Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Hookworm Disease Medication

  • Author: David R Haburchak, MD, FACP; Chief Editor: Pranatharthi Haran Chandrasekar, MBBS, MD  more...
 
Updated: Feb 24, 2016
 

Medication Summary

Therapy for parasitic infestations is based on the specific parasite and the particular phase of the disease. The treatment of classic hookworm infection has the following 2 components:

  • Correcting the anemia, which is usually achieved by means of iron therapy and proper diet
  • Expelling the intestinal parasites

In rare cases (eg, acute severe gastrointestinal [GI] hemorrhage), blood transfusion may be needed to correct anemia.

Anthelmintic drugs effective against hookworms include pyrantel pamoate and benzimidazoles (eg, albendazole, mebendazole). Benzimidazoles are the most convenient and effective drugs for treating hookworm disease. Other older agents are also effective but may have lower clearance rates.

Next

Anthelmintics

Class Summary

Anthelmintics are poorly absorbed, relatively nontoxic broad-spectrum agents that act by inhibiting tubulin polymerization. They have shown high clearance rates.

Because biochemical pathways in these parasites differ from those in human hosts, toxicity is directed toward the parasite, egg, or larvae. The mechanism of action varies within the drug class. Antiparasitic actions may include the following:

- Inhibition of microtubules, causing irreversible block of glucose uptake

- Inhibition of tubulin polymerization

- Depolarizing neuromuscular blockade

- Cholinesterase inhibition

- Increased cell membrane permeability, resulting in intracellular calcium loss

- Vacuolization of the schistosome tegument

- Increased cell membrane permeability to chloride ions via alteration of chloride channels

Albendazole (Albenza)

 

Albendazole is a benzimidazole carbamate that inhibits tubulin polymerization, resulting in degeneration of cytoplasmic microtubules. It decreases production of adenosine triphosphate (ATP) in the worm, causing energy depletion, immobilization, and finally death. Albendazole is converted in the liver to its primary metabolite, albendazole sulfoxide; less than 1% of this metabolite is excreted in urine. The plasma level rises substantially (as much as 5-fold) when the drug is ingested after a high-fat meal.

Albendazole is approved by the US Food and Drug Administration (FDA) for treatment of hookworm infection but is considered investigational. A single 400-mg dose is the treatment of choice; it has a high eradication rate and is easy to administer. At such a dosage, albendazole is selectively toxic to parasites because binding to parasite β-tubulin occurs at a much lower concentration than binding to mammalian protein. Because the drug acts locally on worms within the GI tract, its action is not dictated by its systemic concentration.

Mebendazole (Vermox)

 

Mebendazole inhibits microtubule polymerization by binding to cytoplasmic β-tubulin. By affecting the intestinal cells of the parasite, it prevents the organism from using nutrients and thus essentially starves it to death.

Mebendazole is recommended for treating eosinophilic enteritis. A 3-day course has a reported cure rate of 95% and egg reduction rate of 99.9%. Single-dose therapy is often advocated but may not be as effective as single-dose albendazole. At recommended dosages, mebendazole is selectively toxic to parasites because binding to parasite β-tubulin occurs at a much lower concentration than binding to mammalian protein. Because the drug acts locally on worms within the GI tract, its action is not dictated by its systemic concentration.

Repeat stool examination with a concentration technique is recommended after 2 weeks; if the examination yields positive results, retreatment is indicated. No fasting or purging is required. The tablet may be chewed, swallowed, or crushed and mixed with food.

Pyrantel pamoate (Pin-X, Pamix, Reeses Pinworm Medicine)

 

Pyrantel pamoate is a depolarizing neuromuscular blocking agent that inhibits cholinesterases, resulting in spastic paralysis of the worm. It is FDA-approved for hookworm infection but is considered investigational for this condition.

Previous
 
Contributor Information and Disclosures
Author

David R Haburchak, MD, FACP Professor of Medicine, Medical Director of Physician Assistant Program, Department of Medicine, Section of Infectious Diseases, Medical College of Georgia at Augusta University

David R Haburchak, MD, FACP is a member of the following medical societies: American College of Physicians, American Society for Microbiology, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Coauthor(s)

Vinod K Dhawan, MD, FACP, FRCPC, FIDSA Professor, Department of Clinical Medicine, University of California, Los Angeles, David Geffen School of Medicine; Chief, Division of Infectious Diseases, Rancho Los Amigos National Rehabilitation Center

Vinod K Dhawan, MD, FACP, FRCPC, FIDSA is a member of the following medical societies: American College of Physicians, American Medical Association, American Society for Microbiology, Infectious Diseases Society of America, Royal College of Physicians and Surgeons of Canada

Disclosure: Received honoraria from Pfizer Inc for speaking and teaching.

