Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Rhinovirus Infection Medication

  • Author: Michael Rajnik, MD; Chief Editor: Mark R Wallace, MD, FACP, FIDSA  more...
 
Updated: Aug 25, 2014
 

Medication Summary

Drugs used in symptomatic treatment of rhinovirus (RV) infection include nonsteroidal anti-inflammatory drugs (NSAIDs), antihistamines, and anticholinergic nasal solutions. These agents have no preventive activity and appear to have no impact on complications. The combined effect of NSAIDs and antihistamines often relieves nasal obstruction; therefore, decongestion therapy is rarely needed. Oral decongestants (pseudoephedrine) and topical decongestants (oxymetazoline and phenylephrine) are commonly used for symptomatic relief.

First-generation antihistamines reduce rhinorrhea by 25-35%, as do topical anticholinergics and ipratropium bromide. Second-generation or nonsedating antihistamines appear to have no effect on common cold symptoms. Corticosteroids may actually increase viral replication and have no impact on cold symptoms.

Next

Antihistamines, 1st Generation

Class Summary

Antihistamines relieve runny nose, watery eyes, or other allergylike symptoms. They act by competitive inhibition of histamine at the H1 receptor. This mediates wheal-and-flare reactions, bronchial constriction, mucous secretions, smooth muscle contraction, edema, hypotension, central nervous system (CNS) depression, and cardiac arrhythmias. First-generation antihistamines are generally more sedating and have stronger anticholinergic side effects (eg, blurred vision, urinary retention) than second-generation antihistamines do.

Diphenhydramine (Aler-Cap, Q-Dryl, Benadryl)

 

Diphenhydramine is an oral H1-blocker used in the treatment of allergic conjunctivitis and rhinitis, angioedema, pruritus, and urticaria. It causes occasional drowsiness and is suitable for use on a day-to-day basis.

Chlorpheniramine (Chlor-Trimeton, Aller-Chlor, Allergy Relief)

 

Chlorpheniramine competes with histamine for H1-receptor sites on effector cells in blood vessels and the respiratory tract.

Brompheniramine (Respa-BR, J-Tan PD)

 

Brompheniramine is an oral H1-blocker used in the treatment of allergic conjunctivitis and rhinitis, angioedema, pruritus, and urticaria. It is available in various formulations, including long-acting preparations, chewable, suspension, and prescription infant drops. It does not tend to cause drowsiness and is suitable for use on a day-to-day basis.

Previous
Next

Antihistamines, 2nd Generation

Class Summary

Antihistamines relieve runny nose, watery eyes, or other allergy like symptoms. They act by competitive inhibition of histamine at the H1 receptor. Second-generation antihistamines are also known as nonsedating antihistamines. Although they are not void of sedative properties in all individuals, they are often better tolerated and have less anticholinergic effects.

Cetirizine (Zyrtec)

 

Cetirizine is a H1-receptor antagonist and is also available as an over-the-counter (OTC) product.

Desloratadine (Clarinex)

 

Desloratadine is a long acting oral H1-receptor antagonist used for seasonal and perennial allergies and chronic idiopathic urticaria.

Fexofenadine (Allegra)

 

Fexofenadine is a selective peripheral H1-receptor antagonist known to inhibit bronchospasms and nasal congestion due to allergic rhinitis.

Levocetirizine (Xyzal)

 

Levocetirizine is an oral H1-receptor antagonist used for relief of symptoms associated with allergic rhinitis and uncomplicated urticaria.

Loratadine (Claritin)

 

Loratadine is an oral H1-receptor antagonist that temporarily relieves symptoms due to hay fever or other respiratory allergies.

Previous
Next

Anticholinergics, Respiratory

Class Summary

Anticholinergic agents have antisecretory properties and, when applied locally, inhibit secretions from the serous and seromucous glands lining the nasal mucosa.

Ipratropium intranasal (Atrovent)

 

Ipratropium is chemically related to atropine. It comes in 2 strengths of nasal spray: (1) 0.03%, for treatment of rhinorrhea associated with allergic and nonallergic perennial rhinitis, and (2) 0.06%, for treatment of rhinorrhea associated with the common cold.

