Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Tetanus Clinical Presentation

  • Author: Patrick B Hinfey, MD; Chief Editor: John L Brusch, MD, FACP  more...
 
Updated: Jun 16, 2016
 

History

Most cases of tetanus in the United States occur in patients with a history of underimmunization, either because they were never vaccinated or because they completed a primary series but have not had a booster in the preceding 10 years. From 1995 to 1997, 54% of the reported cases in the United States had an unknown tetanus vaccination history, 22% had no known previous tetanus vaccination, 9% had 1 previous dose, 3% had 2, 3% had 3, and 9% had 4 or more. Persons who inject drugs also constitute a high-risk group.

The median incubation period is 7 days, and for most cases (73%), incubation ranges from 4 to 14 days. The incubation period is shorter than 4 days in 15% of cases and longer than 14 days in 12% of cases. Patients with clinical manifestations occurring within 1 week of an injury have more severe clinical courses.

Patients sometimes remember an injury, but often, the injury goes unnoticed. Patients may report a sore throat with dysphagia (early sign). The initial manifestation may be local tetanus, in which the rigidity affects only 1 limb or area of the body where the clostridium-containing wound is located. Patients with generalized tetanus present with trismus (ie, lockjaw) in 75% of cases. Other presenting complaints include stiffness, neck rigidity, restlessness, and reflex spasms.

Subsequently, muscle rigidity becomes the major manifestation. Muscle rigidity spreads in a descending pattern from the jaw and facial muscles over the next 24-48 hours to the extensor muscles of the limbs.

Dysphagia occurs in moderately severe tetanus as a consequence of pharyngeal muscle spasms, and onset is usually insidious over several days. Reflex spasms develop in most patients and can be triggered by minimal external stimuli such as noise, light, or touch. The spasms last seconds to minutes; become more intense; increase in frequency with disease progression; and can cause apnea, fractures, dislocations, and rhabdomyolysis. Laryngeal spasms can occur at any time and can result in asphyxia.

Other symptoms include elevated temperature, sweating, elevated blood pressure, and episodic rapid heart rate.

Sustained contraction of facial musculature produces a sneering grin expression known as risus sardonicus.

Generalized tetanus

Generalized tetanus is the most commonly found form of tetanus in the United States, accounting for 85-90% of cases. The extent of the trauma varies from trivial injury to contaminated crush injury. The incubation period is 7-21 days, largely depending on the distance of the injury site from the central nervous system (CNS).

Trismus is the presenting symptom in 75% of cases; a dentist or an oral surgeon often initially sees the patient. Other early features include irritability, restlessness, diaphoresis, and dysphagia with hydrophobia, drooling, and spasm of the back muscles. These early manifestations reflect involvement of bulbar and paraspinal muscles, possibly because these structures are innervated by the shortest axons. The condition may progress for 2 weeks despite antitoxin therapy because of the time needed for intra-axonal antitoxin transport.

Localized tetanus

Localized tetanus involves an extremity with a contaminated wound and is of highly variable severity. It is an unusual form of tetanus, and the prognosis for survival is excellent.

Cephalic tetanus

Cephalic tetanus generally follows head injury or develops with infection of the middle ear. Symptoms consist of isolated or combined dysfunction of the cranial motor nerves (most frequently CN VII). Cephalic tetanus may remain localized or may progress to generalized tetanus. It is an unusual form of tetanus with an incubation period of 1-2 days. The prognosis for survival is usually poor.

Neonatal tetanus

Neonatal tetanus (tetanus neonatorum) is generalized tetanus that results from infection of a neonate. It primarily occurs in underdeveloped countries and accounts for as many as one half of all neonatal deaths. The usual cause is the use of contaminated materials to sever or dress the umbilical cord in newborns of unimmunized mothers.

The usual incubation period after birth is 3-10 days, which explains why this form of tetanus is sometimes referred to as the disease of the seventh day. The newborn usually exhibits irritability, poor feeding, rigidity, facial grimacing, and severe spasms with touch. Mortality exceeds 70%.

