Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Malaria Treatment & Management

  • Author: Thomas E Herchline, MD; Chief Editor: Michael Stuart Bronze, MD  more...
 
Updated: Oct 27, 2015
 

Approach Considerations

Failure to consider malaria in the differential diagnosis of a febrile illness in a patient who has traveled to an area where malaria is endemic can result in significant morbidity or mortality, especially in children and in pregnant or immunocompromised patients.

Mixed infections involving more than 1 species of Plasmodium may occur in areas of high endemicity and multiple circulating malarial species. In these cases, clinical differentiation and decision making will be important; however, the clinician should have a low threshold for including the possible presence of P falciparum in the treatment considerations.

Occasionally, morphologic features do not permit distinction between P falciparum and other Plasmodium species. In such cases, patients from a P falciparum –endemic area should be presumed to have P falciparum infection and should be treated accordingly.

In patients from Southeast Asia, consider the possibility of P knowlesi infection. This species frequently causes hyperparasitemia and the infection tends to be more severe than infections with other non– P falciparum plasmodia. It should be treated as P falciparum infection.

P falciparum is resistant to chloroquine treatment except in Haiti, the Dominican Republic, parts of Central America, and parts of the Middle East. Resistance is rare in P vivax infection, and P ovale and P malariae remain sensitive to chloroquine. Primaquine is required in the treatment of P ovale and P vivax infection in order to eliminate the hypnozoites (liver phase).

In the United States, patients with P falciparum infection are often treated on an inpatient basis in order to observe for complications attributable to either the illness or its treatment.

Pregnancy

Pregnant women, especially primigravid women, are up to 10 times more likely to contract malaria than nongravid women. Gravid women who contract malaria also have a greater tendency to develop severe malaria. Unlike malarial infection in nongravid individuals, pregnant women with P vivax are at high risk for severe malaria, and those with P falciparum have a greatly increased predisposition for severe malaria as well.

For these reasons, it is especially important that nonimmune pregnant women in endemic areas use the proper pharmacologic and nonpharmacologic prophylaxis.

If a pregnant woman becomes infected, she should know that many of the antimalarial and antiprotozoal drugs used to treat malaria are safe for use during pregnancy for the mother and the fetus. Therefore, the medications should be used, since the benefits of these drugs greatly outweigh the risks associated with leaving the infection untreated.

Pediatrics

In children, malaria has a shorter course, often rapidly progressing to severe malaria. Children are more likely to present with hypoglycemia, seizures, severe anemia, and sudden death, but they are much less likely to develop renal failure, pulmonary edema, or jaundice.

Cerebral malaria results in neurologic sequelae in 9-26% of children, but of these sequelae, approximately one half completely resolve with time.

Most antimalarial drugs are very effective and safe in children, provided that the proper dosage is administered. Children commonly recover from malaria, even severe malaria, much faster than adults.

Diet and activity

Patients with malaria should continue intake and activity as tolerated.

Monitoring

Patients with non– P falciparum malaria who are well can usually be treated on an outpatient basis. Obtain blood smears every day to demonstrate response to treatment. The sexual stage of the protozoan, the gametocyte, does not respond to most standard medications (eg, chloroquine, quinine), but gametocytes eventually die and do not pose a threat to the individual's health.

Next

Pharmacologic Therapy

IV preparations of antimalarials are available for the treatment of severe complicated malaria, including artesunate and quinidine gluconate, which is used as a substitute for the IV quinine available in countries outside of the United States.

In a 2010 randomized study done in 11 African centers, children (age < 15 years) with severe P falciparum malaria had reduced mortality after treatment with IV artesunate, as compared with IV quinine. Development of coma, seizures, and posttreatment hypoglycemia were each less common in patients treated with artesunate.[18]

Evidence from a meta-analysis including 7429 subjects from 8 trials shows a decreased risk of death using parenteral artesunate compared to quinine for the treatment of severe malaria in adults and children.[19]

P falciparum drug resistance is common in endemic areas, such as Africa. Standard antimalarials, such as chloroquine and antifolates (sulfadoxine-pyrimethamine), are ineffective in many areas. Because of this increasing prevalence of drug resistance and a high likelihood of resistance development to new agents, combination therapy is now becoming the standard of care for treatment of P falciparum infection worldwide. In April 2009, the US Food and Drug Administration (FDA) approved the use of artemisinins, a new class of antimalarial agent.[20]