Previous
Next

Nonsteroidal Anti-inflammatory Drugs

Class Summary

Analgesic and antipyretic agents are used for relief of pain, discomfort, or fever. They inhibit central synthesis and release of prostaglandins that mediate effect of endogenous pyrogens in hypothalamus; thus, they promote return of set-point temperature to within the reference range. Other mechanisms also may exist (eg, inhibition of leukotriene synthesis, lysosomal enzyme release, lipoxygenase activity, neutrophil aggregation, and various cell membrane functions).

Naproxen (Aleve, EC Naprosyn, Anaprox, Anaprox DS, Naprosyn)

 

Naproxen is used for relief of mild to moderate pain and reduction of fever; it inhibits inflammatory reactions and pain by decreasing the activity of cyclooxygenase, which results in a decrease of prostaglandin synthesis.

Ibuprofen (Advil, Motrin IB)

 

Ibuprofen is used for relief of mild to moderate pain and reduction of fever; it inhibits inflammatory reactions and pain by decreasing the activity of cyclooxygenase, which results in a decrease of prostaglandin synthesis. Ibuprofen is one of the few NSAIDs indicated for reduction of fever.

Previous
Next

Analgesics, Other

Class Summary

Acetaminophen is commonly used for analgesia or fever reduction. It may be used in alternation with NSAIDs.

Acetaminophen (Tylenol)

 

Acetaminophen reduces fever by directly acting on hypothalamic heat-regulating centers, thereby increasing dissipation of body heat via vasodilation and sweating.

Previous
Next

Decongestants, Systemic

Class Summary

Decongestants relieve congestion of nasal passages or sinuses.

Pseudoephedrine (Sudafed, Oranyl)

 

Pseudoephedrine stimulates vasoconstriction by directly activating alpha-adrenergic receptors of respiratory mucosa. It also induces bronchial relaxation and increases heart rate and contractility by stimulating beta-adrenergic receptors.

Previous
Next

Decongestants, Intranasal

Class Summary

Nonsystemic decongestants may be used temporarily to relieve congestion without causing systemic effects. Use for more than 3 days may result in rebound congestion.

Phenylephrine nasal (Neo-Synephrine Nasal, 4-Way Fast Acting)

 

Phenylephrine is a strong postsynaptic alpha-receptor stimulant with little beta-adrenergic activity; it produces vasoconstriction of arterioles, which decreases congestion.

Previous
Next

Antitussives

Class Summary

Antitussive agents act centrally or peripherally (or both) on the cough reflex. Centrally acting agents increase the threshold of the cough center in brain to incoming stimuli, whereas peripherally acting agents decrease the sensitivity of receptors in the respiratory tract.

Dextromethorphan (Robitussin, Delsym, Creo-Terpin, Nycoff)

 

Dextromethorphan is an antitussive-expectorant that is supplied as a single entity or in various combinations in cough and cold preparations.

Codeine

 

Codeine is used for symptomatic relief of cough. It is helpful for alleviating the pain of the intercostal muscle strain associated with cough. Codeine binds to opiate receptors in the CNS, causing inhibition of ascending pain pathways and altering perception of and response to pain.

Previous
Next

Vitamins, Water-Soluble

Class Summary

Vitamin C may decrease the severity and duration of colds (large doses are not recommended for children).

Ascorbic acid (Cenolate, Vita-C, Acerola)

 

The effect of ascorbic acid on cold severity and duration is still controversial. Vitamin C comes in various formulations.

Previous
 
Contributor Information and Disclosures
Author

Michael Rajnik, MD Associate Professor, Department of Pediatrics, Program Director, Pediatric Infectious Disease Fellowship Program, Uniformed Services University of the Health Sciences

Michael Rajnik, MD is a member of the following medical societies: American Academy of Pediatrics, Infectious Diseases Society of America, Pediatric Infectious Diseases Society, Armed Forces Infectious Diseases Society

Disclosure: Nothing to disclose.

Chief Editor

Mark R Wallace, MD, FACP, FIDSA Clinical Professor of Medicine, Florida State University College of Medicine; Clinical Professor of Medicine, University of Central Florida College of Medicine

Mark R Wallace, MD, FACP, FIDSA is a member of the following medical societies: American College of Physicians, American Medical Association, American Society for Microbiology, Infectious Diseases Society of America, International AIDS Society, Florida Infectious Diseases Society

Disclosure: Nothing to disclose.