Next

Physical Examination

Common first signs of tetanus are headache and muscular stiffness in the jaw (ie, lockjaw), followed by neck stiffness, difficulty swallowing, rigidity of abdominal muscles, spasms, and sweating. Patients often are afebrile. Stimulation of the posterior pharyngeal wall may elicit reflex spasms of the masseter muscles that cause patients to bite down as opposed to gag (spatula test).[16]

Severe tetanus results in opisthotonos, flexion of the arms, extension of the legs, periods of apnea resulting from spasm of the intercostal muscles and diaphragm, and rigidity of the abdominal wall. Late in the disease, autonomic dysfunction develops, with hypertension and tachycardia alternating with hypotension and bradycardia; cardiac arrest may occur.

The lower extremity is the site of antecedent acute injury in 52% of patients, the upper extremity is the site of antecedent injury in 34% of patients, and the head or the trunk is the site of antecedent injury in 5% of patients.

Tetanic seizures may occur. Their presence portends a poor prognosis, and their frequency and severity are related to the severity of the disease. These seizures resemble epileptic seizures, with the presence of a sudden burst of tonic contractions. However, the patient does not lose consciousness and usually experiences severe pain. Seizures frequently occur in the muscle groups causing opisthotonos, flexion and abduction of the arms, clenching of the fists against the thorax, and extension of the lower extremities.

Patients with tetanus may present with abdominal tenderness and guarding, mimicking an acute abdomen. Exploratory laparotomies have been performed before the correct diagnosis was apparent.

Tetanospasmin has a disinhibitory effect on the autonomic nervous system (ANS). ANS dysfunction becomes progressively evident as the level of toxin in the CNS increases. ANS disturbances (eg, sweating, fluctuating blood pressure, episodic tachydysrhythmia, and increased catecholamine release) are observed. Drugs with beta-blocker effects have been used to control the cardiovascular manifestations of ANS instability, but they also have been associated with increased risk of sudden death.

Generalized tetanus

Sustained trismus may result in the characteristic sardonic smile (risus sardonicus) and persistent spasm of the back musculature may cause opisthotonos. Waves of opisthotonos are highly characteristic of the disease. With progression, the extremities become involved in episodes of painful flexion and adduction of the arms, clenched fists, and extension of the legs.

Noise or tactile stimuli may precipitate spasms and generalized convulsions. Involvement of the ANS may result in severe arrhythmias, oscillation of blood pressure, profound diaphoresis, hyperthermia, rhabdomyolysis, laryngeal spasm, and urinary retention. In most cases, the patient remains lucid.

Localized tetanus

In mild cases of localized tetanus, patients may have weakness of the involved extremity, presumably due to partial immunity; in more severe cases, they may have intense, painful spasms of the group of muscles in close proximity to the site of injury. This disorder may persist for several weeks but is usually self-limiting; however, more severe cases tend to progress to generalized tetanus.

Cephalic tetanus

Cephalic tetanus is a rare form of the disease that is usually secondary to chronic otitis media or head trauma. It is characterized by variable CN palsies, most frequently involving CN VII. Ophthalmoplegic tetanus is a variant that develops after penetrating eye injuries and results in CN III palsies and ptosis.

Rapid progression is typical. Cephalic tetanus may remain localized or, especially if left untreated, progress to generalized tetanus.

Neonatal tetanus

Neonatal tetanus presents with an inability to suck 3-10 days after birth. Presenting symptoms include irritability, excessive crying, grimaces, intense rigidity, and opisthotonos. In general, the physical examination findings are similar to those of generalized tetanus.

Previous
Next

Complications

Complications include spasm of the vocal cords and spasm of the respiratory muscles that cause interference with breathing.[17] Patients experience severe pain during each spasm. During the spasm, the upper airway can be obstructed, or the diaphragm may participate in the general muscular contraction.

