candidiasis, and mucosal candidiasis. Updated guidelines were published in March 2009 by the Infectious Disease Society of America (IDSA),[26] replacing a previous version from 2004.[27] These latest recommendations include the echinocandins caspofungin, micafungin, and anidulafungin, along with voriconazole and posaconazole, as well as lipid formulations of amphotericin B in various situations.

Fluconazole is still considered a first-line agent in nonneutropenic patients with candidemia or suspected invasive candidiasis. However, a post-hoc analysis of clinical trial data comparing anidulafungin with fluconazole for treatment of invasive candidiasis found that anidulafungin was more effective in treating severely ill patients.[28] A revision of data outcomes on treatment of invasive candidiasis in clinical trials appears to favor use of echinocandins in terms of increased rate of survival. This type of finding may have an impact on future treatment recommendations and strategies of drug use for invasive candidiasis in different groups of patients.[29, 30]

In August 2013, the FDA announced that clinicians should no longer prescribe ketoconazole (Nizoral, Janssen Pharmaceuticals) tablets as a first-line therapy for any fungal infection, including Candida and dermatophyte infections, because of the risk for severe liver injury, adrenal insufficiency, and adverse drug interactions.[31, 32] The FDA also cautioned that ketoconazole tablets should not be prescribed for any patient with underlying liver disease. The labeling changes do not apply to topical formulations of ketoconazole in creams, shampoos, foams, and gels. Oral ketoconazole is now indicated only for endemic mycoses in patients who fail to respond to or cannot tolerate other treatments.

Ketoconazole tablets were also withdrawn from the market in the European Union in July 2013.[31, 32]

The therapeutic options available for the management of invasive candidiasis and candidemia have continued to increase with the addition of newer echinocandins[33, 34] and triazoles.