Acknowledgements

Duane R Hospenthal, MD, PhD Professor of Medicine, Uniformed Services University of the Health Sciences; Physician, Infectious Disease Service, San Antonio Military Medical Center (formerly Brooke Army Medical Center)

Duane R Hospenthal, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American Society for Microbiology, American Society of Tropical Medicine and Hygiene, Armed Forces Infectious Diseases Society, Association of Military Surgeons of the US, Infectious Diseases Society of America, International Society for Human and Animal Mycology, International Society for Infectious Diseases, International Society of Travel Medicine, and Medical Mycology Society of the Americas

Disclosure: Nothing to disclose.

James D Korb, MD Program Director, Department of Pediatrics, Children's Hospital of Orange County

Disclosure: Nothing to disclose.

Larry I Lutwick, MD Professor of Medicine, State University of New York Downstate Medical School; Director, Infectious Diseases, Veterans Affairs New York Harbor Health Care System, Brooklyn Campus

Larry I Lutwick, MD is a member of the following medical societies: American College of Physicians and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Clinton Murray, MD

Program Director, Infectious Disease Fellowship, San Antonio Uniformed Services Health Education Consortium

Clinton Murray, MD is a member of the following medical societies: American College of Physicians-American Society of Internal Medicine, American Medical Association, American Society for Microbiology, American Society of Tropical Medicine and Hygiene, Association of Military Surgeons of the US, and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Mai Ngoc Nguyen, MD

Staff Physician, Department of Pediatrics, Mattel Children's Hospital, University of California at Los Angeles

Mai Ngoc Nguyen, MD is a member of the following medical societies: American Academy of Pediatrics, and American Medical Association

Disclosure: Nothing to disclose.

José Rafael Romero, MD Director of Pediatric Infectious Diseases Fellowship Program, Associate Professor, Department of Pediatrics, Combined Division of Pediatric Infectious Diseases, Creighton University/University of Nebraska Medical Center

José Rafael Romero, MD is a member of the following medical societies: American Academy of Pediatrics, American Society for Microbiology, Infectious Diseases Society of America, New York Academy of Sciences, and Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Gregory William Rutecki MD Professor of Medicine, University of South Alabama Medical School

Gregory William Rutecki is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American Society of Nephrology, National Kidney Foundation, and Society of General Internal Medicine

Disclosure: Nothing to disclose.

Russell W Steele, MD Head, Division of Pediatric Infectious Diseases, Ochsner Children's Health Center; Clinical Professor, Department of Pediatrics, Tulane University School of Medicine

Russell W Steele, MD is a member of the following medical societies: American Academy of Pediatrics, American Association of Immunologists, American Pediatric Society, American Society for Microbiology, Infectious Diseases Society of America, Louisiana State Medical Society, Pediatric Infectious Diseases Society, Society for Pediatric Research, and Southern Medical Association

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Gordon L Woods, MD Consulting Staff, Department of Internal Medicine, University Medical Center

Gordon L Woods, MD is a member of the following medical societies: Society of General Internal Medicine

Disclosure: Nothing to disclose.

References
  1. Anderson P. High Stroke Risk Transient After Infection in Kids. Medscape Medical News. Available at http://www.medscape.com/viewarticle/830210. Accessed: August 23, 2014.

  2. Hills NK, Sidney S, Fullerton HJ. Timing and number of minor infections as risk factors for childhood arterial ischemic stroke. Neurology. 2014 Aug 20. [Medline].

  3. Busse WW, Gern JE, Dick EC. The role of respiratory viruses in asthma. Ciba Found Symp. 1997. 206:208-13; discussion 213-9. [Medline].

  4. Friedlander SL, Busse WW. The role of rhinovirus in asthma exacerbations. J Allergy Clin Immunol. 2005 Aug. 116(2):267-73. [Medline].

  5. Bella J, Rossmann MG. Review: rhinoviruses and their ICAM receptors. J Struct Biol. 1999 Dec 1. 128(1):69-74. [Medline].

  6. Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, et al. The major human rhinovirus receptor is ICAM-1. Cell. 1989 Mar 10. 56(5):839-47. [Medline].

  7. Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009 May. 9(5):291-300. [Medline].