Sympathetic overactivity is the major cause of tetanus-related death in the intensive care unit (ICU). Sympathetic hyperactivity usually is treated with labetalol at 0.25-1 mg/min as needed for blood pressure control or with morphine at 0.5-1 mg/kg/h by continuous infusion.

Neonatal tetanus follows infection of the umbilical stump, most commonly resulting from a failed aseptic technique in a mother who is inadequately immunized. Mortality for neonatal tetanus exceeds 90%, and developmental delays are common among survivors.

Before 1954, asphyxia from tetanic spasms was the usual cause of death in patients with tetanus. However, with the advent of neuromuscular blockers, mechanical ventilation, and pharmacologic control of spasms, sudden cardiac death has become the leading cause of death. Sudden cardiac death has been attributed to excessive catecholamine productions or the direct action of tetanospasmin or tetanolysin on the myocardium.

Nosocomial infections are common when hospitalization is prolonged. Secondary infections may include sepsis from decubitus ulcers, hospital-acquired pneumonia, and catheter-related infections. Pulmonary embolism is a particular problem in drug users and elderly patients.

Further complications include the following:

  • Long bone fractures
  • Glenohumeral joint and temporomandibular joint dislocations
  • Hypoxic injury and aspiration pneumonia
  • Clotting in the blood vessels of the lung
  • Adverse effects of autonomic instability, [18] including hypertension and cardiac dysrhythmias
  • Paralytic ileus, pressure sores, and urinary retention
  • Malnutrition and stress ulcers
  • Coma, nerve palsies, neuropathies, psychological aftereffects, and flexion contractures
Previous
 
 
Contributor Information and Disclosures
Author

Patrick B Hinfey, MD Emergency Medicine Residency Director, Department of Emergency Medicine, Newark Beth Israel Medical Center; Clinical Assistant Professor of Emergency Medicine, New York College of Osteopathic Medicine

Patrick B Hinfey, MD is a member of the following medical societies: American Academy of Emergency Medicine, Wilderness Medical Society, American College of Emergency Physicians, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Coauthor(s)

Jill Ripper, MD, MS Residency Director, Newark Beth Israel Medical Center

Jill Ripper, MD, MS is a member of the following medical societies: American College of Emergency Physicians

Disclosure: Nothing to disclose.

Christian August Engell, MD Attending Physician, Department of Infectious Diseases, Newark Beth Israel Medical Center

Christian August Engell, MD is a member of the following medical societies: Infectious Diseases Society of America, Infectious Diseases Society of New Jersey

Disclosure: Nothing to disclose.

Keith N Chappell, MD Administrative Chief Resident, Junior Attending Resident, Department of Emergency Medicine, Newark Beth Israel Medical Center

Disclosure: Received salary from Newark Beth Israel Medical Center for employment.

Chief Editor

John L Brusch, MD, FACP Assistant Professor of Medicine, Harvard Medical School; Consulting Staff, Department of Medicine and Infectious Disease Service, Cambridge Health Alliance

John L Brusch, MD, FACP is a member of the following medical societies: American College of Physicians, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Acknowledgements

Leslie L Barton, MD Professor Emerita of Pediatrics, University of Arizona College of Medicine

Leslie L Barton, MD is a member of the following medical societies: American Academy of Pediatrics, Association of Pediatric Program Directors, Infectious Diseases Society of America, and Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Richard B Brown, MD, FACP Chief, Division of Infectious Diseases, Baystate Medical Center; Professor, Department of Internal Medicine, Tufts University School of Medicine

Richard B Brown, MD, FACP is a member of the following medical societies: Alpha Omega Alpha, American College of Chest Physicians, American College of Physicians, American Medical Association, American Society for Microbiology, Infectious Diseases Society of America, and Massachusetts Medical Society

Disclosure: Nothing to disclose.

Daniel J Dire, MD, FACEP, FAAP, FAAEM Clinical Professor, Department of Emergency Medicine, University of Texas Medical School at Houston; Clinical Professor, Department of Pediatrics, University of Texas Health Sciences Center San Antonio

Daniel J Dire, MD, FACEP, FAAP, FAAEM is a member of the following medical societies: American Academy of Clinical Toxicology, American Academy of Emergency Medicine, American Academy of Pediatrics, American College of Emergency Physicians, and Association of Military Surgeons of the US

Disclosure: Nothing to disclose.