  • Cutaneous candidiasis: Most localized cutaneous candidiasis infections may be treated with any number of topical antifungal agents (eg, clotrimazole, econazole, ciclopirox, miconazole, ketoconazole, nystatin). If the infection is a paronychia, the most important aspect of therapy is drainage of the abscess, followed by oral antifungal therapy with either fluconazole or itraconazole. In cases of extensive cutaneous infections, infections in immunocompromised patients, folliculitis, or onychomycosis, systemic antifungal therapy is recommended. For Candida onychomycosis, oral itraconazole (Sporanox) appears to be most efficacious. Two treatment regimens are available: the daily dose of itraconazole taken for 3-6 months or the pulsed-dose regimen that requires a slightly higher daily dose for 7 days, followed by 3 weeks of no drug administration. The cycle is repeated every month for 3-6 months.
  • Gastrointestinal candidiasis
    • Oropharyngeal candidiasis
      • Oropharyngeal candidiasis OPC can be treated with either topical antifungal agents (eg, nystatin, clotrimazole, amphotericin B oral suspension) or systemic oral azoles (fluconazole, itraconazole, or posaconazole).
      • Infections in HIV-positive patients tend to respond more slowly and, in approximately 60% of patients, recur within 6 months of the initial episode. Approximately 3%-5% of patients with advanced HIV infection (CD4 cell counts < 50/µL) may develop refractory OPC. In these situations, in addition to attempting correction of the immune dysfunction with HAART, higher doses of fluconazole (up to 800 mg/d) or itraconazole (up to 600 mg/d) can be attempted. Posaconazole suspension at 400 mg orally twice per day has also yielded excellent results in such patients. Additionally, caspofungin 50 mg/d IV and anidulafungin 100 mg/d IV have also yielded excellent efficacy in such patents. Amphotericin B is rarely necessary to treat such cases, but, when used, low doses of amphotericin B can be used (0.3-0.7 mg/kg) and have been shown to be effective.
    • Candida esophagitis requires systemic therapy with fluconazole for 14-21 days. Parenteral therapy with fluconazole may be required initially if the patient is unable to take oral medications. Daily suppressive antifungal therapy with fluconazole 100-200 mg/d is effective for preventing recurrent episodes, but it should be used only if the recurrences become frequent or are associated with malnutrition due to poor oral intake and wasting syndrome. Recommended alternatives for fluconazole-refractory disease include itraconazole, voriconazole, caspofungin, micafungin, anidulafungin, and amphotericin B.
  • Genitourinary tract candidiasis
    • Vulvovaginal candidiasis (VVC) can be managed with either topical antifungal agents or a single dose of oral fluconazole.[4] A single dose of oral fluconazole (150 mg) in acute episodes of VVC has been shown to yield clinical and microbiological efficacy as good as or better than topical antifungal agents. A small percentage (< 5%) of women experience chronic recurrent VVC infections, which often require long-term or prophylactic oral azole therapy for control. In such patients, the recommended regimen includes fluconazole 150 mg every other day for 3 doses, followed by weekly fluconazole 150-200 mg for 6 months.[3] This regimen prevents further recurrence in more than 80% of women.
    • For asymptomatic candiduria, therapy generally depends on the presence or absence of an indwelling Foley catheter. Candiduria frequently resolves by simply changing the Foley catheter (20%-25% of patients). Thus, most experts agree that asymptomatic candiduria associated with a Foley catheter does not require treatment in most cases. However, eradicating candiduria prior to any form of instrumentation or urological manipulation is prudent.
    • Candida cystitis in noncatheterized patients should be treated with fluconazole at 200 mg/d orally for at least 10-14 days.
    • For Candida cystitis in catheterized patients, the first step is always to remove the nidus of infection. Thus, the Foley catheter should be removed or replaced prior to initiating antifungal therapy. If the candiduria persists after the catheter change, then patients can be treated with 200 mg/d of fluconazole orally for 14 days. Alternative therapy includes amphotericin B bladder irrigation. However, its use for the treatment of funguria is significantly limited, primarily because of the required maintenance of a urinary catheter; lack of adequate studies to define the dose, duration, and method of administration; restriction of its use to uncomplicated lower urinary tract infections; and the availability of more convenient treatment options (eg, oral fluconazole therapy). The use of amphotericin B bladder irrigation is rarely needed. Administering intravenous amphotericin B to treat candiduria is rarely necessary.
  • Renal candidiasis: Regardless of whether the infection involves hematogenous dissemination to the kidney or ascending infection (pyelonephritis), systemic antifungal therapy is required. The most recent comparative studies indicate that fluconazole at 400 mg/d intravenously or orally for a minimum of 2 weeks is as effective as amphotericin B without the toxicities normally associated with amphotericin B. For amphotericin B, the daily dose is 0.5-0.7 mg/kg intravenously for a total dose of 1-2 g administered over a 4- to 6-week period.
  • Candidemia: This requires treatment in all patient populations. Current recommendations depend on the presence or absence of neutropenia. [26]