  8. Melchjorsen J, Sørensen LN, Paludan SR. Expression and function of chemokines during viral infections: from molecular mechanisms to in vivo function. J Leukoc Biol. 2003 Sep. 74(3):331-43. [Medline].

  9. Message SD, Johnston SL. Host defense function of the airway epithelium in health and disease: clinical background. J Leukoc Biol. 2004 Jan. 75(1):5-17. [Medline].

  10. Doyle WJ, Casselbrant ML, Li-Korotky HS, Doyle AP, Lo CY, Turner R, et al. The interleukin 6 -174 C/C genotype predicts greater rhinovirus illness. J Infect Dis. 2010 Jan 15. 201(2):199-206. [Medline]. [Full Text].

  11. Jennings LC, Anderson TP, Werno AM, Beynon KA, Murdoch DR. Viral etiology of acute respiratory tract infections in children presenting to hospital: role of polymerase chain reaction and demonstration of multiple infections. Pediatr Infect Dis J. 2004 Nov. 23(11):1003-7. [Medline].

  12. Martin ET, Fairchok MP, Stednick ZJ, Kuypers J, Englund JA. Epidemiology of multiple respiratory viruses in childcare attendees. J Infect Dis. 2013 Mar. 207(6):982-9. [Medline].

  13. Jin Y, Yuan XH, Xie ZP, Gao HC, Song JR, Zhang RF, et al. Prevalence and clinical characterization of a newly identified human rhinovirus C species in children with acute respiratory tract infections. J Clin Microbiol. 2009 Sep. 47(9):2895-900. [Medline]. [Full Text].

  14. Peltola V, Jartti T, Putto-Laurila A, Mertsola J, Vainionpää R, Waris M, et al. Rhinovirus infections in children: a retrospective and prospective hospital-based study. J Med Virol. 2009 Oct. 81(10):1831-8. [Medline].

  15. Yoshida LM, Suzuki M, Yamamoto T, Nguyen HA, Nguyen CD, Nguyen AT, et al. Viral pathogens associated with acute respiratory infections in central vietnamese children. Pediatr Infect Dis J. 2010 Jan. 29(1):75-7. [Medline].

  16. Moore HC, Jacoby P, Taylor A, Harnett G, Bowman J, Riley TV, et al. The interaction between respiratory viruses and pathogenic bacteria in the upper respiratory tract of asymptomatic Aboriginal and non-Aboriginal children. Pediatr Infect Dis J. 2010 Jun. 29(6):540-5. [Medline].

  17. Moreira LP, Kamikawa J, Watanabe AS, Carraro E, Leal E, Arruda E, et al. Frequency of human rhinovirus species in outpatient children with acute respiratory infections at primary care level in Brazil. Pediatr Infect Dis J. 2011 Jul. 30(7):612-4. [Medline].

  18. Mak RK, Tse LY, Lam WY, Wong GW, Chan PK, Leung TF. Clinical spectrum of human rhinovirus infections in hospitalized Hong Kong children. Pediatr Infect Dis J. 2011 Sep. 30(9):749-53. [Medline].

  19. Wishaupt JO, Russcher A, Smeets LC, Versteegh FG, Hartwig NG. Clinical impact of RT-PCR for pediatric acute respiratory infections: a controlled clinical trial. Pediatrics. 2011 Nov. 128(5):e1113-20. [Medline].

  20. Miller EK, Bugna J, Libster R, Shepherd BE, Scalzo PM, Acosta PL, et al. Human rhinoviruses in severe respiratory disease in very low birth weight infants. Pediatrics. 2012 Jan. 129(1):e60-7. [Medline]. [Full Text].

  21. Fry AM, Lu X, Olsen SJ, Chittaganpitch M, Sawatwong P, Chantra S, et al. Human rhinovirus infections in rural Thailand: epidemiological evidence for rhinovirus as both pathogen and bystander. PLoS One. 2011 Mar 29. 6(3):e17780. [Medline]. [Full Text].

  22. Miron D, Srugo I, Kra-Oz Z, Keness Y, Wolf D, Amirav I, et al. Sole pathogen in acute bronchiolitis: is there a role for other organisms apart from respiratory syncytial virus?. Pediatr Infect Dis J. 2010 Jan. 29(1):e7-e10. [Medline].

