Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Infective Endocarditis Medication

  • Author: John L Brusch, MD, FACP; Chief Editor: Michael Stuart Bronze, MD  more...
 
Updated: Oct 15, 2015
 

Medication Summary

Antibiotics are the mainstay of treatment for infective endocarditis (IE). Goals to maximize treatment success are early diagnosis, accurate microorganism identification, reliable susceptibility testing, prolonged intravenous (IV) administration of bactericidal antimicrobial agents, proper monitoring of potentially toxic antimicrobial regimens, and aggressive surgical management of correctable mechanical complications.

Next

Antibiotics

Class Summary

Empiric antimicrobial therapy must be comprehensive and should cover all likely pathogens in the context of the clinical setting.

Penicillin G (Pfizerpen)

 

Penicillin G is used for IE caused by S viridans or S bovis with a penicillin G minimum inhibitory concentration (MIC) of 0.1 mcg/mL or less.

Oxacillin (Bactocil in Dextrose)

 

Oxacillin is a bactericidal antibiotic that inhibits cell wall synthesis. It is used to treat infections caused by penicillinase-producing staphylococci. It is used to initiate therapy when MSSA infection is present.

Ceftriaxone (Rocephin)

 

Ceftriaxone is given as once-daily treatment of S viridans or HACEK (ie, H aphrophilus, A actinomycetemcomitans, C hominis, E corrodens, K kingae) IE. It is a third-generation cephalosporin with broad-spectrum gram-negative activity. It has lower efficacy against gram-positive organisms and higher efficacy against resistant organisms. It arrests bacterial growth by binding to one or more penicillin-binding proteins.

Vancomycin

 

Vancomycin is the drug of choice for patients who are allergic to penicillin who have streptococcal or enterococcal endocarditis, those with methicillin-resistant S aureus (MRSA) IE, and those with other beta-lactam–resistant gram-positive IE infections.

It is important to achieve adequate trough levels of 15-20 mcg/mL. If theMIC of the isolate is 2 mcg/mL or greater, vancomycin should not be administered.

The duration of treatment is 4 weeks in penicillin-susceptible streptococcal IE and 4-6 weeks for staphylococcal infections, prosthetic valve infections, or enterococcal IE.

Gentamicin

 

Gentamicin is an aminoglycoside used in combination therapy to attain bactericidal activity against enterococci and resistant streptococcal species, to shorten treatment of penicillin-susceptible streptococcal IE, and for prosthetic staphylococcal IE.

The duration of treatment is 2 weeks for penicillin-susceptible streptococcal IE and 4-6 weeks for penicillin-resistant streptococci and enterococci.

Streptomycin

 

Streptomycin is an aminoglycoside antibiotic that has bacteriocidal activity and acts by inhibiting protein synthesis. It may be used for the treatment of streptococcal or enterococcal endocarditis

Ampicillin

 

Ampicillin is used for treatment of enterococcal IE, IE caused by HACEK organisms, or as a penicillin G substitute for penicillin-susceptible organisms.

For enterococcal endocarditis, duration of treatment is 4-6 weeks in combination with gentamicin.

Ampicillin and sulbactam (Unasyn)

 

Ampicillin and sulbactam is a drug combination consisting of a beta-lactamase inhibitor with ampicillin. It interferes with bacterial cell wall synthesis during active replication, causing bactericidal activity against susceptible organisms.

Cefazolin

 

Cefazolin is a first-generation cephalosporin that is used for staphylococcal endocarditis susceptible to methicillin/oxacillin. It may be substituted for penicillin G or ampicillin for penicillin-susceptible streptococcal endocarditis. It is used if the patient develops a mild rash to penicillins but no anaphylaxis or severe immediate hypersensitivity reactions.

Ceftazidime (Fortaz, Tazicef)

 

Ceftazidime is a third-generation cephalosporin with broad-spectrum, gram-negative activity, including against pseudomonas. It has lower efficacy against gram-positive organisms and higher efficacy against resistant organisms. It arrests bacterial growth by binding to one or more penicillin-binding proteins, which, in turn, inhibits the final transpeptidation step of peptidoglycan synthesis in bacterial cell wall synthesis, thus inhibiting cell wall biosynthesis. The condition of the patient, severity of the infection, and susceptibility of the microorganism should determine the proper dose and route of administration.

Cefepime (Maxipime)

 

Cefepime is a fourth-generation cephalosporin with gram-negative coverage comparable to ceftazidime, but it has better gram-positive coverage (comparable to ceftriaxone). Cefepime is a zwitter ion and rapidly penetrates gram-negative cells.

Nafcillin (Nallpen in Dextrose)

 

Nafcillin is used for staphylococcal IE caused by organisms susceptible to methicillin/oxacillin.

Linezolid (Zyvox)

 

Linezolid prevents formation of functional 70S initiation complex, which is essential for bacterial translation process. It is bacteriostatic against enterococci and staphylococci and bactericidal against most strains of streptococci. It is used as an alternative in patients allergic to vancomycin and for treatment of vancomycin-resistant enterococci (VRE).