    • In patients without neutropenia, fluconazole is the drug of choice in most cases of candidemia and disseminated candidiasis. Studies conducted by the MSG have demonstrated that fluconazole at a dose of 400 mg/d is as efficacious as amphotericin B. In addition, fluconazole has several advantages, including lower nephrotoxicity rates (< 2%) and ease of use because of the high degree of bioavailability and the long half-life of the drug.[35] Thus, once the gastrointestinal tract is functional, the parenteral antifungal may be switched to the oral formulation with the same efficacy. Alternative options listed below need to be considered depending on history of previous exposure to antifungals, the probability of fluconazole resistance according to the species of Candida recovered, the presence of comorbid conditions, and the clinical status of the patient.[36]
    • An echinocandin is recommended for candidemia in most patients with neutropenia. Fluconazole is an alternative in patients who are less critically ill and who have no recent azole exposure. Voriconazole can be used when additional mold coverage is desired.
    • The standard recommended dose for fluconazole is 800 mg as the loading dose, followed by fluconazole at a dose of 400 mg/d for at least 2 weeks of therapy after a demonstrated negative blood culture result or clinical signs of improvement. This treatment regimen can be used for infections due to C albicans, C tropicalis, C parapsilosis, C kefyr, C dubliniensis, C lusitaniae, and C guilliermondi.
    • A critical component in the management of candidemia and disseminated candidiasis is the removal of the focus of infection, such as intravenous and Foley catheters.
    • Available echinocandins for candidemia include the following:
      • Caspofungin (Cancidas) can be initiated as a 70-mg loading dose, followed by 50 mg/d intravenously to complete a minimum of 2 weeks of antifungals after improvement and after blood cultures have cleared. Caspofungin is a broad-spectrum semisynthetic echinocandin. It is an effective alternative for severe mucosal infections and systemic infections due to Candida, especially those due to non-albicans Candida species such as C glabrata.
      • Anidulafungin can be initiated as a 200-mg loading dose, followed by 100 mg intravenously to complete a minimum of 2 weeks of antifungals after improvement and after blood cultures have cleared. Anidulafungin is a broad-spectrum echinocandin. It is an effective alternative for severe mucosal infections and systemic infections due to Candida, especially those due to non-albicans Candida species such as C glabrata.[37]
      • Micafungin can be administered at 100 mg/d intravenously to complete a minimum of 2 weeks of antifungals after improvement and after blood cultures have cleared. Micafungin is a broad-spectrum echinocandin. It has been shown to be an effective alternative for severe mucosal infections and systemic infections due to Candida, especially those due to non-albicans Candida species such as C glabrata.[38]
    • Additional options for candidemia include the following:
      • Voriconazole can be initiated at 6 mg/kg intravenously or orally twice per day, followed by 3 mg/kg orally twice per day or 200 mg orally twice per day. Based on the findings from a global multicenter clinical trial, voriconazole has also been approved for use in candidemia in patients who are not neutropenic.[39]
      • Amphotericin B deoxycholate can be administered at 0.7 mg/kg/d intravenously for a total dose of 1-2 g over a 4- to 6-week period.
      • Liposomal preparations of amphotericin B have comparable efficacy to conventional amphotericin B, but renal toxicity is considerably less common with the former.
  • Chronic mucocutaneous candidiasis: This condition is generally treated with oral azoles, such as fluconazole at a dose of 100-400 mg/d or itraconazole at a dose of 200-600 mg/d until the patient improves. The initial therapy for acute infection is always followed by maintenance therapy with the same azole for life.
  • Hepatosplenic candidiasis: Induction therapy is initially started with amphotericin B deoxycholate for at least 2 weeks, followed by consolidation therapy with fluconazole at a dose of 400 mg/d for an additional 4-12 weeks depending on the response.
  • Respiratory tract candidiasis: If the diagnosis is established based on biopsy findings, then the infection is treated as disseminated candidiasis.
  • Empirical treatment options for suspected invasive candidiasis include the following:
    • Empirical antifungal therapy should be considered for critically ill patients with risk factors for invasive candidiasis and no other cause of fever, and it should be based on clinical assessment of risk factors, serologic markers for invasive candidiasis, and/or culture data from nonsterile sites. (Its benefits have not been clearly determined.)[40]
    • This continues to be a problematic decision since criteria for starting empirical antifungal therapy remain poorly defined. Empirical therapy in persistently febrile and neutropenic patients should cover infections caused by yeasts and molds.
    • The choice of drugs in nonneutropenic patients is similar to that for proven candidiasis. Recommended agents include fluconazole or an echinocandin.
    • In neutropenic patients, a lipid formulation of amphotericin B, caspofungin, or voriconazole is recommended. Azoles should not be used for empirical therapy in individuals who have received an azole for prophylaxis.
  • Disseminated candidiasis with end organ infection: Disseminated candidiasis with end organ involvement requires an individualized approach. Thus, the manifestation of invasive candidiasis involving localized structures, such as in Candida osteomyelitis, arthritis, endocarditis, pericarditis, and meningitis, requires prolonged antifungal therapy for at least 4-6 weeks. The optimum dosage and duration of therapy for various types of deep candidal infection have not been definitively determined.