  23. O'Callaghan-Gordo C, Bassat Q, Morais L, Díez-Padrisa N, Machevo S, Nhampossa T, et al. Etiology and epidemiology of viral pneumonia among hospitalized children in rural Mozambique: a malaria endemic area with high prevalence of human immunodeficiency virus. Pediatr Infect Dis J. 2011 Jan. 30(1):39-44. [Medline].

  24. García-García ML, Calvo C, Pozo F, Villadangos PA, Pérez-Breña P, Casas I. Spectrum of Respiratory Viruses in Children With Community-acquired Pneumonia. Pediatr Infect Dis J. 2012 Aug. 31(8):808-13. [Medline].

  25. Louie JK, Roy-Burman A, Guardia-Labar L, Boston EJ, Kiang D, Padilla T, et al. Rhinovirus associated with severe lower respiratory tract infections in children. Pediatr Infect Dis J. 2009 Apr. 28(4):337-9. [Medline].

  26. van Piggelen RO, van Loon AM, Krediet TG, Verboon-Maciolek MA. Human rhinovirus causes severe infection in preterm infants. Pediatr Infect Dis J. 2010 Apr. 29(4):364-5. [Medline].

  27. Van Leeuwen JC, Goossens LK, Hendrix RM, Van Der Palen J, Lusthusz A, Thio BJ. Equal virulence of rhinovirus and respiratory syncytial virus in infants hospitalized for lower respiratory tract infection. Pediatr Infect Dis J. 2012 Jan. 31(1):84-6. [Medline].

  28. García C, Soriano-Fallas A, Lozano J, Leos N, Gomez AM, Ramilo O, et al. Decreased innate immune cytokine responses correlate with disease severity in children with respiratory syncytial virus and human rhinovirus bronchiolitis. Pediatr Infect Dis J. 2012 Jan. 31(1):86-9. [Medline].

  29. Pappas DE, Hendley JO, Hayden FG, Winther B. Symptom profile of common colds in school-aged children. Pediatr Infect Dis J. 2008 Jan. 27(1):8-11. [Medline].

  30. Winther B, McCue K, Ashe K, Rubino JR, Hendley JO. Environmental contamination with rhinovirus and transfer to fingers of healthy individuals by daily life activity. J Med Virol. 2007 Oct. 79(10):1606-10. [Medline].

  31. Linsuwanon P, Payungporn S, Samransamruajkit R, Theamboonlers A, Poovorawan Y. Recurrent human rhinovirus infections in infants with refractory wheezing. Emerg Infect Dis. 2009 Jun. 15(6):978-80. [Medline]. [Full Text].

  32. Miller EK, Lu X, Erdman DD, Poehling KA, Zhu Y, Griffin MR, et al. Rhinovirus-associated hospitalizations in young children. J Infect Dis. 2007 Mar 15. 195(6):773-81. [Medline].

  33. Jackson DJ, Gangnon RE, Evans MD, Roberg KA, Anderson EL, Pappas TE, et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med. 2008 Oct 1. 178(7):667-72. [Medline]. [Full Text].

  34. Arden KE, Faux CE, O'Neill NT, McErlean P, Nitsche A, Lambert SB, et al. Molecular characterization and distinguishing features of a novel human rhinovirus (HRV) C, HRVC-QCE, detected in children with fever, cough and wheeze during 2003. J Clin Virol. 2010 Mar. 47(3):219-23. [Medline].

  35. Iwane MK, Prill MM, Lu X, Miller EK, Edwards KM, Hall CB, et al. Human rhinovirus species associated with hospitalizations for acute respiratory illness in young US children. J Infect Dis. 2011 Dec 1. 204(11):1702-10. [Medline].

  36. Calvo C, García-García ML, Blanco C, Pozo F, Flecha IC, Pérez-Breña P. Role of rhinovirus in hospitalized infants with respiratory tract infections in Spain. Pediatr Infect Dis J. 2007 Oct. 26(10):904-8. [Medline].

  37. Jackson DJ. The role of rhinovirus infections in the development of early childhood asthma. Curr Opin Allergy Clin Immunol. 2010 Apr. 10(2):133-8. [Medline]. [Full Text].

  38. Wilkinson TM, Hurst JR, Perera WR, et al. Effect of interactions between lower airway bacterial and rhinoviral infection in exacerbations of COPD. Chest. Feb 2006. 129(2):317-24.