Despite the activity of artemisinin and its derivatives, monotherapy with these agents has been associated with high rates of relapse. This may be due to the temporary arrest of the growth of ring-stage parasites (dormancy) after exposure to artemisinin drugs. For this reason, monotherapy with artemisinin drugs is not recommended.[21] Rectal artesunate has been used for pretreatment of children in resource-limited settings as a bridge therapy until the patient can access health care facilities for definitive IV or oral therapy.[22]

Despite their being a fairly new antimalarial class, resistance to artemisinins has been reported in some parts of southeast Asia (Cambodia).[23]

In the United States, artemether and lumefantrine tablets (Coartem) can be used to treat acute uncomplicated malaria. Artesunate, a form of artemisinin that can be used intravenously, is available from the Centers for Disease Control and Prevention (CDC). Other combinations, such as atovaquone and proguanil HCL (Malarone) or quinine in combination with doxycycline or clindamycin, remain highly efficacious.

Malaria vaccine production and distribution continues to be in the research and development stage.[24, 25, 26] In 2015, European Union (EU) regulators approved the world's first malaria vaccine for use outside the EU among children aged 6 weeks to 17 months. The new vaccine (Mosquirix, GlaxoSmithKline Biologicals), which includes a vaccine for hepatitis B, is awaiting review by the World Health Organization (WHO). The earliest any malaria-endemic country could license the product is 2017, according to WHO. Mosquirix targets P falciparum. It limits the parasite's ability to infect, mature, and multiply in the liver.[27]

When making treatment decisions, it is essential to consider the possibility of coinfection with more than 1 species. Reports of P knowlesi infection suggest that coinfection is common.[4] It has also been demonstrated that up to 39% of patients infected with this species may develop severe malaria. In cases of severe P knowlesi malaria, IV therapy with quinine or artesunate is recommended.[5]

The following is a summary of general recommendations for the treatment of malaria:

  • P falciparum malaria - Quinine-based therapy is with quinine (or quinidine) sulfate plus doxycycline or clindamycin or pyrimethamine-sulfadoxine; alternative therapies are artemether-lumefantrine, atovaquone-proguanil, or mefloquine
  • P falciparum malaria with known chloroquine susceptibility (only a few areas in Central America and the Middle East) - Chloroquine
  • P vivax, P ovale malaria - Chloroquine plus primaquine; however, a 2012 study of Indonesian soldiers demonstrated that primaquine combined with newer nonchloroquine antimalarials killed dormant P vivax parasites and prevented malaria relapse; [28, 29] the combination of dihydroartemisinin-piperaquine with primaquine had 98% efficacy against relapse, suggesting that this regimen could become a useful alternative to primaquine plus chloroquine, the clinical utility of which is being threatened by worsening chloroquine resistance
  • P malariae malaria - Chloroquine
  • P knowlesi malaria – Recommendations same as those for P falciparum malaria.

In July 2013, the FDA updated its warning about mefloquine hydrochloride to include neurologic side effects, along with the already known risk of adverse psychiatric events such as anxiety, confusion, paranoia, and depression. The information, which is included in the patient medication guide and in a new boxed warning on the label, cautions that vestibular symptoms, which include dizziness, loss of balance, vertigo, and tinnitus, can occur.[30, 31]

The FDA also warns that vestibular side effects can persist long after treatment has ended and may become permanent. In addition, clinicians are warned against prophylactic mefloquine use in patients with major psychiatric disorders and are further cautioned that if psychiatric or neurologic symptoms arise while the drug is being used prophylactically, it should be replaced with another medication.