    • The standard recommended dose for most Candida infections is fluconazole at 800 mg as the loading dose, followed by fluconazole at a dose of 400 mg/d either intravenously or orally for at least 2 weeks of therapy after a demonstrated negative blood culture result or clinical signs of improvement.
    • The echinocandins have become first-line therapy for this type of infection in many situations because of their efficacy and low incidence of adverse events and drug interactions.
      • Caspofungin (Cancidas)[41] can be initiated as a 70-mg loading dose, followed by 50 mg/d intravenously to complete a minimum of 2 weeks of antifungals after improvement and after blood cultures have cleared. Caspofungin is a broad-spectrum semisynthetic echinocandin. It is an effective alternative for severe mucosal infections and systemic infections due to Candida, especially those due to non-albicans Candida species such as C glabrata.
      • Anidulafungin can be initiated as a 200-mg loading dose, followed by 100 mg intravenously to complete a minimum of 2 weeks of antifungals after improvement and after blood cultures have cleared. Anidulafungin is a broad-spectrum echinocandin. It is an effective alternative for severe mucosal infections and systemic infections due to Candida, especially those due to non-albicans Candida species such as C glabrata.[37]
      • Micafungin can be administered at 100 mg/d intravenously to complete a minimum of 2 weeks of antifungals after improvement and after blood cultures have cleared. Micafungin is a broad-spectrum echinocandin. It has been shown to be an effective alternative for severe mucosal infections and systemic infections due to Candida, especially those due to non-albicans Candida species such as C glabrata.[38]
    • Voriconazole can be initiated at 6 mg/kg intravenously or orally twice per day, followed by 3 mg/kg orally twice per day or 200 mg orally twice per day. Based on the findings from a global multicenter clinical trial, voriconazole has also been approved for use in candidemia in patients who are not neutropenic.[39]
    • Amphotericin B deoxycholate has been an alternative to fluconazole for many years. However, with the advent of the newer azoles and the echinocandins, its role as a primary or secondary option needs to be reconsidered. The dose for amphotericin B deoxycholate is 0.5-0.7 mg/kg/d intravenously to achieve a minimum of 1- to 2-g total dose. For the treatment of invasive candidiasis caused by less-susceptible species, such as C glabrata and C krusei, higher doses (up to 1 mg/kg/d) should be considered.
    • Liposomal preparations of amphotericin B are recommended at doses between 3 and 5 mg/kg/d when used for invasive candidiasis.
  • Special situations involving antifungal resistance: Several of the Candida species require special mention because of their known intrinsic resistance to antifungals.
    • Because C glabrata is known to be resistant to fluconazole in 15%-25% of cases and has decreased susceptibility to most antifungals, C glabrata infections require a change in conventional antifungal therapy. The drugs of choice for such infections are the echinocandins: caspofungin 70 mg intravenously as a loading dose, followed by 50 mg/d; anidulafungin 200-mg loading dose, followed by 100 mg/d; or micafungin 100 mg/day intravenously. An alternative is voriconazole at 6 mg/kg administered twice on the first day, followed by 3 mg/kg twice per day or 200 mg twice per day orally; other options include amphotericin B deoxycholate (1 mg/kg/d), or lipid preparations of amphotericin B at 3-5 mg/kg/d.
    • If in vitro susceptibility assays are available, it may be worthwhile to establish the in vitro susceptibility of the C glabrata strain to fluconazole. If the MIC is less than 8 μg/mL, then fluconazole can be used at 400 mg/d intravenously or orally.
    • C krusei infections necessitate the use of an agent other than fluconazole, because this organism is intrinsically resistant to fluconazole and has a decreased susceptibility to itraconazole, ketoconazole, and amphotericin B. Thus, the preferred regimen includes echinocandins (caspofungin, anidulafungin, or micafungin) voriconazole, or amphotericin B at 1 mg/kg/d. Infections due to C lusitaniae or C guilliermondi necessitate the use of fluconazole, voriconazole, or the echinocandins because these isolates are frequently intrinsically resistant to amphotericin B or develop resistance to amphotericin B while the patient is on therapy.
  • Alternative antifungal regimens
    • Alternative regimens may be considered in patients who are intolerant to the treatment regimens or when the infection is refractory to the antifungal regimen. The combination of amphotericin B and flucytosine has been recommended in several special situations. For instance, this combination has been used in immunocompromised patients with endophthalmitis, meningitis, or osteomyelitis. Flucytosine appears to interact synergistically with amphotericin B in animal models.
    • The role of other combinations of antifungals to treat complicated Candida infections needs to be evaluated. A human recombinant monoclonal antibody against heat shock protein 90 was recently reported to significantly improve outcomes in patients treated with lipid-associated amphotericin B for confirmed invasive candidiasis.[42] However, larger randomized trials need to be performed before this drug can be used clinically.
Next