  39. Jackson DJ, Gangnon RE, Evans MD, Roberg KA, Anderson EL, Pappas TE, et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med. 2008 Oct 1. 178(7):667-72. [Medline]. [Full Text].

  40. Gern JE. Rhinovirus and the initiation of asthma. Curr Opin Allergy Clin Immunol. 2009 Feb. 9(1):73-8. [Medline]. [Full Text].

  41. Martinez FD. The origins of asthma and chronic obstructive pulmonary disease in early life. Proc Am Thorac Soc. 2009 May 1. 6(3):272-7. [Medline]. [Full Text].

  42. Calvo C, Casas I, García-García ML, Pozo F, Reyes N, Cruz N, et al. Role of rhinovirus C respiratory infections in sick and healthy children in Spain. Pediatr Infect Dis J. 2010 Aug. 29(8):717-20. [Medline].

  43. Rosenthal LA, Avila PC, Heymann PW, Martin RJ, Miller EK, Papadopoulos NG, et al. Viral respiratory tract infections and asthma: the course ahead. J Allergy Clin Immunol. 2010 Jun. 125(6):1212-7. [Medline]. [Full Text].

  44. Olenec JP, Kim WK, Lee WM, Vang F, Pappas TE, Salazar LE, et al. Weekly monitoring of children with asthma for infections and illness during common cold seasons. J Allergy Clin Immunol. 2010 May. 125(5):1001-1006.e1. [Medline]. [Full Text].

  45. Busse WW, Lemanske RF Jr, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet. 2010 Sep 4. 376(9743):826-34. [Medline]. [Full Text].

  46. Miller EK. New human rhinovirus species and their significance in asthma exacerbation and airway remodeling. Immunol Allergy Clin North Am. 2010 Nov. 30(4):541-52, vii. [Medline]. [Full Text].

  47. Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, et al. Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ. 1995 May 13. 310(6989):1225-9. [Medline]. [Full Text].

  48. Gavala ML, Bertics PJ, Gern JE. Rhinoviruses, allergic inflammation, and asthma. Immunol Rev. 2011 Jul. 242(1):69-90. [Medline]. [Full Text].

  49. Guilbert TW, Singh AM, Danov Z, Evans MD, Jackson DJ, Burton R, et al. Decreased lung function after preschool wheezing rhinovirus illnesses in children at risk to develop asthma. J Allergy Clin Immunol. 2011 Sep. 128(3):532-8.e1-10. [Medline]. [Full Text].

  50. Jackson DJ, Lemanske RF Jr. The role of respiratory virus infections in childhood asthma inception. Immunol Allergy Clin North Am. 2010 Nov. 30(4):513-22, vi. [Medline]. [Full Text].

  51. Jartti T, Korppi M. Rhinovirus-induced bronchiolitis and asthma development. Pediatr Allergy Immunol. 2011 Jun. 22(4):350-5. [Medline].

  52. Miller EK, Williams JV, Gebretsadik T, Carroll KN, Dupont WD, Mohamed YA, et al. Host and viral factors associated with severity of human rhinovirus-associated infant respiratory tract illness. J Allergy Clin Immunol. 2011 Apr. 127(4):883-91. [Medline]. [Full Text].

  53. Ozcan C, Toyran M, Civelek E, Erkoçoglu M, Altas AB, Albayrak N, et al. Evaluation of respiratory viral pathogens in acute asthma exacerbations during childhood. J Asthma. 2011 Nov. 48(9):888-93. [Medline].

  54. Smuts HE, Workman LJ, Zar HJ. Human rhinovirus infection in young African children with acute wheezing. BMC Infect Dis. 2011 Mar 15. 11:65. [Medline]. [Full Text].

  55. Peltola V, Heikkinen T, Ruuskanen O, Jartti T, Hovi T, Kilpi T, et al. Temporal association between rhinovirus circulation in the community and invasive pneumococcal disease in children. Pediatr Infect Dis J. 2011 Jun. 30(6):456-61. [Medline].

  56. Koponen P, Karjalainen MK, Korppi M. IL10 polymorphisms, rhinovirus-induced bronchiolitis, and childhood asthma. J Allergy Clin Immunol. 2013 Jan. 131(1):249-50. [Medline].