Pharmacologic treatment in pregnancy

Medications that can be used for the treatment of malaria in pregnancy include chloroquine, quinine, atovaquone-proguanil, clindamycin, mefloquine (avoid in first trimester), sulfadoxine-pyrimethamine (avoid in first trimester) and the artemisinins (see below). Briand et al compared the efficacy and safety of sulfadoxine-pyrimethamine to mefloquine for intermittent preventive treatment during pregnancy. In their study, 1601 women of all gravidities received either sulfadoxine-pyrimethamine (1500 mg of sulfadoxine and 75 mg of pyrimethamine) or mefloquine (15 mg/kg) in a single dose twice during pregnancy. There was a small advantage for mefloquine in terms of efficacy, although the incidence of side effects was higher with mefloquine than with sulfadoxine-pyrimethamine.[32, 33]

In addition to mefloquine and sulfadoxine-pyrimethamine, other medications have been used in the treatment of the pregnant patient with malaria. In a recent study in African patients, artemether-lumefantrine was as efficacious and as well tolerated as oral quinine in treating uncomplicated falciparum malaria during the second and third trimesters of pregnancy.[1]

Artesunate and other antimalarials also appear to be effective and safe in the first trimester of pregnancy, when development of malaria carries a high risk of miscarriage.[2]

Previous
Next

Inpatient Care

Patients with elevated parasitemia (>5% of RBCs infected), CNS infection, or otherwise severe symptoms and those with P falciparum infection should be considered for inpatient treatment to ensure that medicines are tolerated.

Obtain blood smears every day to demonstrate a response to treatment. The sexual stage of the protozoan, the gametocyte, does not respond to most standard medications (eg, chloroquine, quinine), but gametocytes eventually die and do not pose a threat to the individual's health or cause any symptoms.

Previous
Next

Deterrence and Prevention

Avoid mosquitoes by limiting exposure during times of typical blood meals (ie, dawn, dusk). Wearing long-sleeved clothing and using insect repellants may also prevent infection. Avoid wearing perfumes and colognes.

Adult-dose 95% DEET lasts up to 10-12 hours, and 35% DEET lasts 4-6 hours. In children, use concentrations of less than 35% DEET. Use sparingly and only on exposed skin. Remove DEET when the skin is no longer exposed to potential mosquito bite. Consider using bed nets that are treated with permethrin. While this is an effective method for prevention of malaria transmission in endemic areas, an increasing incidence of pyretrhoid resistance in Anopheles spp has been reported.[34] Seek out medical attention immediately upon contracting any tropical fever or flulike illness.

Consider chemoprophylaxis with antimalarials in patients traveling to endemic areas. Chemoprophylaxis is available in many different forms. The drug of choice is determined by the destination of the traveler and any medical conditions the traveler may have that contraindicate the use of a specific drug.

Before traveling, people should consult their physician and the Malaria and Traveler's Web site of the CDC to determine the most appropriate chemoprophylaxis.[35] Travel Medicine clinics are also a useful source of information and advice.

Investigational malaria vaccine

Malaria vaccine production and distribution continues to be in the research and development stage.[24, 25, 26] In 2015, European Union (EU) regulators approved the world's first malaria vaccine for use outside the EU among children aged 6 weeks to 17 months. The new vaccine (Mosquirix, GlaxoSmithKline Biologicals), which includes a vaccine for hepatitis B, is awaiting review by the World Health Organization (WHO). The earliest any malaria-endemic country could license the product is 2017, according to WHO. Mosquirix targets P falciparum. It limits the parasite's ability to infect, mature, and multiply in the liver.[27]

Interim phase 3 trial results were reported in 2011 for the malaria vaccine RTS,S/AS01. The results included 6000 African children aged 5-17 months who received the malaria vaccine or a comparator vaccine and were followed for 12 months. The incidence of malaria was 0.44 case per person-year in the RTS,S/AS01 group, compared with 0.83 case per person-year in the comparator vaccine group. The vaccine efficacy rate was calculated to be 55.8%.[36, 37]

 

Previous
Next

Consultations

Consider consulting an infectious disease specialist for assistance with malaria diagnosis, treatment, and disease management. The CDC is an excellent resource if no local resources are available. To obtain the latest recommendations for malaria prophylaxis and treatment from the CDC, call the CDC Malaria Hotline at (770) 488-7788 or (855) 856-4713 (M-F, 9 am-5 pm, Eastern time). For emergency consultation after hours, call (770) 488-7100 and ask to talk with a CDC Malaria Branch clinician.[38]

Pregnant patients with malaria are at increased risk of morbidity and mortality.[39] In addition, nonimmune mothers and immune primigravidas may be at an increased risk of low birth weight, fetal loss, and prematurity. Consult an expert in malaria to determine the safest and most effective prophylaxis or treatment in a pregnant woman.