Surgical Care

Major organ infections associated with candidal abscess formation may require surgical drainage procedures along with the appropriate antifungal therapy.

Prosthetic joint infection with Candida species requires the removal of the prosthesis.

Surgical debridement is generally necessary for sternal infections and frequently for vertebral osteomyelitis.

Splenic abscesses occasionally require splenectomy.

Valve replacement surgery is always indicated to treat endocarditis.

In addition to medical management, vitrectomy is a therapeutic option in fungal endophthalmitis.[43]

Previous
Next

Consultations

In some forms of candidiasis, involving physicians of different specialties for some of the specific infections may be necessary. Some examples of these situations include endocarditis, endophthalmitis, peritonitis, osteomyelitis, and other forms of invasive candidiasis that may require surgical drainage and debridement.

  • Ophthalmologist
  • General surgeon
  • Cardiothoracic surgeon
  • Gastroenterologist
  • Infectious disease specialist
  • Orthopedic surgeon
Previous
 
 
Contributor Information and Disclosures
Author

Jose A Hidalgo, MD Assistant Professor, Universidad Nacional Mayor de San Marcos; Attending Physician, Department of Internal Medicine, Division of Infectious Diseases, Guillermo Almenara Hospital, Peru

Jose A Hidalgo, MD is a member of the following medical societies: HIV Medicine Association, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Coauthor(s)

Jose A Vazquez, MD, FACP, FIDSA Professor of Medicine, Section Chief, Division of Infectious Diseases, Department of Medicine, Georgia Regents University

Jose A Vazquez, MD, FACP, FIDSA is a member of the following medical societies: American College of Physicians, American Society for Microbiology, Infectious Diseases Society of America, International AIDS Society, International Immunocompromised Host Society, International Society for Infectious Diseases, Medical Mycological Society of the Americas, International Society for Human and Animal Mycology, HIV Medicine Association, Michigan Infectious Disease Society, National Foundation for Infectious Diseases, Mycological Society of America, Immunocompromised Host Society

Disclosure: Serve(d) as a speaker or a member of a speakers bureau for: Allergan; Astellas; Pfizer<br/>Received research grant from: Merck; Astellas<br/>Received grant/research funds from Merck for independent contractor; Received honoraria from Forest for speaking and teaching; Received honoraria from Astellas for speaking and teaching; Received consulting fee from Cidara for consulting.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Michael Stuart Bronze, MD David Ross Boyd Professor and Chairman, Department of Medicine, Stewart G Wolf Endowed Chair in Internal Medicine, Department of Medicine, University of Oklahoma Health Science Center; Master of the American College of Physicians; Fellow, Infectious Diseases Society of America

Michael Stuart Bronze, MD is a member of the following medical societies: Alpha Omega Alpha, American Medical Association, Oklahoma State Medical Association, Southern Society for Clinical Investigation, Association of Professors of Medicine, American College of Physicians, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Additional Contributors

David Hall Shepp, MD Program Director, Fellowship in Infectious Diseases, Department of Medicine, North Shore University Hospital; Associate Professor, New York University School of Medicine

David Hall Shepp, MD is a member of the following medical societies: Infectious Diseases Society of America

Disclosure: Received salary from Gilead Sciences for management position.

References
  1. US Food and Drug Administration. FDA allows marketing of the first test to identify five yeast pathogens directly from a blood sample [news release.] September 22, 2014. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm415728.htm. Accessed: September 30, 2014.

  2. Brooks M. FDA clears rapid blood test for sepsis-causing pathogens. Medscape Medical News. September 23, 2014. [Full Text].