Theodore J Gaeta, DO, MPH, FACEP Clinical Associate Professor, Department of Emergency Medicine, Weill Cornell Medical College; Vice Chairman and Program Director of Emergency Medicine Residency Program, Department of Emergency Medicine, New York Methodist Hospital; Academic Chair, Adjunct Professor, Department of Emergency Medicine, St George's University School of Medicine

Theodore J Gaeta, DO, MPH, FACEP is a member of the following medical societies: Alliance for Clinical Education, American College of Emergency Physicians, Clerkship Directors in Emergency Medicine, Council of Emergency Medicine Residency Directors, New York Academy of Medicine, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Rosemary Johann-Liang, MD Medical Officer, Infectious Diseases and Pediatrics, Division of Special Pathogens and Immunological Drug Products, Center for Drug Evaluation and Research, Food and Drug Administration

Rosemary Johann-Liang, MD is a member of the following medical societies: American Academy of Pediatrics, American Medical Association, and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Eleftherios Mylonakis, MD, PhD Assistant Professor of Medicine, Harvard Medical School, Assistant in Medicine, Division of Infectious Disease, Massachusetts General Hospital.

Eleftherios Mylonakis is a member of the following medical societies: American College of Physicians, American Society for Microbiology, and Infectious Diseases Society of America.

Disclosure: Nothing to disclose.

Sonali Ray, MD Resident Physician, Department of Family Practice, Capital Health System, University of Medicine and Dentistry of New Jersey

Disclosure: Nothing to disclose.

Gregory William Rutecki, MD Professor of Medicine, Fellow of The Center for Bioethics and Human Dignity, University of South Alabama College of Medicine

Gregory William Rutecki, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American Society of Nephrology, National Kidney Foundation, and Society of General Internal Medicine

Disclosure: Nothing to disclose.

Russell W Steele, MD Head, Division of Pediatric Infectious Diseases, Ochsner Children's Health Center; Clinical Professor, Department of Pediatrics, Tulane University School of Medicine

Russell W Steele, MD is a member of the following medical societies: American Academy of Pediatrics, American Association of Immunologists, American Pediatric Society, American Society for Microbiology, Infectious Diseases Society of America, Louisiana State Medical Society, Pediatric Infectious Diseases Society, Society for Pediatric Research, and Southern Medical Association

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Robert W Tolan Jr, MD Chief, Division of Allergy, Immunology and Infectious Diseases, The Children's Hospital at Saint Peter's University Hospital; Clinical Associate Professor of Pediatrics, Drexel University College of Medicine

Robert W Tolan Jr, MD is a member of the following medical societies: American Academy of Pediatrics, American Medical Association, American Society for Microbiology, American Society of Tropical Medicine and Hygiene, Infectious Diseases Society of America, Pediatric Infectious Diseases Society, Phi Beta Kappa, and Physicians for Social Responsibility

Disclosure: Novartis Honoraria Speaking and teaching

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. Pearce JM. Notes on tetanus (lockjaw). J Neurol Neurosurg Psychiatry. 1996 Mar. 60(3):332. [Medline]. [Full Text].

  2. Tiwari TSP. Manual for the Surveillance of Vaccine-Preventable Diseases. Chapter 16: Tetanus. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/vaccines/pubs/surv-manual/chpt16-tetanus.html. April 1, 2014; Accessed: June 16, 2016.

  3. Glezen WP. Prevention of neonatal tetanus. Am J Public Health. 1998 Jun. 88(6):871-2. [Medline]. [Full Text].

  4. Prevots DR. Neonatal tetanus. MMWR Morb Mortal Wkly Rep. Dec 31 1999;48 Suppl:176-7.

  5. Bleck TP. Clostridium tetani. In: Mandell GL, Bennett JE, Dolin R, eds. Bennett’s Principles and Practice of Infectious Diseases. Philadelphia, Pa: Churchill Livingstone; 1995:2373-8.