The FDA warns against the concurrent use of linezolid with serotonergic psychiatric drugs, unless indicated for life-threatening or urgent conditions. Linezolid may increase serotonin CNS levels as a result of MAO-A inhibition, increasing the risk of serotonin syndrome.

Daptomycin (Cubicin)

 

Daptomycin is a cyclic lipopeptide antibiotic that is used for Staphylococcus aureus bacteremia, including those with right-sided infective endocarditis caused by MSSA or MRSA. There is a risk of developing eosinophilic pneumonia with daptomycin use. Immediate discontinuation of daptomycin is recommended if eosinophilic pneumonia is suspected.

Rifampin (Rifadin)

 

Rifampin is used synergistically in the treatment of staphylococcal infections associated with a foreign body, such as a prosthetic heart valve.

Rifampin inhibits DNA-dependent RNA polymerase activity in susceptible cells. Specifically, it interacts with bacterial RNA polymerase but does not inhibit the mammalian enzyme. Cross-resistance has been shown only with other rifamycins.

Ciprofloxacin (Cipro, Cipro XR)

 

Ciprofloxacin is a fluoroquinolone antibiotic that inhibits bacterial DNA synthesis and, consequently, growth, by inhibiting DNA gyrase and topoisomerases, which are required for replication, transcription, and translation of genetic material. Quinolones have broad-spectrum activity against gram-positive and gram-negative aerobic organisms. It has no activity against anaerobes.

Doxycycline (Adoxa, Doryx, Monodox, Vibramycin)

 

Doxycycline is a broad-spectrum, synthetically derived bacteriostatic antibiotic in the tetracycline class. It is almost completely absorbed, concentrates in bile, and is excreted in urine and feces as a biologically active metabolite in high concentrations. It inhibits protein synthesis and, thus, bacterial growth by binding to the 30S and possibly 50S ribosomal subunits of susceptible bacteria. It may block dissociation of peptidyl t-RNA from ribosomes, causing RNA-dependent protein synthesis to arrest.

Sulfamethoxazole and Trimethoprim (Bactrim, Bactrim DS, Septra DS, Sulfatrim)

 

Trimethoprim and sulfamethoxazole inhibit bacterial growth by inhibiting the synthesis of dihydrofolic acid.

Quinupristin and dalfopristin (Synercid)

 

Quinupristin and dalfopristin belong to the macrolide/lincosamide/streptogramin group of antibiotics. The combination inhibits protein synthesis and is usually bacteriostatic. This drug combination is effective against Enterococcus faecium, but not Enterococcus faecalis strains. It is an option for the treatment of vancomycin-resistant E faecium infections.

Ticarcillin-clavulanate (Timentin)

 

Ticarcillin-clavulanate inhibits the biosynthesis of cell wall mucopeptide and is effective during the stage of active growth. The drug combination includes an antipseudomonal penicillin plus a beta-lactamase inhibitor that provides coverage against most gram-positive, most gram-negative, and most anaerobic organisms.

Chloramphenicol

 

Chloramphenicol binds to the 50S bacterial-ribosomal subunits and inhibits bacterial growth by inhibiting protein synthesis. It is effective against gram-negative and gram-positive bacteria.

Piperacillin and Tazobactam sodium (Zosyn)

 

combination includes an antipseudomonal penicillin plus beta-lactamase inhibitor. It inhibits biosynthesis of cell wall mucopeptide and is effective during the stage of active multiplication.

Previous
 
Contributor Information and Disclosures
Author

John L Brusch, MD, FACP Assistant Professor of Medicine, Harvard Medical School; Consulting Staff, Department of Medicine and Infectious Disease Service, Cambridge Health Alliance

John L Brusch, MD, FACP is a member of the following medical societies: American College of Physicians, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Chief Editor

Michael Stuart Bronze, MD David Ross Boyd Professor and Chairman, Department of Medicine, Stewart G Wolf Endowed Chair in Internal Medicine, Department of Medicine, University of Oklahoma Health Science Center; Master of the American College of Physicians; Fellow, Infectious Diseases Society of America

Michael Stuart Bronze, MD is a member of the following medical societies: Alpha Omega Alpha, American Medical Association, Oklahoma State Medical Association, Southern Society for Clinical Investigation, Association of Professors of Medicine, American College of Physicians, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Acknowledgements

Barry E Brenner, MD, PhD, FACEP Professor of Emergency Medicine, Professor of Internal Medicine, Program Director for Emergency Medicine, Case Medical Center, University Hospitals, Case Western Reserve University School of Medicine

Barry E Brenner, MD, PhD, FACEP is a member of the following medical societies: Alpha Omega Alpha, American Academy of Emergency Medicine, American College of Chest Physicians, American College of Emergency Physicians, American College of Physicians, American Heart Association, American Thoracic Society, Arkansas Medical Society, New York Academy of Medicine, New York Academy of Sciences, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Steven A Conrad, MD, PhD Chief, Department of Emergency Medicine; Chief, Multidisciplinary Critical Care Service, Professor, Department of Emergency and Internal Medicine, Louisiana State University Health Sciences Center

Steven A Conrad, MD, PhD is a member of the following medical societies: American College of Chest Physicians, American College of Critical Care Medicine, American College of Emergency Physicians, American College of Physicians, International Society for Heart and Lung Transplantation, Louisiana State Medical Society, Shock Society, Society for Academic Emergency Medicine, and Society of Critical Care Medicine

Disclosure: Nothing to disclose.