  3. Sobel JD. Vulvovaginal candidosis. Lancet. 2007 Jun 9. 369(9577):1961-71. [Medline].

  4. Nurbhai M, Grimshaw J, Watson M, et al. Oral versus intra-vaginal imidazole and triazole anti-fungal treatment of uncomplicated vulvovaginal candidiasis (thrush). Cochrane Database Syst Rev. 2007 Oct 17. CD002845. [Medline].

  5. Pappas PG, Rex JH, Lee J, et al. A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis. 2003 Sep 1. 37(5):634-43. [Medline].

  6. Yang YL. Virulence factors of Candida species. J Microbiol Immunol Infect. 2003 Dec. 36(4):223-8. [Medline].

  7. Pappas PG. Invasive candidiasis. Infect Dis Clin North Am. 2006 Sep. 20(3):485-506. [Medline].

  8. de Repentigny L, Lewandowski D, Jolicoeur P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev. 2004 Oct. 17(4):729-59, table of contents. [Medline].

  9. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007 Jan. 20(1):133-63. [Medline].

  10. Morgan J. Global trends in candidemia: review of reports from 1995-2005. Curr Infect Dis Rep. 2005 Nov. 7(6):429-39. [Medline].

  11. Colombo AL, Nucci M, Park BJ, et al. Epidemiology of candidemia in Brazil: a nationwide sentinel surveillance of candidemia in eleven medical centers. J Clin Microbiol. 2006 Aug. 44(8):2816-23. [Medline].

  12. Maródi L, Johnston RB Jr. Invasive Candida species disease in infants and children: occurrence, risk factors, management, and innate host defense mechanisms. Curr Opin Pediatr. 2007 Dec. 19(6):693-7. [Medline].

  13. Malani AN, Kauffman CA. Candida urinary tract infections: treatment options. Expert Rev Anti Infect Ther. 2007 Apr. 5(2):277-84. [Medline].

  14. Guery BP, Arendrup MC, Auzinger G, Azoulay E, Borges Sá M, Johnson EM, et al. Management of invasive candidiasis and candidemia in adult non-neutropenic intensive care unit patients: Part I. Epidemiology and diagnosis. Intensive Care Med. 2009 Jan. 35(1):55-62. [Medline].

  15. Picazo JJ, González-Romo F, Candel FJ. Candidemia in the critically ill patient. Int J Antimicrob Agents. 2008 Nov. 32 Suppl 2:S83-5. [Medline].

  16. Falcone M, Barzaghi N, Carosi G, Grossi P, Minoli L, Ravasio V, et al. Candida infective endocarditis: report of 15 cases from a prospective multicenter study. Medicine (Baltimore). 2009 May. 88(3):160-8. [Medline].

  17. Shah CP, McKey J, Spirn MJ, et al. Ocular candidiasis: a review. Br J Ophthalmol. 2008 Apr. 92(4):466-8. [Medline].

  18. Blot SI, Vandewoude KH, De Waele JJ. Candida peritonitis. Curr Opin Crit Care. 2007 Apr. 13(2):195-9. [Medline].

  19. Vazquez JA, Sobel JD. Candidiasis. Clinical Mycology, Dismukes WE, Pappas PG, and Sobel JD, eds. Oxford Univers. 2003. 143-87.

  20. Eiland EH, Hassoun A, English T. Points of concern related to the micafungin versus caspofungin trial. Clin Infect Dis. 2008 Feb 15. 46(4):640-1; author reply 641. [Medline].

  21. Alexander BD, Pfaller MA. Contemporary tools for the diagnosis and management of invasive mycoses. Clin Infect Dis. 2006. 43:S15-S27.

  22. Odabasi Z, Mattiuzzi G, Estey E, et al. Beta-D-glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clin Infect Dis. 2004 Jul 15. 39(2):199-205. [Medline].

  23. Shepard JR, Addison RM, Alexander BD, et al. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol. 2008 Jan. 46(1):50-5. [Medline].

  24. Lewis R. Candida: New Rapid Blood Test Could Cut Mortality. Medscape Medical News. Apr 25 2013. Available at http://www.medscape.com/viewarticle/803135. Accessed: Apr 30 2013.