Christopher M Watson, MD, MPH Assistant Professor, Department of Pediatrics, Uniformed Services University of the Health Sciences; Adjunct Assistant Professor, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine

Christopher M Watson, MD, MPH is a member of the following medical societies: American Academy of Pediatrics, American College of Chest Physicians, American Medical Association, Association of Pediatric Program Directors, Society of Critical Care Medicine

Disclosure: Nothing to disclose.

Chief Editor

Pranatharthi Haran Chandrasekar, MBBS, MD Professor, Chief of Infectious Disease, Program Director of Infectious Disease Fellowship, Department of Internal Medicine, Wayne State University School of Medicine

Pranatharthi Haran Chandrasekar, MBBS, MD is a member of the following medical societies: American College of Physicians, American Society for Microbiology, International Immunocompromised Host Society, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Acknowledgements

Jeffrey L Arnold, MD, FACEP Chairman, Department of Emergency Medicine, Santa Clara Valley Medical Center

Jeffrey L Arnold, MD, FACEP is a member of the following medical societies: American Academy of Emergency Medicine and American College of Physicians

Disclosure: Nothing to disclose.

Basim Asmar, MD Director, Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Michigan; Professor, Department of Pediatrics, Wayne State University School of Medicine

Basim Asmar, MD is a member of the following medical societies: American Academy of Pediatrics, American Society for Microbiology, Infectious Diseases Society of America, and Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Anika Baxter Tam, MD Staff Physician, Department of Emergency Medicine, New York University / Bellevue Hospital

Disclosure: Nothing to disclose.

Pranatharthi Haran Chandrasekar, MBBS, MD Professor, Department of Internal Medicine, Director of Infectious Disease Fellowship, Harper Hospital, Wayne State University School of Medicine

Pranatharthi Haran Chandrasekar, MBBS, MD is a member of the following medical societies: American College of Physicians and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Swati Garekar, MBBS Staff Physician, Department of Pediatrics, Children's Hospital of Michigan

Swati Garekar, MBBS is a member of the following medical societies: American Academy of Pediatrics

Disclosure: Nothing to disclose.

Aaron Hexdall, MD Assistant Professor, Director of the International Emergency Medicine Initiative, Department of Emergency Medicine, Tufts University School of Medicine, Baystate Medical Center

Disclosure: Nothing to disclose.

Patrick W Hickey, MD, FAAP Assistant Professor of Pediatrics and Preventive Medicine, Uniformed Services University of the Health Sciences; Consulting Staff, Department of Pediatrics, Division of Pediatric Infectious Disease, Walter Reed Army Medical Center

Patrick W Hickey, MD, FAAP is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American Society of Tropical Medicine and Hygiene, and Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Ashir Kumar, MD, MBBS, FAAP Professor Emeritus, Department of Pediatrics and Human Development, Michigan State University College of Human Medicine

Ashir Kumar, MD, MBBS, FAAP is a member of the following medical societies: American Association of Physicians of Indian Origin and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Mark Louden, MD Assistant Professor of Clinical Medicine, Division of Emergency Medicine, Department of Medicine, University of Miami, Leonard M Miller School of Medicine

Mark Louden, MD is a member of the following medical societies: American Academy of Emergency Medicine and American College of Emergency Physicians

Disclosure: Nothing to disclose.