Jon Mark Hirshon, MD, MPH Associate Professor, Department of Emergency Medicine, University of Maryland School of Medicine

Jon Mark Hirshon, MD, MPH is a member of the following medical societies: Alpha Omega Alpha, American Academy of Emergency Medicine, American College of Emergency Physicians, American Public Health Association, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Thomas M Kerkering, MD Chief of Infectious Diseases, Virginia Tech Carilion School of Medicine

Thomas M Kerkering, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American Public Health Association, American Society for Microbiology, American Society of Tropical Medicine and Hygiene, Infectious Diseases Society of America, Medical Society of Virginia, and Wilderness Medical Society

Disclosure: Nothing to disclose.

Keith A Marill, MD Faculty, Department of Emergency Medicine, Massachusetts General Hospital; Assistant Professor, Harvard Medical School

Keith A Marill, MD is a member of the following medical societies: American Academy of Emergency Medicine and Society for Academic Emergency Medicine

Disclosure: Medtronic Ownership interest None; Cambridge Heart, Inc. Ownership interest None; General Electric Ownership interest None

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Epaulard O, Roch N, Potton L, Pavese P, Brion JP, Stahl JP. Infective endocarditis-related stroke: diagnostic delay and prognostic factors. Scand J Infect Dis. 2009. 41(8):558-62. [Medline].

  2. Durack DT, Lukes AS, Bright DK. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Duke Endocarditis Service. Am J Med. 1994 Mar. 96(3):200-9. [Medline].

  3. Brusch JL. Infective endocarditis and its mimics in the critical care unit. Cunha BA, ed. Infectious Diseases in Critical Care. 2nd ed. New York, NY: Informa Healthcare; 2007. 261-2.

  4. Karchmer AW. Infective endocarditis. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. 7th ed. WB Saunders Co; 2005. 1633-1658.

  5. Karchmer AW. Infective endocarditis. Harrison’s Principles of Internal Medicine. 16th ed. McGraw-Hill; 2005. 731-40.

  6. Lerner PI, Weinstein L. Infective endocarditis in the antibiotic era. N Engl J Med. 1966 Feb 17. 274(7):388-93 concl. [Medline].

  7. Lerner PI, Weinstein L. Infective endocarditis in the antibiotic era. N Engl J Med. 1966 Feb 3. 274(5):259-66 contd. [Medline].

  8. Lerner PI, Weinstein L. Infective endocarditis in the antibiotic era. N Engl J Med. 1966 Jan 27. 274(4):199-206 contd. [Medline].

  9. Brusch J. Infective Endocarditis: Management in the Era of Intravascular Devices. New York, NY: Informa Healthcare; 2007.

  10. Baddour LM, Wilson LM. Infections of prosthetic valves and other cardiovascular devices: intravascular devices. Mandell GL, Bennett JE, Dolin R, eds. Mandel, Douglas and Bennett’s Principles and Practice and Infectious Diseases. 5th ed. Philadelphia, Pa: Elsevier; 2005. 1022-44.

  11. Weinstein LW, Brusch JL. Infective Endocarditis. New York, NY: Oxford University Press; 1996.

  12. Wang A, Athan E, Pappas PA, Fowler VG Jr, Olaison L, Paré C, et al. Contemporary clinical profile and outcome of prosthetic valve endocarditis. JAMA. 2007 Mar 28. 297(12):1354-61. [Medline].

  13. Miró JM, del Río A, Mestres CA. Infective endocarditis in intravenous drug abusers and HIV-1 infected patients. Infect Dis Clin North Am. 2002 Jun. 16(2):273-95, vii-viii. [Medline].

  14. Soong G, Chun J, Parker D, Prince A. Staphylococcus aureus activation of caspase 1/calpain signaling mediates invasion through human keratinocytes. J Infect Dis. 2012 May 15. 205(10):1571-9. [Medline]. [Full Text].

  15. Xiong YQ, Fowler VG, Yeaman MR, Perdreau-Remington F, Kreiswirth BN, Bayer AS. Phenotypic and genotypic characteristics of persistent methicillin-resistant Staphylococcus aureus bacteremia in vitro and in an experimental endocarditis model. J Infect Dis. 2009 Jan 15. 199(2):201-8. [Medline]. [Full Text].

  16. Chu VH, Miro JM, Hoen B, Cabell CH, Pappas PA, Jones P, et al. Coagulase-negative staphylococcal prosthetic valve endocarditis--a contemporary update based on the International Collaboration on Endocarditis: prospective cohort study. Heart. 2009 Apr. 95(7):570-6. [Medline].