Previous
 
 
Contributor Information and Disclosures
Author

Thomas E Herchline, MD Professor of Medicine, Wright State University, Boonshoft School of Medicine; Medical Director, Public Health, Dayton and Montgomery County, Ohio

Thomas E Herchline, MD is a member of the following medical societies: Alpha Omega Alpha, Infectious Diseases Society of Ohio, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Chief Editor

Michael Stuart Bronze, MD David Ross Boyd Professor and Chairman, Department of Medicine, Stewart G Wolf Endowed Chair in Internal Medicine, Department of Medicine, University of Oklahoma Health Science Center; Master of the American College of Physicians; Fellow, Infectious Diseases Society of America

Michael Stuart Bronze, MD is a member of the following medical societies: Alpha Omega Alpha, American Medical Association, Oklahoma State Medical Association, Southern Society for Clinical Investigation, Association of Professors of Medicine, American College of Physicians, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Additional Contributors

Emilio V Perez-Jorge, MD, FACP Staff Physician, Division of Infectious Diseases, Lexington Medical Center

Emilio V Perez-Jorge, MD, FACP is a member of the following medical societies: American College of Physicians-American Society of Internal Medicine, Infectious Diseases Society of America, Society for Healthcare Epidemiology of America, South Carolina Infectious Diseases Society

Disclosure: Nothing to disclose.

Acknowledgements

Michael Stuart Bronze, MD Professor, Stewart G Wolf Chair in Internal Medicine, Department of Medicine, University of Oklahoma Health Science Center

Michael Stuart Bronze, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American Medical Association, Association of Professors of Medicine, Infectious Diseases Society of America, Oklahoma State Medical Association, and Southern Society for Clinical Investigation

Disclosure: Nothing to disclose.

Joseph Richard Masci, MD Professor of Medicine, Professor of Preventive Medicine, Mount Sinai School of Medicine; Director of Medicine, Elmhurst Hospital Center

Joseph Richard Masci, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, Association of Professors of Medicine, and Royal Society of Medicine

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Piola P, Nabasumba C, Turyakira E, et al. Efficacy and safety of artemether-lumefantrine compared with quinine in pregnant women with uncomplicated Plasmodium falciparum malaria: an open-label, randomised, non-inferiority trial. Lancet Infect Dis. 2010 Nov. 10(11):762-9. [Medline].

  2. McGready R, Lee SJ, Wiladphaingern J, et al. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. Lancet Infect Dis. 2012 May. 12 (5):388-96. [Medline].

  3. Cox-Singh J, Davis TM, Lee KS, et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis. 2008 Jan 15. 46(2):165-71. [Medline]. [Full Text].

  4. Marchand RP, Culleton R, Maeno Y, Quang NT, Nakazawa S. Co-infections of Plasmodium knowlesi, P. falciparum, and P. vivax among Humans and Anopheles dirus Mosquitoes, Southern Vietnam. Emerg Infect Dis. 2011 Jul. 17(7):1232-9. [Medline].

  5. William T, Menon J, Rajahram G, et al. Severe Plasmodium knowlesi malaria in a tertiary care hospital, Sabah, Malaysia. Emerg Infect Dis. 2011 Jul. 17(7):1248-55. [Medline].

  6. Malaria Surveillance — United States, 2010. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/mmwr/preview/mmwrhtml/ss6102a1.htm?s_cid=ss6102a1_e. Accessed: March 1, 2012.

  7. Centers for Disease Control and Prevention. Malaria. Available at http://www.cdc.gov/malaria. Accessed: Sep 15, 2011.

  8. Taylor SM, Parobek CM, Fairhurst RM. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2012 Jun. 12 (6):457-68. [Medline].

  9. [Guideline] Bailey JW, Williams J, Bain BJ, Parker-Williams J, Chiodini P. General Haematology Task Force. Guideline for laboratory diagnosis of malaria. London (UK): British Committee for Standards in Haematology. 2007;19. [Full Text].