  25. Neely LA, Audeh M, Phung NA, Min M, Suchocki A, Plourde D, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med. 2013 Apr 24. 5(182):182ra54. [Medline].

  26. [Guideline] Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009 Mar 1. 48(5):503-35. [Medline].

  27. [Guideline] Pappas PG, Rex JH, Sobel JD, et al. Guidelines for treatment of candidiasis. Clin Infect Dis. 2004 Jan 15. 38(2):161-89. [Medline].

  28. Kett DH, Shorr AF, Reboli AC, et al. Anidulafungin compared with fluconazole in severely ill patients with candidemia and other forms of invasive candidiasis: Support for the 2009 IDSA treatment guidelines for candidiasis. Crit Care. 2011 Oct 25. 15(5):R253. [Medline].

  29. Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH, et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis. 2012 Apr. 54(8):1110-22. [Medline].

  30. Clancy CJ, Nguyen MH. The end of an era in defining the optimal treatment of invasive candidiasis. Clin Infect Dis. 2012 Apr. 54(8):1123-5. [Medline].

  31. FDA. FDA limits usage of Nizoral (ketoconazole) oral tablets due to potentially fatal liver injury and risk of drug interactions and adrenal gland problems. Available at http://www.fda.gov/Drugs/DrugSafety/ucm362415.htm. Accessed: August 6, 2013.

  32. Lowes R. FDA, EMA Come Down Hard on Oral Ketoconazole. Medscape Medical News. Available at http://www.medscape.com/viewarticle/808484. Accessed: August 6, 2013.

  33. Chandrasekar PH, Sobel JD. Micafungin: a new echinocandin. Clin Infect Dis. 2006 Apr 15. 42(8):1171-8. [Medline].

  34. Vazquez JA, Sobel JD. Anidulafungin: a novel echinocandin. Clin Infect Dis. 2006 Jul 15. 43(2):215-22. [Medline].

  35. Charlier C, Hart E, Lefort A, et al. Fluconazole for the management of invasive candidiasis: where do we stand after 15 years?. J Antimicrob Chemother. 2006 Mar. 57(3):384-410. [Medline].

  36. Sobel JD, Revankar SG. Echinocandins--first-choice or first-line therapy for invasive candidiasis?. N Engl J Med. 2007 Jun 14. 356(24):2525-6. [Medline].

  37. Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007 Jun 14. 356(24):2472-82. [Medline].

  38. Kuse ER, Chetchotisakd P, da Cunha CA, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet. 2007 May 5. 369(9572):1519-27. [Medline].

  39. Kullberg BJ, Sobel JD, Ruhnke M, et al. Voriconazole versus a regimen of amphotericin B followed by fluconazole for candidaemia in non-neutropenic patients: a randomised non-inferiority trial. Lancet. 2005 Oct 22-28. 366(9495):1435-42. [Medline].

  40. Schuster MG, Edwards JE Jr, Sobel JD, Darouiche RO, Karchmer AW, Hadley S, et al. Empirical fluconazole versus placebo for intensive care unit patients: a randomized trial. Ann Intern Med. 2008 Jul 15. 149(2):83-90. [Medline].

  41. Cornely OA, Lasso M, Betts R, et al. Caspofungin for the treatment of less common forms of invasive candidiasis. J Antimicrob Chemother. 2007 Aug. 60(2):363-9. [Medline].

  42. Pachl J, Svoboda P, Jacobs F, et al. A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis. 2006 May 15. 42(10):1404-13. [Medline].

  43. Khan FA, Slain D, Khakoo RA. Candida endophthalmitis: focus on current and future antifungal treatment options. Pharmacotherapy. 2007 Dec. 27(12):1711-21. [Medline].

  44. Kauffman CA. Clinical efficacy of new antifungal agents. Curr Opin Microbiol. 2006 Oct. 9(5):483-8. [Medline].

  45. Sable CA, Strohmaier KM, Chodakewitz JA. Advances in antifungal therapy. Annu Rev Med. 2008. 59:361-79. [Medline].

  46. Ostrosky-Zeichner L, Oude Lashof AM, Kullberg BJ, et al. Voriconazole salvage treatment of invasive candidiasis. Eur J Clin Microbiol Infect Dis. 2003 Nov. 22(11):651-5. [Medline].