  17. Reyes MP, Ali A, Mendes RE, Biedenbach DJ. Resurgence of Pseudomonas endocarditis in Detroit, 2006-2008. Medicine (Baltimore). 2009 Sep. 88(5):294-301. [Medline].

  18. Murdoch DR, Corey GR, Hoen B, Miró JM, Fowler VG Jr, Bayer AS, et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med. 2009 Mar 9. 169(5):463-73. [Medline].

  19. Baddour LM, Cha YM, Wilson WR. Clinical practice. Infections of cardiovascular implantable electronic devices. N Engl J Med. 2012 Aug 30. 367(9):842-9. [Medline].

  20. Baddley JW, Benjamin DK Jr, Patel M, Miró J, Athan E, Barsic B, et al. Candida infective endocarditis. Eur J Clin Microbiol Infect Dis. 2008 Jul. 27(7):519-29. [Medline]. [Full Text].

  21. Chu VH, Woods CW, Miro JM, Hoen B, Cabell CH, Pappas PA, et al. Emergence of coagulase-negative staphylococci as a cause of native valve endocarditis. Clin Infect Dis. 2008 Jan 15. 46(2):232-42. [Medline].

  22. Hill EE, Herijgers P, Claus P, Vanderschueren S, Herregods MC, Peetermans WE. Infective endocarditis: changing epidemiology and predictors of 6-month mortality: a prospective cohort study. Eur Heart J. 2007 Jan. 28(2):196-203. [Medline].

  23. Mylonakis E, Calderwood SB. Infective endocarditis in adults. N Engl J Med. 2001 Nov 1. 345(18):1318-30. [Medline].

  24. Bor DH, Woolhandler S, Nardin R, Brusch J, Himmelstein DU. Infective endocarditis in the u.s., 1998-2009: a nationwide study. PLoS One. 2013. 8(3):e60033. [Medline]. [Full Text].

  25. Tleyjeh IM, Steckelberg JM, Murad HS, Anavekar NS, Ghomrawi HM, Mirzoyev Z, et al. Temporal trends in infective endocarditis: a population-based study in Olmsted County, Minnesota. JAMA. 2005 Jun 22. 293(24):3022-8. [Medline].

  26. Mendiratta P, Tilford JM, Prodhan P, Cleves MA, Wei JY. Trends in hospital discharge disposition for elderly patients with infective endocarditis: 1993 to 2003. J Am Geriatr Soc. 2009 May. 57(5):877-81. [Medline].

  27. Kiefer T, Park L, Tribouilloy C, Cortes C, Casillo R, Chu V, et al. Association between valvular surgery and mortality among patients with infective endocarditis complicated by heart failure. JAMA. 2011 Nov 23. 306(20):2239-47. [Medline].

  28. Kang DH, Kim YJ, Kim SH, et al. Early surgery versus conventional treatment for infective endocarditis. N Engl J Med. 2012 Jun 28. 366(26):2466-73. [Medline].

  29. Thuny F, Grisoli D, Collart F, Habib G, Raoult D. Management of infective endocarditis: challenges and perspectives. Lancet. 2012 Mar 10. 379(9819):965-75. [Medline].

  30. Wallace SM, Walton BI, Kharbanda RK, Hardy R, Wilson AP, Swanton RH. Mortality from infective endocarditis: clinical predictors of outcome. Heart. 2002 Jul. 88(1):53-60. [Medline]. [Full Text].

  31. Durante-Mangoni E, Bradley S, Selton-Suty C, Tripodi MF, Barsic B, Bouza E, et al. Current features of infective endocarditis in elderly patients: results of the International Collaboration on Endocarditis Prospective Cohort Study. Arch Intern Med. 2008 Oct 27. 168(19):2095-103. [Medline].

  32. Sonneville R, Mirabel M, Hajage D, et al. Neurologic complications and outcomes of infective endocarditis in critically ill patients: The ENDOcardite en REAnimation prospective multicenter study. Crit Care Med. 2011 Jun. 39(6):1474-1481. [Medline].

  33. Chu VH, Cabell CH, Benjamin DK Jr, Kuniholm EF, Fowler VG Jr, Engemann J, et al. Early predictors of in-hospital death in infective endocarditis. Circulation. 2004 Apr 13. 109(14):1745-9. [Medline].

  34. [Guideline] National Institute for Health and Clinical Excellence. Prophylaxis against infective endocarditis. Antimicrobial prophylaxis against infective endocarditis in adults and children undergoing interventional procedures. 2008. (NICE clinical guideline No. 64).

  35. [Guideline] Baddour LM, Epstein AE, Erickson CC, et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation. 2010 Jan 26. 121(3):458-77. [Medline].

  36. Crawford MH, Durack DT. Clinical presentation of infective endocarditis. Cardiol Clin. 2003 May. 21(2):159-66, v. [Medline].

  37. Di Salvo G, Habib G, Pergola V, Avierinos JF, Philip E, Casalta JP, et al. Echocardiography predicts embolic events in infective endocarditis. J Am Coll Cardiol. 2001 Mar 15. 37(4):1069-76. [Medline].