  10. Bailey JW, Williams J, Bain BJ, et al. Guideline: the laboratory diagnosis of malaria. General Haematology Task Force of the British Committee for Standards in Haematology. Br J Haematol. 2013 Dec. 163 (5):573-80. [Medline].

  11. Rapid diagnostic tests for malaria ---Haiti, 2010. MMWR Morb Mortal Wkly Rep. 2010 Oct 29. 59(42):1372-3. [Medline].

  12. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg. 2007 Dec. 77(6 Suppl):119-27. [Medline].

  13. Centers for Disease Control and Prevention. Notice to Readers: Malaria Rapid Diagnostic Test. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5627a4.htm. Accessed: September 30, 2011.

  14. de Oliveira AM, Skarbinski J, Ouma PO, et al. Performance of malaria rapid diagnostic tests as part of routine malaria case management in Kenya. Am J Trop Med Hyg. 2009 Mar. 80(3):470-4. [Medline].

  15. Polley SD, Gonzalez IJ, Mohamed D, et al. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. J Infect Dis. 2013 Aug. 208(4):637-44. [Medline]. [Full Text].

  16. d'Acremont V, Malila A, Swai N, et al. Withholding antimalarials in febrile children who have a negative result for a rapid diagnostic test. Clin Infect Dis. 2010 Sep 1. 51(5):506-11. [Medline].

  17. Mens P, Spieker N, Omar S, Heijnen M, Schallig H, Kager PA. Is molecular biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular tests in rural Kenya and urban Tanzania. Trop Med Int Health. 2007 Feb. 12(2):238-44. [Medline].

  18. Dondorp AM, Fanello CI, Hendriksen IC, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010 Nov 13. 376(9753):1647-57. [Medline]. [Full Text].

  19. Sinclair D, Donegan S, Isba R, Lalloo DG. Artesunate versus quinine for treating severe malaria. Cochrane Database Syst Rev. 2012 Jun 13. 6:CD005967. [Medline].

  20. US Food and Drug Administration FDA Approves Coartem Tablets to Treat Malaria. FDA. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm149559.htm. Accessed: April 8, 2009.

  21. Teuscher F, Gatton ML, Chen N, Peters J, Kyle DE, Cheng Q. Artemisinin-induced dormancy in plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis. 2010 Nov 1. 202(9):1362-8. [Medline]. [Full Text].

  22. Tozan Y, Klein EY, Darley S, Panicker R, Laxminarayan R, Breman JG. Prereferral rectal artesunate for treatment of severe childhood malaria: a cost-effectiveness analysis. Lancet. 2010 Dec 4. 376(9756):1910-5. [Medline].

  23. Amaratunga C, Sreng S, Suon S, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012 Nov. 12(11):851-8. [Medline].

  24. Othoro C, Johnston D, Lee R, Soverow J, Bystryn JC, Nardin E. Enhanced immunogenicity of Plasmodium falciparum peptide vaccines using a topical adjuvant containing a potent synthetic Toll-like receptor 7 agonist, imiquimod. Infect Immun. 2009 Feb. 77(2):739-48. [Medline]. [Full Text].

  25. Richards JS, Stanisic DI, Fowkes FJ, et al. Association between naturally acquired antibodies to erythrocyte-binding antigens of Plasmodium falciparum and protection from malaria and high-density parasitemia. Clin Infect Dis. 2010 Oct 15. 51(8):e50-60. [Medline].

  26. Olotu A, Lusingu J, Leach A, et al. Efficacy of RTS,S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5-17 months in Kenya and Tanzania: a randomised controlled trial. Lancet Infect Dis. 2011 Feb. 11(2):102-9. [Medline].

  27. First Malaria Vaccine Approved by EU Regulators. Medscape Medical News. Available at http://www.medscape.com/viewarticle/848608. July 24, 2015;

  28. Janeczko LL. Primaquine protects against P. vivax malaria relapse. Medscape Medical News. Jan 3, 2013. Available at http://www.medscape.com/viewarticle/777109. Accessed: Jan 16, 2013.