  6. World Health Organization. WHO Technical Note: Current recommendations for treatment of tetanus during humanitarian emergencies. January 2010. [Full Text].

  7. Sanford JP. Tetanus--forgotten but not gone. N Engl J Med. 1995 Mar 23. 332(12):812-3. [Medline].

  8. Yeh FL, Dong M, Yao J, Tepp WH, Lin G, et al. 2010 SV2 Mediates Entry of Tetanus Neurotoxin into Central Neurons. PLoS Pathog 6(11): e1001207. doi:10.1371/journal.ppat.1001207. PLoS Pathogens [serial online]. 11/10/2010;6(11):e1001207. Available at http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1001207. Accessed: 12/13/2010.

  9. Pascual FB, McGinley EL, Zanardi LR, Cortese MM, Murphy TV. Tetanus surveillance--United States, 1998--2000. MMWR Surveill Summ. 2003 Jun 20. 52(3):1-8. [Medline].

  10. Tetanus surveillance --- United States, 2001-2008. MMWR Morb Mortal Wkly Rep. 2011 Apr 1. 60(12):365-9. [Medline].

  11. Fetuga BM, Ogunlesi TA, Adekanmbi FA. Risk factors for mortality in neonatal tetanus: a 15-year experience in Sagamu, Nigeria. World J Pediatr. 2010 Feb. 6(1):71-5. [Medline].

  12. Basu S, Paul DK, Ganguly S, Chandra PK. Risk factors for mortality from neonatal tetanus: 7 years experience in North Bengal, India. Ann Trop Paediatr. 2006 Sep. 26(3):233-9. [Medline].

  13. Rushdy AA, White JM, Ramsay ME, Crowcroft NS. Tetanus in England and Wales, 1984-2000. Epidemiol Infect. 2003 Feb. 130(1):71-7. [Medline]. [Full Text].

  14. Blencowe H, Cousens S, Mullany LC, Lee AC, Kerber K, Wall S, et al. Clean birth and postnatal care practices to reduce neonatal deaths from sepsis and tetanus: a systematic review and Delphi estimation of mortality effect. BMC Public Health. 2011 Apr 13. 11 Suppl 3:S11. [Medline]. [Full Text].

  15. Bleck TP, Brauner JS. Tetanus. In: Scheld WM, Whitley RJ, Durack DT. Infections of the central nervous system. 2nd ed. Philadelphia, PA: Lippincott-Raven Publishers; 1997:629-53.

  16. Apte NM, Karnad DR. Short report: the spatula test: a simple bedside test to diagnose tetanus. Am J Trop Med Hyg. 1995 Oct. 53(4):386-7. [Medline].

  17. Bunch TJ, Thalji MK, Pellikka PA, Aksamit TR. Respiratory failure in tetanus: case report and review of a 25-year experience. Chest. 2002 Oct. 122(4):1488-92. [Medline].

  18. Lin TS, Chen LK, Lin TY, Wen SH, Chen MC, Jan RH. Autonomic dysfunction because of severe tetanus in an unvaccinated child. Pediatr Neonatol. 2011 Jun. 52(3):169-71. [Medline].

  19. Tetanus--Puerto Rico, 2002. MMWR Morb Mortal Wkly Rep. 2002 Jul 19. 51(28):613-5. [Medline].

  20. Ahmadsyah I, Salim A. Treatment of tetanus: an open study to compare the efficacy of procaine penicillin and metronidazole. Br Med J (Clin Res Ed). 1985 Sep 7. 291(6496):648-50. [Medline]. [Full Text].

  21. Petitjeans F, Turc J, Coulet O, Puidupin M, Eve O, Benois A. The use of boluses of propofol for the management of severe tetanus in a child. Trop Doct. 2009 Jan. 39(1):52-3. [Medline].