  38. Eknoyan G, Lister BJ, Kim HS, Greenberg SD. Renal complications of bacterial endocarditis. Am J Nephrol. 1985. 5(6):457-69. [Medline].

  39. Pruitt AA, Rubin RH, Karchmer AW, Duncan GW. Neurologic complications of bacterial endocarditis. Medicine (Baltimore). 1978 Jul. 57(4):329-43. [Medline].

  40. [Guideline] Sexton DJ, Spelman D. Current best practices and guidelines. Assessment and management of complications in infective endocarditis. Cardiol Clin. 2003 May. 21(2):273-82, vii-viii. [Medline].

  41. Snygg-Martin U, Gustafsson L, Rosengren L, Alsiö A, Ackerholm P, Andersson R, et al. Cerebrovascular complications in patients with left-sided infective endocarditis are common: a prospective study using magnetic resonance imaging and neurochemical brain damage markers. Clin Infect Dis. 2008 Jul 1. 47(1):23-30. [Medline].

  42. Terpenning MS, Buggy BP, Kauffman CA. Infective endocarditis: clinical features in young and elderly patients. Am J Med. 1987 Oct. 83(4):626-34. [Medline].

  43. Bansal RC. Infective endocarditis. Med Clin North Am. 1995 Sep. 79(5):1205-40. [Medline].

  44. Conlon PJ, Jefferies F, Krigman HR, Corey GR, Sexton DJ, Abramson MA. Predictors of prognosis and risk of acute renal failure in bacterial endocarditis. Clin Nephrol. 1998 Feb. 49(2):96-101. [Medline].

  45. Cosmi JE, Tunick PA, Kronzon I. Mortality in patients with paravalvular abscess diagnosed by transesophageal echocardiography. J Am Soc Echocardiogr. 2004 Jul. 17(7):766-8. [Medline].

  46. Cunha BA, Gill MV, Lazar JM. Acute infective endocarditis. Diagnostic and therapeutic approach. Infect Dis Clin North Am. 1996 Dec. 10(4):811-34. [Medline].

  47. Fowler VG Jr, Scheld WM, Bayer AS. Endocarditis and intravascular infections. Mandell GL, Bennett JA, Dolin R, eds. Principles and Practice of Infectious Diseases. 6th ed. Philadelphia, Penn: Elseiver; 2005. 975-1021.

  48. Roberts NK, Somerville J. Pathological significance of electrocardiographic changes in aortic valve endocarditis. Br Heart J. 1969 May. 31(3):395-6. [Medline].

  49. Robinson SL, Saxe JM, Lucas CE, Arbulu A, Ledgerwood AM, Lucas WF. Splenic abscess associated with endocarditis. Surgery. 1992 Oct. 112(4):781-6; discussion 786-7. [Medline].

  50. Weinstein L. Life-threatening complications of infective endocarditis and their management. Arch Intern Med. 1986 May. 146(5):953-7. [Medline].

  51. Weinstein L, Schlesinger JJ. Pathoanatomic, pathophysiologic and clinical correlations in endocarditis (first of two parts). N Engl J Med. 1974 Oct 17. 291(16):832-7. [Medline].

  52. Wang CC, Lee CH, Chan CY, Chen HW. Splenic infarction and abscess complicating infective endocarditis. Am J Emerg Med. 2009 Oct. 27(8):1021.e3-5. [Medline].

  53. Kradin RL. Pathology of infective endocarditis. Brusch JL, ed. Infective Endocarditis: Management in the Era of Intravascular Devices. New York, NY: Informa Healthcare; 2007. 101-18.

  54. Brusch JL. Pathoanatomical, pathophysiological and clinical correlations. Brusch JL, ed. Infective Endocarditis: Management in the Era of Intravascular Devices. New York, NY: Informa Healthcare; 2007. 119-41.

  55. [Guideline] Towns ML, Reller LB. Diagnostic methods current best practices and guidelines for isolation of bacteria and fungi in infective endocarditis. Infect Dis Clin North Am. 2002 Jun. 16(2):363-76, ix-x. [Medline].

  56. Thuny F, Grisoli D, Collart F, Habib G, Raoult D. Management of infective endocarditis: challenges and perspectives. Lancet. 2012 Mar 10. 379(9819):965-75. [Medline].

  57. Archibald LK, Pallangyo K, Kazembe P, Reller LB. Blood culture contamination in Tanzania, Malawi, and the United States: a microbiological tale of three cities. J Clin Microbiol. 2006 Dec. 44(12):4425-9. [Medline]. [Full Text].

  58. Bates DW, Goldman L, Lee TH. Contaminant blood cultures and resource utilization. The true consequences of false-positive results. JAMA. 1991 Jan 16. 265(3):365-9. [Medline].

  59. Khatib R, Riederer K, Saeed S, Johnson LB, Fakih MG, Sharma M, et al. Time to positivity in Staphylococcus aureus bacteremia: possible correlation with the source and outcome of infection. Clin Infect Dis. 2005 Sep 1. 41(5):594-8. [Medline].