  57. Maggini S, Beveridge S, Suter M. A combination of high-dose vitamin C plus zinc for the common cold. J Int Med Res. 2012. 40(1):28-42. [Medline].

  58. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet. 2011 Apr 9. 377(9773):1264-75. [Medline].

  59. Laham FR, Trott AA, Bennett BL, Kozinetz CA, Jewell AM, Garofalo RP, et al. LDH concentration in nasal-wash fluid as a biochemical predictor of bronchiolitis severity. Pediatrics. 2010 Feb. 125(2):e225-33. [Medline]. [Full Text].

  60. Reid AB, Anderson TL, Cooley L, Williamson J, Mcgregor AR. An outbreak of human rhinovirus species C infections in a neonatal intensive care unit. Pediatr Infect Dis J. 2011 Dec. 30(12):1096-5. [Medline].

  61. Gambarino S, Costa C, Elia M, Sidoti F, Mantovani S, Gruosso V, et al. Development of a RT real-time PCR for the detection and quantification of human rhinoviruses. Mol Biotechnol. 2009 Jul. 42(3):350-7. [Medline].

  62. Chen EC, Miller SA, DeRisi JL, Chiu CY. Using a pan-viral microarray assay (Virochip) to screen clinical samples for viral pathogens. J Vis Exp. 2011 Apr 27. [Medline]. [Full Text].

  63. Buecher C, Mardy S, Wang W, Duong V, Vong S, Naughtin M, et al. Use of a multiplex PCR/RT-PCR approach to assess the viral causes of influenza-like illnesses in Cambodia during three consecutive dry seasons. J Med Virol. 2010 Oct. 82(10):1762-72. [Medline].

  64. Do DH, Laus S, Leber A, Marcon MJ, Jordan JA, Martin JM, et al. A one-step, real-time PCR assay for rapid detection of rhinovirus. J Mol Diagn. 2010 Jan. 12(1):102-8. [Medline]. [Full Text].

  65. Gambarino S, Costa C, Elia M, Sidoti F, Mantovani S, Gruosso V, et al. Development of a RT real-time PCR for the detection and quantification of human rhinoviruses. Mol Biotechnol. 2009 Jul. 42(3):350-7. [Medline].

  66. Faux CE, Arden KE, Lambert SB, Nissen MD, Nolan TM, Chang AB, et al. Usefulness of published PCR primers in detecting human rhinovirus infection. Emerg Infect Dis. 2011 Feb. 17(2):296-8. [Medline]. [Full Text].

  67. Singh M. Heated, humidified air for the common cold. Cochrane Database Syst Rev. 2004. CD001728. [Medline].

  68. Shehab N, Schaefer MK, Kegler SR, Budnitz DS. Adverse events from cough and cold medications after a market withdrawal of products labeled for infants. Pediatrics. 2010 Dec. 126(6):1100-7. [Medline].

  69. Hayden FG, Herrington DT, Coats TL, Kim K, Cooper EC, Villano SA, et al. Efficacy and safety of oral pleconaril for treatment of colds due to picornaviruses in adults: results of 2 double-blind, randomized, placebo-controlled trials. Clin Infect Dis. 2003 Jun 15. 36(12):1523-32. [Medline].

  70. Paul IM, Beiler JS, King TS, Clapp ER, Vallati J, Berlin CM Jr. Vapor rub, petrolatum, and no treatment for children with nocturnal cough and cold symptoms. Pediatrics. 2010 Dec. 126(6):1092-9. [Medline].

  71. Infant deaths associated with cough and cold medications--two states, 2005. MMWR Morb Mortal Wkly Rep. 2007 Jan 12. 56(1):1-4. [Medline].

  72. Calvo C, Garcia ML, Pozo F, Reyes N, Pérez-Breña P, Casas I. Role of rhinovirus C in apparently life-threatening events in infants, Spain. Emerg Infect Dis. 2009 Sep. 15(9):1506-8. [Medline]. [Full Text].

  73. Gwaltney JM Jr, Winther B, Patrie JT, Hendley JO. Combined antiviral-antimediator treatment for the common cold. J Infect Dis. 2002 Jul 15. 186(2):147-54. [Medline].