  22. Boots RJ, Lipman J, O'Callaghan J, Scott P, Fraser J. The treatment of tetanus with intrathecal baclofen. Anaesth Intensive Care. 2000 Aug. 28(4):438-42. [Medline].

  23. Engrand N, Guerot E, Rouamba A, Vilain G. The efficacy of intrathecal baclofen in severe tetanus. Anesthesiology. 1999 Jun. 90(6):1773-6. [Medline].

  24. Thomas RM, Bellamy MC. Tetanus in a subcutaneous drug abuser: ineffectiveness of intrathecal baclofen. Anaesth Intensive Care. 2006 Dec. 34(6):811-5. [Medline].

  25. Ceneviva GD, Thomas NJ, Kees-Folts D. Magnesium sulfate for control of muscle rigidity and spasms and avoidance of mechanical ventilation in pediatric tetanus. Pediatr Crit Care Med. 2003 Oct. 4(4):480-4. [Medline].

  26. Thwaites CL, Yen LM, Loan HT, Thuy TT, Thwaites GE, Stepniewska K, et al. Magnesium sulphate for treatment of severe tetanus: a randomised controlled trial. Lancet. 2006 Oct 21. 368(9545):1436-43. [Medline].

  27. Rodrigo C, Samarakoon L, Fernando SD, Rajapakse S. A meta-analysis of magnesium for tetanus. Anaesthesia. 2012 Dec. 67(12):1370-4. [Medline].

  28. Kretsinger K, Broder KR, Cortese MM, Joyce MP, et al. Preventing tetanus, diphtheria, and pertussis among adults: use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine recommendations of the Advisory Committee on Immunization Practices (ACIP) and recommendation of ACIP, supported by the Healthcare Infection Control Practices Advisory Committee (HICPAC), for use of Tdap among health-care personnel. MMWR Recomm Rep. 2006 Dec 15. 55:1-37. [Medline].

  29. Hatamabadi HR, Abdalvand A, Safari S, Kariman H, Dolatabadi AA, Shahrami A, et al. Tetanus Quick Stick as an applicable and cost-effective test in assessment of immunity status. Am J Emerg Med. 2011 Sep. 29(7):717-20. [Medline].

  30. Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis (Tdap) vaccine from the Advisory Committee on Immunization Practices, 2010. MMWR Morb Mortal Wkly Rep. 2011 Jan 14. 60(1):13-5. [Medline].

  31. Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine (Tdap) in pregnant women and persons who have or anticipate having close contact with an infant aged 1111111111MMWR Morb Mortal Wkly Rep</i>. 2011 Oct 21. 60(41):1424-6. [Medline].

  32. Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine in adults aged 65 years and older - Advisory Committee on Immunization Practices (ACIP), 2012. MMWR Morb Mortal Wkly Rep. 2012 Jun 29. 61(25):468-70. [Medline].

 
Previous
Next
 
Tetanus Cases in US from 1947-2005. From Tetanus and Tetanus Toxoid: Epidemiology and Prevention of Vaccine-Preventable Diseases. National Immunization Program, Centers for Disease Control and Prevention. January 2006.
Image from "Number of Tetanus Cases Reported and Average Annual Incidence Rates, by State." Pascual FB, McGinley EL, Zanardi LR, et al: Tetanus surveillance—United States, 1998−2000. MMWR Surveill Summ. 2003 Jun 20;52(3):1-8.
Image from "Number of Tetanus Cases Reported, Average Annual Incidence Rates, and Survival Status of Patients, by Age Group." Pascual FB, McGinley EL, Zanardi LR, et al: Tetanus surveillance—United States, 1998−2000. MMWR Surveill Summ. 2003 Jun 20;52(3):1-8.
Image from "Number of Tetanus Cases Reported Among Persons With Diabetes or Injection-Drug Use (IDU), by Age Group." Pascual FB, McGinley EL, Zanardi LR, et al: Tetanus surveillance—United States, 1998−2000. MMWR Surveill Summ. 2003 Jun 20;52(3):1-8.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.