  60. Lee A, Mirrett S, Reller LB, Weinstein MP. Detection of bloodstream infections in adults: how many blood cultures are needed?. J Clin Microbiol. 2007 Nov. 45(11):3546-8. [Medline]. [Full Text].

  61. [Guideline] Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O'Grady NP, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009 Jul 1. 49(1):1-45. [Medline].

  62. Weinbaum FI, Lavie S, Danek M, Sixsmith D, Heinrich GF, Mills SS. Doing it right the first time: quality improvement and the contaminant blood culture. J Clin Microbiol. 1997 Mar. 35(3):563-5. [Medline]. [Full Text].

  63. Weinstein MP. Blood culture contamination: persisting problems and partial progress. J Clin Microbiol. 2003 Jun. 41(6):2275-8. [Medline]. [Full Text].

  64. Casella F, Rana B, Casazza G, Bhan A, Kapetanakis S, Omigie J, et al. The potential impact of contemporary transthoracic echocardiography on the management of patients with native valve endocarditis: a comparison with transesophageal echocardiography. Echocardiography. 2009 Sep. 26(8):900-6. [Medline].

  65. Choussat R, Thomas D, Isnard R, Michel PL, Iung B, Hanania G, et al. Perivalvular abscesses associated with endocarditis; clinical features and prognostic factors of overall survival in a series of 233 cases. Perivalvular Abscesses French Multicentre Study. Eur Heart J. 1999 Feb. 20(3):232-41. [Medline].

  66. [Guideline] Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation. 2003 Sep 2. 108(9):1146-62. [Medline].

  67. Jassal DS, Picard MH. Echocardiography. Brusch JL, ed. Infective Endocarditis: Management in the Era of Intravascular Devices. New York, NY: Informa Healthcare; 2007. 255-72.

  68. Roe MT, Abramson MA, Li J, Heinle SK, Kisslo J, Corey GR, et al. Clinical information determines the impact of transesophageal echocardiography on the diagnosis of infective endocarditis by the duke criteria. Am Heart J. 2000 Jun. 139(6):945-51. [Medline].

  69. Feuchtner GM, Stolzmann P, Dichtl W, Schertler T, Bonatti J, Scheffel H, et al. Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings. J Am Coll Cardiol. 2009 Feb 3. 53(5):436-44. [Medline].

  70. Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006 Aug 17. 355(7):653-65. [Medline].

  71. Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Bolger AF, Levison ME, et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005 Jun 14. 111(23):e394-434. [Medline].

  72. Buckholz K, Larsen CT. Severity of gentamicin is nephrotoxic effect on patients with infective endocarditis: a prospective observation of cohort study of 373 patients. Clinical Infect Dis. 2009. 48:65-71.

  73. Cunha BA. Persistent S. aureus acute bacteremia: clinical pathway for diagnosis and treatment. Antibiot for Clin. 2006. 10:39-46.

  74. Falagas ME, Manta KG, Ntziora F, Vardakas KZ. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J Antimicrob Chemother. 2006 Aug. 58(2):273-80. [Medline].

  75. Jones T, Yeaman MR, Sakoulas G, Yang SJ, Proctor RA, Sahl HG, et al. Failures in clinical treatment of Staphylococcus aureus Infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother. 2008 Jan. 52(1):269-78. [Medline]. [Full Text].

  76. Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC Jr, Eliopoulos GM. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004 Jun. 42(6):2398-402. [Medline]. [Full Text].

  77. Fowler VG Jr, Li J, Corey GR, Boley J, Marr KA, Gopal AK, et al. Role of echocardiography in evaluation of patients with Staphylococcus aureus bacteremia: experience in 103 patients. J Am Coll Cardiol. 1997 Oct. 30(4):1072-8. [Medline].

  78. Fowler VG Jr, Miro JM, Hoen B, Cabell CH, Abrutyn E, Rubinstein E, et al. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA. 2005 Jun 22. 293(24):3012-21. [Medline].

  79. Khatib R, Johnson LB, Fakih MG, Riederer K, Khosrovaneh A, Shamse Tabriz M, et al. Persistence in Staphylococcus aureus bacteremia: incidence, characteristics of patients and outcome. Scand J Infect Dis. 2006. 38(1):7-14. [Medline].

  80. Duval X, Selton-Suty C, Alla F, Salvador-Mazenq M, Bernard Y, Weber M, et al. Endocarditis in patients with a permanent pacemaker: a 1-year epidemiological survey on infective endocarditis due to valvular and/or pacemaker infection. Clin Infect Dis. 2004 Jul 1. 39(1):68-74. [Medline].

  81. [Guideline] Olaison L, Pettersson G. Current best practices and guidelines indications for surgical intervention in infective endocarditis. Infect Dis Clin North Am. 2002 Jun. 16(2):453-75, xi. [Medline].

  82. Mekontso Dessap A, Zahar JR, Voiriot G, Ali F, Aissa N, Kirsch M, et al. Influence of preoperative antibiotherapy on valve culture results and outcome of endocarditis requiring surgery. J Infect. 2009 Jul. 59(1):42-8. [Medline].