  29. Sutanto I, Tjahjono B, Basri H, et al. Randomized, open-label trial of primaquine against vivax malaria relapse in Indonesia. Antimicrob Agents Chemother. 2013 Mar. 57 (3):1128-35. [Medline].

  30. Lowes R. FDA Strengthens Warning on Mefloquine Risks. Medscape Medical News. Jul 29 2013. [Full Text].

  31. US Food and Drug Administration. FDA Drug Safety Communication: FDA approves label changes for antimalarial drug mefloquine hydrochloride due to risk of serious psychiatric and nerve side effects. FDA. Available at http://www.fda.gov/downloads/Drugs/DrugSafety/UCM362232.pdf. Accessed: Aug 6 2013.

  32. Briand V, Bottero J, Noel H, et al. Intermittent treatment for the prevention of malaria during pregnancy in Benin: a randomized, open-label equivalence trial comparing sulfadoxine-pyrimethamine with mefloquine. J Infect Dis. 2009 Sep 15. 200(6):991-1001. [Medline].

  33. Briand V, Cottrell G, Massougbodji A, Cot M. Intermittent preventive treatment for the prevention of malaria during pregnancy in high transmission areas. Malar J. 2007 Dec 4. 6:160. [Medline]. [Full Text].

  34. Trape JF, Tall A, Diagne N, et al. Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. Lancet Infect Dis. 2011 Dec. 11(12):925-32. [Medline].

  35. Centers for Disease Control and Prevention. Atlanta, GA: DHHS; 2009. Malaria and Travelers. Available at http://www.cdc.gov/malaria/travelers/index.html. Accessed: Sep 15, 2011.

  36. The RTS,S Clinical Trials Partnership. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med. 2011/Oct. 365:[Full Text].

  37. White NJ. A vaccine for malaria (editorial). N Engl J Med. 2011/Oct. 365:[Full Text].

  38. [Guideline] Centers for Disease Control and Prevention. Malaria Diagnosis and Treatment in the United States. Available at http://www.cdc.gov/malaria/diagnosis_treatment/index.html. Accessed: Sep 15, 2011.

  39. Poespoprodjo JR, Fobia W, Kenangalem E, et al. Adverse pregnancy outcomes in an area where multidrug-resistant plasmodium vivax and Plasmodium falciparum infections are endemic. Clin Infect Dis. 2008 May 1. 46(9):1374-81. [Medline]. [Full Text].

 
Previous
Next
 
Malarial merozoites in the peripheral blood. Note that several of the merozoites have penetrated the erythrocyte membrane and entered the cell.
This micrograph illustrates the trophozoite form, or immature-ring form, of the malarial parasite within peripheral erythrocytes. Red blood cells infected with trophozoites do not produce sequestrins and, therefore, are able to pass through the spleen.
An erythrocyte filled with merozoites, which soon will rupture the cell and attempt to infect other red blood cells. Notice the darkened central portion of the cell; this is hemozoin, or malaria pigment, which is a paracrystalline precipitate formed when heme polymerase reacts with the potentially toxic heme stored within the erythrocyte. When treated with chloroquine, the enzyme heme polymerase is inhibited, leading to the heme-induced demise of non–chloroquine-resistant merozoites.
A mature schizont within an erythrocyte. These red blood cells (RBCs) are sequestered in the spleen when malaria proteins, called sequestrins, on the RBC surface bind to endothelial cells within that organ. Sequestrins are only on the surfaces of erythrocytes that contain the schizont form of the parasite.
Schema of the life cycle of malaria. Image courtesy of the Centers for Disease Control and Prevention.
Table 1. Histologic Variations Among Plasmodium Species
Findings P falciparum P vivax P ovale P malariae
Only early forms present in peripheral blood Yes No No No
Multiply-infected RBCs Often Occasionally Rare Rare
Age of infected RBCs RBCs of all ages Young RBCs Young RBCs Old RBCs
Schüffner dots No Yes Yes No
Other features Cells have thin cytoplasm, 1 or 2 chromatin dots, and applique forms. Late trophozoites develop pleomorphic cytoplasm. Infected RBCs become oval, with tufted edges. Bandlike trophozoites are distinctive.
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.