  74. Jartti T, Lehtinen P, Vanto T, Hartiala J, Vuorinen T, Mäkelä MJ, et al. Evaluation of the efficacy of prednisolone in early wheezing induced by rhinovirus or respiratory syncytial virus. Pediatr Infect Dis J. 2006 Jun. 25(6):482-8. [Medline].

  75. Turner RB, Wecker MT, Pohl G, Witek TJ, McNally E, St George R, et al. Efficacy of tremacamra, a soluble intercellular adhesion molecule 1, for experimental rhinovirus infection: a randomized clinical trial. JAMA. 1999 May 19. 281(19):1797-804. [Medline].

  76. Hayden FG, Turner RB, Gwaltney JM, Chi-Burris K, Gersten M, Hsyu P, et al. Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. Antimicrob Agents Chemother. 2003 Dec. 47(12):3907-16. [Medline]. [Full Text].

  77. Gern JE, Mosser AG, Swenson CA, Rennie PJ, England RJ, Shaffer J, et al. Inhibition of rhinovirus replication in vitro and in vivo by acid-buffered saline. J Infect Dis. 2007 Apr 15. 195(8):1137-43. [Medline].

  78. Schwartz AR, Togo Y, Hornick RB, Tominaga S, Gleckman RA. Evaluation of the efficacy of ascorbic acid in prophylaxis of induced rhinovirus 44 infection in man. J Infect Dis. 1973 Oct. 128(4):500-5. [Medline].

  79. Sperber SJ, Shah LP, Gilbert RD, Ritchey TW, Monto AS. Echinacea purpurea for prevention of experimental rhinovirus colds. Clin Infect Dis. 2004 May 15. 38(10):1367-71. [Medline].

  80. Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev. 2011 Feb 16. CD001364. [Medline].

  81. Turner RB, Bauer R, Woelkart K, Hulsey TC, Gangemi JD. An evaluation of Echinacea angustifolia in experimental rhinovirus infections. N Engl J Med. 2005 Jul 28. 353(4):341-8. [Medline].

  82. Schoop R, Klein P, Suter A, Johnston SL. Echinacea in the prevention of induced rhinovirus colds: a meta-analysis. Clin Ther. 2006 Feb. 28(2):174-83. [Medline].

  83. Barrett B, Brown R, Rakel D, Mundt M, Bone K, Barlow S, et al. Echinacea for treating the common cold: a randomized trial. Ann Intern Med. 2010 Dec 21. 153(12):769-77. [Medline]. [Full Text].

  84. Turner RB, Biedermann KA, Morgan JM, Keswick B, Ertel KD, Barker MF. Efficacy of organic acids in hand cleansers for prevention of rhinovirus infections. Antimicrob Agents Chemother. 2004 Jul. 48(7):2595-8. [Medline]. [Full Text].

  85. Halperin SA, Eggleston PA, Beasley P, Suratt P, Hendley JO, Gröschel DH, et al. Exacerbations of asthma in adults during experimental rhinovirus infection. Am Rev Respir Dis. 1985 Nov. 132(5):976-80. [Medline].

  86. Costa LF, Queiróz DA, da Silveira HL, Neto MB, de Paula NT, Oliveira TF, et al. Human Rhinovirus and Disease Severity in Children. Pediatrics. 2014 Jan 13. [Medline].

  87. De Sutter AI, van Driel ML, Kumar AA, Lesslar O, Skrt A. Oral antihistamine-decongestant-analgesic combinations for the common cold. Cochrane Database Syst Rev. 2012 Feb 15. 2:CD004976. [Medline].

  88. Fox S. Severe Pediatric Rhinovirus Linked to RSV Coinfections. Available at http://www.medscape.com/viewarticle/819204. Accessed: January 19, 2014.

  89. Linder JE, Kraft DC, Mohamed Y, Lu Z, Heil L, Tollefson S, et al. Human rhinovirus C: Age, season, and lower respiratory illness over the past 3 decades. J Allergy Clin Immunol. 2013 Jan. 131(1):69-77.e1-6. [Medline].

 
Previous
Next
 
Seasonal variations in frequency of selected upper respiratory tract infection pathogens. PIV = parainfluenza virus; RSV = respiratory syncytial virus; MPV = metapneumovirus; Group A Strept = group A streptococcus.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.