  83. [Guideline] Wilson W, Taubert KA, Gewitz M, Lockhart PB, Baddour LM, Levison M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007 Oct 9. 116(15):1736-54. [Medline].

  84. Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006 Dec 28. 355(26):2725-32. [Medline].

  85. Dajani AS, Taubert KA, Wilson W, Bolger AF, Bayer A, Ferrieri P, et al. Prevention of bacterial endocarditis. Recommendations by the American Heart Association. JAMA. 1997 Jun 11. 277(22):1794-801. [Medline].

  86. Bach DS. Perspectives on the American College of Cardiology/American Heart Association guidelines for the prevention of infective endocarditis. J Am Coll Cardiol. 2009 May 19. 53(20):1852-4. [Medline].

  87. Thornhill MH, Dayer MJ, Forde JM, et al. Impact of the NICE guideline recommending cessation of antibiotic prophylaxis for prevention of infective endocarditis: before and after study. BMJ. 2011 May 3. 342:d2392. [Medline]. [Full Text].

  88. Nishimura RA, Carabello BA, Faxon DP, Freed MD, Lytle BW, O’Gara PT, et al. ACC/AHA 2008 guideline update on valvular heart disease: focused update on infective endocarditis: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. Aug 2008. 118(8):887-96.

  89. Netzer RO, Altwegg SC, Zollinger E, Täuber M, Carrel T, Seiler C. Infective endocarditis: determinants of long term outcome. Heart. 2002 Jul. 88(1):61-6. [Medline]. [Full Text].

  90. US Food and Drug Administration. FDA Drug Safety Communication: Serious CNS reactions possible when linezolid (Zyvox®) is given to patients taking certain psychiatric medications. Available at http://www.fda.gov/Drugs/DrugSafety/ucm265305.htm. Accessed: July 27, 2011.

  91. Boggs W. Ampicillin-Ceftriaxone Effective for E. faecalis Endocarditis. Medscape. Feb 12 2013. Available at http://www.medscape.com/viewarticle/779187.

  92. Fernández-Hidalgo N, Almirante B, Gavaldà J, Gurgui M, Peña C, de Alarcón A, et al. Ampicillin Plus Ceftriaxone Is as Effective as Ampicillin Plus Gentamicin for Treating Enterococcus faecalis Infective Endocarditis. Clin Infect Dis. 2013 Feb 25. [Medline].

  93. Yong MS, Saxena P, Killu AM, Coffey S, Burkhart HM, Wan SH, et al. The Preoperative Evaluation of Infective Endocarditis via 3-Dimensional Transesophageal Echocardiography. Tex Heart Inst J. 2015 Aug. 42 (4):372-6. [Medline].