Russell W Steele, MD Head, Division of Pediatric Infectious Diseases, Ochsner Children's Health Center; Clinical Professor, Department of Pediatrics, Tulane University School of Medicine

Russell W Steele, MD is a member of the following medical societies: American Academy of Pediatrics, American Association of Immunologists, American Pediatric Society, American Society for Microbiology, Infectious Diseases Society of America, Louisiana State Medical Society, Pediatric Infectious Diseases Society, Society for Pediatric Research, and Southern Medical Association

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Eric L Weiss, MD, DTM&H Medical Director, Office of Service Continuity and Disaster Planning, Fellowship Director, Stanford University Medical Center Disaster Medicine Fellowship, Chairman, SUMC and LPCH Bioterrorism and Emergency Preparedness Task Force, Clinical Associate Progressor, Department of Surgery (Emergency Medicine), Stanford University Medical Center

Eric L Weiss, MD, DTM&H is a member of the following medical societies: American College of Emergency Physicians, American College of Occupational and Environmental Medicine, American Medical Association, American Society of Tropical Medicine and Hygiene, Physicians for Social Responsibility, Southeastern Surgical Congress, Southern Association for Oncology, Southern Clinical Neurological Society, and Wilderness Medical Society

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L. Soil-transmitted helminth infections: updating the global picture. Trends Parasitol. 2003 Dec. 19(12):547-51. [Medline].

  2. Stoltzfus RJ, Dreyfuss ML, Chwaya HM, Albonico M. Hookworm control as a strategy to prevent iron deficiency. Nutr Rev. 1997 Jun. 55(6):223-32. [Medline].

  3. World Health Organization. Parasitic Diseases. Available at http://www.who.int/vaccine_research/diseases/soa_parasitic/en/index2.html. Accessed: April 22, 2012.

  4. Brooker S, Bundy DAP. Soil-transmitted Helminths (Geohelminths). Cook GC, Zumla AI, eds. Manson’s Tropical Diseases. 22nd ed. Philadelphia, PA: WB Saunders; 2009. 1515-48.

  5. Centers for Disease Control and Prevention. Hookworm Infection. Available at http://www.cdc.gov/parasites/hookworm/index.html. Accessed: April 22, 2012.

  6. Hotez PJ, Bethony J, Bottazzi ME, Brooker S, Buss P. Hookworm: "the great infection of mankind". PLoS Med. 2005 Mar. 2(3):e67. [Medline]. [Full Text].

  7. Quinnell RJ, Pritchard DI, Raiko A, et al. Immune responses in human necatoriasis: association between interleukin-5 responses and resistance to reinfection. J Infect Dis. 2004 Aug 1. 190(3):430-8. [Medline].

  8. Brooker S, Bethony J, Hotez PJ. Human hookworm infection in the 21st century. Adv Parasitol. 2004. 58:197-288. [Medline].

  9. Bungiro R, Cappello M. Hookworm infection: new developments and prospects for control. Curr Opin Infect Dis. 2004 Oct. 17(5):421-6. [Medline].

  10. Finlay CM, Walsh KP, Mills KH. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases. Immunol Rev. 2014 May. 259(1):206-30. [Medline].

  11. Hotez PJ, Diemert D, Bacon KM, et al. The Human Hookworm Vaccine. Vaccine. 2013 Apr 18. 31 Suppl 2:B227-32. [Medline]. [Full Text].

  12. Mason L, Tribolet L, Simon A, et al. Probing the equatorial groove of the hookworm protein and vaccine candidate antigen, Na-ASP-2. Int J Biochem Cell Biol. 2014 May. 50:146-55. [Medline].

  13. Blair P, Diemert D. Update on prevention and treatment of intestinal helminth infections. Curr Infect Dis Rep. 2015 Mar. 17 (3):465. [Medline].

  14. Capello M, Hotez PJ. Chapter 276: Intestinal Nematodes. SS, ed-in-chief; Pickering LK, Prober CG, eds. Long Principles and Practice of Pediatric Infectious Diseases. 3rd ed. Philadelphia, PA: Churchill Livingstone, an imprint of Elsevier Science; 2008. 1298-1300.

  15. Centers for Disease Control and Prevention. Hookworm. CDC DPDx: Laboratory Identification of Parasites of Public Health Concern. Available at http://www.dpd.cdc.gov/DPDx/HTML/Hookworm.htm.

  16. AAP. Hookworm infections. Red Book 2009: Report of the Committee on Infectious Diseases. 28th ed. American Academy of Pediatrics; 2009. 364(9450): 375-6.

  17. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. 2014 Jan 21. 7:37. [Medline].

  18. Kabatereine NB, Tukahebwa EM, Kazibwe F, et al. Soil-transmitted helminthiasis in Uganda: epidemiology and cost of control. Trop Med Int Health. 2005 Nov. 10(11):1187-9. [Medline].