  47. Skiest DJ, Vazquez JA, Anstead GM, et al. Posaconazole for the treatment of azole-refractory oropharyngeal and esophageal candidiasis in subjects with HIV infection. Clin Infect Dis. 2007 Feb 15. 44(4):607-14. [Medline].

  48. Jaijakul S, Vazquez JA, Swanson RN, Ostrosky-Zeichner L. (1,3)-ß-D-Glucan (BG) as a Prognostic Marker of Treatment Response in Invasive Candidiasis. Clin Infect Dis. 2012 May 9. [Medline].

  49. Ullmann AJ, Cornely OA. Antifungal prophylaxis for invasive mycoses in high risk patients. Curr Opin Infect Dis. 2006 Dec. 19(6):571-6. [Medline].

  50. van Burik JA, Ratanatharathorn V, Stepan DE, et al. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis. 2004 Nov 15. 39(10):1407-16. [Medline].

  51. Husain S, Paterson DL, Studer S, et al. Voriconazole prophylaxis in lung transplant recipients. Am J Transplant. 2006 Dec. 6(12):3008-16. [Medline].

  52. Giglio M, Caggiano G, Dalfino L, Brienza N, Alicino I, Sgobio A, et al. Oral nystatin prophylaxis in surgical/trauma ICU patients: a randomised clinical trial. Crit Care. 2012 Apr 10. 16(2):R57. [Medline].

  53. Pfaller MA, Pappas PG, Wingard JR. Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis. Aug 1 2006. 43 (Suppl 1):S3-S14. [Full Text].

  54. Leleu G, Aegerter P, Guidet B. Systemic candidiasis in intensive care units: a multicenter, matched-cohort study. J Crit Care. 2002 Sep. 17(3):168-75. [Medline].

  55. Zaoutis TE, Heydon K, Localio R, et al. Outcomes attributable to neonatal candidiasis. Clin Infect Dis. 2007 May 1. 44(9):1187-93. [Medline].

  56. Cunha BA. Antibiotic Essentials. 9th ed. Sudbury, MA: Jones & Bartlett; 2010.

  57. Brooks M. Micafungin Sodium (Mycamine) Gets Pediatric Indication. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/807188. Accessed: July 2, 2013.

 
Previous
Next
 
A moist, erosive, pruritic patch of perianal skin and perineum (with satellite pustule formation) is demonstrated in this woman with extensive candidiasis. Courtesy of Matthew C. Lambiase, DO.
Discrete superficial pustules developed within hours of birth on the hand of an otherwise healthy newborn. A potassium hydroxide preparation revealed spores and pseudomycelium, and culture demonstrated the presence of Candida albicans. Courtesy of Matthew C. Lambiase, DO.
Dry, red, superficially scaly, pruritic macules and patches on the penis represent candidal balanitis. Courtesy of Matthew C. Lambiase, DO.
White plaques are present on the buccal mucosa and the undersurface of the tongue and represent thrush. When wiped off, the plaques leave red erosive areas. Courtesy of Matthew C. Lambiase, DO.
Erythema, maceration, and satellite pustules in the axilla, accompanied by soreness and pruritus, result in a form of intertrigo. Courtesy of Matthew C. Lambiase, DO.
A nailfold with candidal infection becomes erythematous, swollen, and tender with occasional discharge. Courtesy of Matthew C. Lambiase, DO.
Soreness and cracks at the lateral angles of the mouth (angular cheilitis) are a frequent expression of candidiasis in elderly individuals. Courtesy of Matthew C. Lambiase, DO.
Fine, superficial pustules on an erythematous patchy base are suggestive of candidiasis. Courtesy of Matthew C. Lambiase, DO.
Candidal infection should be in the differential diagnosis when one or more nails become discolored, have subungual discoloration, have nailplate separation from the nailbed, and lack evidence of a dermatophyte. Courtesy of Matthew C. Lambiase, DO.
Candida dermatitis in the diaper area. Courtesy of Hon Pak, MD.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.