 
Previous
Next
 
Acute bacterial endocarditis caused by Staphylococcus aureus with perforation of the aortic valve and aortic valve vegetations. Courtesy of Janet Jones, MD, Laboratory Service, Wichita Veterans Administration Medical Center.
Acute bacterial endocarditis caused by Staphylococcus aureus with aortic valve ring abscess extending into myocardium. Courtesy of Janet Jones, MD, Laboratory Service, Wichita Veterans Administration Medical Center.
A middle-aged man with a history of intravenous drug use who presented with severe myalgias and a petechial rash. He was diagnosed with right-sided staphylococcal endocarditis.
This is a magnified portion of a parasternal long axis view from a transthoracic echocardiogram. There is a small curvilinear vegetation on the mitral valve as indicated. The patient presented with a headache and fever, and CT scan of the brain revealed an occipital hemorrhage. The patient had a history of intravenous drug use and multiple blood cultures grew Staphylococcus aureus.
A young adult with a history of intravenous drug use, endocarditis involving the tricuspid valve with Staphylococcus aureus, and multiple septic pulmonary emboli. Pulmonary lesions on chest radiograph are most prominent in the right upper lobe with both solid and cavitary appearance.
Mitral valve: endocarditis with valve destruction and vegetation. Note the posterior leaflet of the mitral valve, with an irregular vegetation on the atrial surface, resulting in valve destruction at the commissure between the anterior leaflet and the posterior leaflet.
Aortic valve: healed endocarditis. Note the gaping hole with the fibrous rim, and a small strand at the free edge. The hole is at the line of closure. The affected valve is the left cusp. Note the right noncoronary cusp (immediate to the left in this image) demonstrates a small, multichanneled fenestration at the commissure, immediately adjacent to similar fenestrations in the left coronary cusp. These are physiologic lesions occurring with age and are unrelated to endocarditis.
Aortic valve: bicuspid, with infectious endocarditis. In this excised valve, note the bulky vegetations on the ventricular surfaces, with distortion of the valve surfaces.
Mitral valve: postrheumatic, with infectious endocarditis. A defect is seen in the scarred valve, with focal surface hemorrhage. The patient also underwent aortic valve replacement, as there was contiguous infection.
The surface of the valves, in most cases, demonstrates areas of acute neutrophilic inflammation with admixed fibrin and platelets. Degenerated bacterial colonies are seen at the left. Also, areas of microcalcification may mimic bacterial deposits.
Infectious endocarditis, subacute phase. Hemorrhage and prominent granulation tissue with neovascularity is apparent throughout. This aortic valve showed fibrin exudate on the ventricular surface (below), with more prominent organization and granulation on the aortic surface (above).
Infectious endocarditis, surface of valve leaflet with fibrin; higher magnification of previous image. A chronic infiltrate is seen, just under the denuded thrombosed surface, with primarily macrophages and focal macrophage giant cells.
Bioprosthetic valve with endocarditis. Note the large bacterial colony (staphylococci by culture) in the absence of significant inflammation; the xenograft tissue is not viable, and nuclear detail is not apparent.
Table 1. Clinical Features of Infective Endocarditis According to Causative Organism
Causative Organism(s) Clinical Features of IE
Staphylococcus aureus
  • Overall, S aureus infection is the most common cause of IE, including PVE, acute IE, and IVDA IE.
  • Approximately 35-60.5% of staphylococcal bacteremias are complicated by IE.
  • More than half the cases are not associated with underlying valvular disease.
  • The mortality rate of S aureus IE is 40-50%.
  • S aureus infection is the second most common cause of nosocomial BSIs, second only to CoNS infection.
  • The incidence of MRSA infections, both the hospital- and community-acquired varieties, has dramatically increased (50% of isolates). Sixty percent of individuals are intermittent carriers of MRSA or MSSA .
  • The primary risk factor for S aureus BSI is the presence of intravascular lines. Other risk factors include cancer, diabetes, corticosteroid use, IVDA, alcoholism, and renal failure.
  • The realization that approximately 50% of hospital- and community-acquired staphylococcal bacteremias arise from infected vascular catheters has led to the reclassification of staphylococcal BSIs. BSIs are acquired not only in the hospital but also in any type of health care facility (eg, nursing home, dialysis center).
  • Of S aureus bacteremia cases in the United States, 7.8% (200,000) per year are associated with intravascular catheters.
Streptococcus viridans
  • This organism accounts for approximately 50-60% of cases of subacute disease.
  • Most clinical signs and symptoms are mediated immunologically.
Streptococcus intermedius group
  • These infections may be acute or subacute.
  • S intermedius infection accounts for 15% of streptococcal IE cases.
  • Members of the S intermedius group, especially S anginosus, are unique among the streptococci in that they can actively invade tissue and form abscesses, often in the CNS.
Abiotrophia
  • Approximately 5% of subacute cases of IE are due to infection with Abiotrophia species.
  • They require metabolically active forms of vitamin B-6 for growth.
  • This type of IE is associated with large vegetations that lead to embolization and a high rate of posttreatment relapse.
Group D streptococci
  • Most cases are subacute.
  • The source is the gastrointestinal or genitourinary tract.
  • It is the third most common cause of IE.
  • They pose major resistance problems for antibiotics.
Nonenterococcal group D
  • The clinical course is subacute.
  • Infection often reflects underlying abnormalities of the large bowel (eg, ulcerative colitis, polyps, cancer).
  • The organisms are sensitive to penicillin.
Group B streptococci
  • Acute disease develops in pregnant patients and older patients with underlying diseases (eg, cancer, diabetes, alcoholism).
  • The mortality rate is 40%.
  • Complications include metastatic infection, arterial thrombi, and congestive heart failure.
  • It often requires valve replacement for cure.
Group A, C, and G streptococci
  • Acute disease resembles that of S aureus IE (30-70% mortality rate), with suppurative complications.
  • Group A organisms respond to penicillin alone.
  • Group C and G organisms require a combination of synergistic antibiotics (as with enterococci).
Coagulase-negative S aureus
  • This causes subacute disease.
  • It behaves similarly to S viridans infection.
  • It accounts for approximately 30% of PVE cases and less than 5% of NVE cases. [21]
Pseudomonas aeruginosa
  • This is usually acute, except when it involves the right side of the heart in IVDA IE.
  • Surgery is commonly required for cure.
HACEK (ie, Haemophilus aphrophilus, Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, Kingella kingae)
  • These organisms usually cause subacute disease.
  • They account for approximately 5% of IE cases.
  • They are the most common gram-negative organisms isolated from patients with IE.
  • Complications may include massive arterial emboli and congestive heart failure.
  • Cure requires ampicillin, gentamicin, and surgery.
Fungal
  • These usually cause subacute disease.
  • The most common organism of both fungal NVE and fungal PVE is Candida albicans.
  • Fungal IVDA IE is usually caused by Candida parapsilosis or Candida tropicalis.
  • Aspergillus species are observed in fungal PVE and NIE.
Bartonella
  • The most commonly involved species is Bartonella quintana.
  • IE typically develops in homeless males who have extremely substandard hygiene. Bartonella must be considered in cases of culture-negative endocarditis among homeless individuals.
Multiple pathogens (polymicrobial)
  • Pseudomonas and enterococci are the most common combination of organisms.
  • It is observed in cases of IVDA IE
  • The cardiac surgery mortality rate is twice that associated with single-agent IE. [22]
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.