  19. Hotez P. Hookworm and poverty. Ann N Y Acad Sci. 2008. 1136:38-44. [Medline].

  20. Bhatia V, Das MK, Kumar P, Arora NK. Infantile hookworm disease. Indian Pediatr. 2010 Feb. 47(2):190-2. [Medline].

  21. Hotez PJ, Brooker S, Bethony JM, et al. Hookworm infection. N Engl J Med. 2004 Aug 19. 351(8):799-807. [Medline].

  22. Albonico M, Stoltzfus RJ, Savioli L, Tielsch JM, Chwaya HM, Ercole E, et al. Epidemiological evidence for a differential effect of hookworm species, Ancylostoma duodenale or Necator americanus, on iron status of children. Int J Epidemiol. 1998 Jun. 27(3):530-7. [Medline].

  23. Ziegelbauer K, Speich B, Mäusezahl D, Bos R, Keiser J, Utzinger J. Effect of sanitation on soil-transmitted helminth infection: systematic review and meta-analysis. PLoS Med. 2012 Jan. 9(1):e1001162. [Medline]. [Full Text].

  24. Gunawardena K, Kumarendran B, Ebenezer R, Gunasingha MS, Pathmeswaran A, de Silva N. Soil-transmitted helminth infections among plantation sector schoolchildren in Sri Lanka: prevalence after ten years of preventive chemotherapy. PLoS Negl Trop Dis. 2011 Sep. 5(9):e1341. [Medline]. [Full Text].

  25. Feldmeier H, Schuster A. Mini review: Hookworm-related cutaneous larva migrans. Eur J Clin Microbiol Infect Dis. 2012 Jun. 31(6):915-8. [Medline].

  26. Stoltzfus RJ, Albonico M, Tielsch JM, Chwaya HM, Savioli L. Linear growth retardation in Zanzibari school children. J Nutr. 1997 Jun. 127(6):1099-105. [Medline].

  27. Heukelbach J, Feldmeier H. Epidemiological and clinical characteristics of hookworm-related cutaneous larva migrans. Lancet Infect Dis. 2008 May. 8(5):302-9. [Medline].

  28. Stoltzfus RJ, Kvalsvig JD, Chwaya HM, Montresor A, Albonico M, Tielsch JM, et al. Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. BMJ. 2001 Dec 15. 323(7326):1389-93. [Medline]. [Full Text].

  29. Stoltzfus RJ, Albonico M, Chwaya HM, Tielsch JM, Schulze KJ, Savioli L. Effects of the Zanzibar school-based deworming program on iron status of children. Am J Clin Nutr. 1998 Jul. 68(1):179-86. [Medline].

  30. Hughes RG, Sharp DS, Hughes MC. Environmental influences on helminthiasis and nutritional status among Pacific schoolchildren. Int J Environ Health Res. 2004. 14(3):163-77.

  31. Gasser RB, Cantacessi C, Loukas A. DNA technological progress toward advanced diagnostic tools to support human hookworm control. Biotechnol Adv. 2008 Jan-Feb. 26(1):35-45. [Medline].

  32. Verweij JJ, Brienen EA, Ziem J, Yelifari L, Polderman AM, Van Lieshout L. Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus, and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR. Am J Trop Med Hyg. 2007 Oct. 77(4):685-90. [Medline].

  33. Jelinek T, Maiwald H, Nothdurft HD, Löscher T. Cutaneous larva migrans in travelers: synopsis of histories, symptoms, and treatment of 98 patients. Clin Infect Dis. 1994 Dec. 19(6):1062-6. [Medline].

  34. Utzinger J, Rinaldi L, Lohourignon LK, et al. FLOTAC: a new sensitive technique for the diagnosis of hookworm infections in humans. Trans R Soc Trop Med Hyg. 2008 Jan. 102(1):84-90. [Medline].

  35. de Silva N, Guyatt H, Bundy D. Anthelmintics. A comparative review of their clinical pharmacology. Drugs. 1997 May. 53(5):769-88. [Medline].

  36. Keiser J, Utzinger J. The drugs we have and the drugs we need against major helminth infections. Adv Parasitol. 2010. 73:197-230. [Medline].

  37. Horton J. Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology. 2000. 121 Suppl:S113-32. [Medline].

  38. Humphries D, Simms BT, Davey D, et al. Hookworm infection among school age children in Kintampo north municipality, Ghana: nutritional risk factors and response to albendazole treatment. Am J Trop Med Hyg. 2013 Sep. 89(3):540-8. [Medline]. [Full Text].

  39. Keiser J, Utzinger J. Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA. 2008 Apr 23. 299(16):1937-48. [Medline].

  40. Steinmann P, Utzinger J, Du ZW, et al. Efficacy of single-dose and triple-dose albendazole and mebendazole against soil-transmitted helminths and Taenia spp.: a randomized controlled trial. PLoS One. 2011. 6(9):e25003. [Medline]. [Full Text].

  41. Soukhathammavong PA, Sayasone S, Phongluxa K, et al. Low efficacy of single-dose albendazole and mebendazole against hookworm and effect on concomitant helminth infection in Lao PDR. PLoS Negl Trop Dis. 2012 Jan. 6(1):e1417. [Medline]. [Full Text].

  42. Bethony J, Brooker S, Albonico M, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006 May 6. 367(9521):1521-32. [Medline].

  43. Flohr C, Tuyen LN, Lewis S, et al. Poor sanitation and helminth infection protect against skin sensitization in Vietnamese children: A cross-sectional study. J Allergy Clin Immunol. 2006 Dec. 118(6):1305-11. [Medline].

  44. Bennett A, Guyatt H. Reducing intestinal nematode infection: efficacy of albendazole and mebendazole. Parasitol Today. 2000 Feb. 16(2):71-4. [Medline].

  45. Albonico M, Bickle Q, Ramsan M, et al. Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bull World Health Organ. 2003. 81(5):343-52. [Medline].

  46. Schneider B, Jariwala AR, Periago MV, Gazzinelli MF, Bose SN, Hotez PJ, et al. A history of hookworm vaccine development. Hum Vaccin. 2011 Nov 1. 7(11):[Medline].

  47. Xiao SH, Hui-Ming W, Tanner M, et al. Tribendimidine: a promising, safe and broad-spectrum anthelmintic agent from China. Acta Trop. 2005 Apr. 94(1):1-14. [Medline].

  48. Stoltzfus RJ, Chway HM, Montresor A, Tielsch JM, Jape JK, Albonico M, et al. Low dose daily iron supplementation improves iron status and appetite but not anemia, whereas quarterly anthelminthic treatment improves growth, appetite and anemia in Zanzibari preschool children. J Nutr. 2004 Feb. 134(2):348-56. [Medline].

  49. Le Huong T, Brouwer ID, Nguyen KC, Burema J, Kok FJ. The effect of iron fortification and de-worming on anaemia and iron status of Vietnamese schoolchildren. Br J Nutr. 2007 May. 97(5):955-62. [Medline].

  50. Larocque R, Casapia M, Gotuzzo E, et al. A double-blind randomized controlled trial of antenatal mebendazole to reduce low birthweight in a hookworm-endemic area of Peru. Trop Med Int Health. 2006 Oct. 11(10):1485-95. [Medline].

  51. Friis H, Mwaniki D, Omondi B, et al. Effects on haemoglobin of multi-micronutrient supplementation and multi-helminth chemotherapy: a randomized, controlled trial in Kenyan school children. Eur J Clin Nutr. 2003 Apr. 57(4):573-9. [Medline].

  52. Bhatia V, Das MK, Kumar P, Arora NK. Infantile hookworm disease. Indian Pediatr. 2010 Feb. 47(2):190-2. [Medline].

  53. Vercruysse J, Behnke JM, Albonico M, Ame SM, Angebault C, Bethony JM, et al. Assessment of the anthelmintic efficacy of albendazole in school children in seven countries where soil-transmitted helminths are endemic. PLoS Negl Trop Dis. 2011 Mar 29. 5(3):e948. [Medline]. [Full Text].

  54. Soukhathammavong PA, Sayasone S, Phongluxa K, Xayaseng V, Utzinger J, Vounatsou P, et al. Low efficacy of single-dose albendazole and mebendazole against hookworm and effect on concomitant helminth infection in Lao PDR. PLoS Negl Trop Dis. 2012 Jan. 6(1):e1417. [Medline]. [Full Text].

  55. Lone FW, Qureshi RN, Emanuel F. Maternal anaemia and its impact on perinatal outcome. Trop Med Int Health. 2004 Apr. 9(4):486-90. [Medline].

  56. Brooker S, Hotez PJ, Bundy DA. Hookworm-related anaemia among pregnant women: a systematic review. PLoS Negl Trop Dis. 2008 Sep 17. 2(9):e291. [Medline]. [Full Text].

  57. Imhoff-Kunsch B, Briggs V. Antihelminthics in pregnancy and maternal, newborn and child health. Paediatr Perinat Epidemiol. 2012 Jul. 26 Suppl 1:223-38. [Medline].

  58. Bungiro R, Cappello M. Twenty-first century progress toward the global control of human hookworm infection. Curr Infect Dis Rep. 2011 Jun. 13(3):210-7. [Medline].

  59. Kabatereine NB, Brooker S, Koukounari A, Kazibwe F, Tukahebwa EM, Fleming FM, et al. Impact of a national helminth control programme on infection and morbidity in Ugandan schoolchildren. Bull World Health Organ. 2007 Feb. 85(2):91-9. [Medline]. [Full Text].

  60. Sakti H, Nokes C, Hertanto WS, Hendratno S, Hall A, Bundy DA, et al. Evidence for an association between hookworm infection and cognitive function in Indonesian school children. Trop Med Int Health. 1999 May. 4(5):322-34. [Medline].

  61. McSorley HJ, Loukas A. The immunology of human hookworm infections. Parasite Immunol. 2010 Aug. 32(8):549-59. [Medline].

  62. Cho Y, Vermeire JJ, Merkel JS, Leng L, Du X, Bucala R, et al. Drug repositioning and pharmacophore identification in the discovery of hookworm MIF inhibitors. Chem Biol. 2011 Sep 23. 18(9):1089-101. [Medline].

  63. Diemert DJ, Bethony JM, Hotez PJ. Hookworm vaccines. Clin Infect Dis. 2008 Jan 15. 46(2):282-8. [Medline].

  64. Hotez PJ, Zhan B, Bethony JM, Loukas A, Williamson A, Goud GN, et al. Progress in the development of a recombinant vaccine for human hookworm disease: the Human Hookworm Vaccine Initiative. Int J Parasitol. 2003 Sep 30. 33(11):1245-58. [Medline].

  65. Loukas A, Bethony J, Brooker S, Hotez P. Hookworm vaccines: past, present, and future. Lancet Infect Dis. 2006 Nov. 6(11):733-41. [Medline].

  66. Bethony JM, Simon G, Diemert DJ, Parenti D, Desrosiers A, Schuck S, et al. Randomized, placebo-controlled, double-blind trial of the Na-ASP-2 hookworm vaccine in unexposed adults. Vaccine. 2008 May 2. 26(19):2408-17. [Medline].

  67. Tang H, Jin X, Li Y, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet. 2014 Jan. 46(1):45-50. [Medline].

  68. Reddy M, Gill SS, Kalkar SR, et al. Oral drug therapy for multiple neglected tropical diseases: a systematic review. JAMA. 2007 Oct 24. 298(16):1911-24. [Medline].

  69. Hotez PJ, Molyneux DH, Fenwick A, et al. Control of neglected tropical diseases. N Engl J Med. 2007 Sep 6. 357(10):1018-27. [Medline].

  70. Easton AV, Oliveira RG, O'Connell EM, Kepha S, Mwandawiro CS, Njenga SM, et al. Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming. Parasit Vectors. 2016 Jan 27. 9 (1):38. [Medline].

 
Previous
Next
 
Adult hookworm attached to duodenal mucosa.
Ground itch associated with penetration of skin by hookworm larvae.
Life cycle of hookworm. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).
Hookworm egg. Image courtesy of Patrick W Hickey, MD.
Hookworm rhabditiform larva. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).
Hookworm filariform larva. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).
Adult Ancylostoma duodenale worm. Anterior end with mouth parts visible. Image courtesy of Patrick W Hickey, MD.
Adult Necator americanus worm. Anterior end with mouth parts visible. Image courtesy of Patrick W Hickey, MD.
Hookworm eggs examined on wet mount. Eggs of Ancylostoma duodenale and Necator americanus cannot be distinguished morphologically. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).
Hookworm rhabditiform larva (wet preparation). Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.