Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Metabolic Alkalosis Differential Diagnoses

  • Author: Christie P Thomas, MBBS, FRCP, FASN, FAHA; Chief Editor: Vecihi Batuman, MD, FACP, FASN  more...
 
Updated: Jul 21, 2016
 
 

Diagnostic Considerations

Severe metabolic alkalosis is a life-threatening condition; recognizing and treating the condition appropriately is important. The diagnosis of metabolic alkalosis is difficult to miss in patients in the intensive care unit (ICU) because arterial blood gases (ABGs) are measured routinely in most of these patients.

In non-ICU patients, metabolic alkalosis is suspected if electrolytes show an elevated carbon dioxide level. An elevated carbon dioxide level may also be secondary to respiratory acidosis. Because treatments for the 2 conditions differ, differentiating between them by reviewing the clinical condition of the patient and performing ABGs if the elevation in carbon dioxide is severe is important. In addition, check serum K+ and ionized Ca2+ because metabolic alkalosis is often associated with hypokalemia and decreased serum ionized Ca2+ levels.

For a discussion of metabolic alkalosis in children, see Pediatric Metabolic Alkalosis. For a general review of acid-base regulation, see Metabolic Acidosis.

Differential Diagnoses

 
 
Contributor Information and Disclosures
Author

Christie P Thomas, MBBS, FRCP, FASN, FAHA Professor, Department of Internal Medicine, Division of Nephrology, Departments of Pediatrics and Obstetrics and Gynecology, Medical Director, Kidney and Kidney/Pancreas Transplant Program, University of Iowa Hospitals and Clinics

Christie P Thomas, MBBS, FRCP, FASN, FAHA is a member of the following medical societies: American College of Physicians, American Heart Association, American Society of Nephrology, Royal College of Physicians

Disclosure: Nothing to disclose.

Coauthor(s)

Sameer Yaseen, MD Staff Nephrologist, Department of Internal Medicine, Division of Nephrology, Mercy Hospital of Des Moines

Sameer Yaseen, MD is a member of the following medical societies: Renal Physicians Association, American Society of Nephrology

Disclosure: Nothing to disclose.

Chief Editor

Vecihi Batuman, MD, FACP, FASN Huberwald Professor of Medicine, Section of Nephrology-Hypertension, Tulane University School of Medicine; Chief, Renal Section, Southeast Louisiana Veterans Health Care System

Vecihi Batuman, MD, FACP, FASN is a member of the following medical societies: American College of Physicians, American Society of Hypertension, American Society of Nephrology, International Society of Nephrology

Disclosure: Nothing to disclose.

Acknowledgements

Eleanor Lederer, MD Professor of Medicine, Chief, Nephrology Division, Director, Nephrology Training Program, Director, Metabolic Stone Clinic, Kidney Disease Program, University of Louisville School of Medicine; Consulting Staff, Louisville Veterans Affairs Hospital

Eleanor Lederer, MD is a member of the following medical societies: American Association for the Advancement of Science, American Federation for Medical Research, American Society for Biochemistry and Molecular Biology, American Society for Bone and Mineral Research, American Society of Nephrology, American Society of Transplantation, International Society of Nephrology, Kentucky Medical Association, National Kidney Foundation, and Phi Beta Kappa

Disclosure: Dept of Veterans Affairs Grant/research funds Research

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Mehler PS, Walsh K. Electrolyte and acid-base abnormalities associated with purging behaviors. Int J Eat Disord. 2016 Mar. 49 (3):311-8. [Medline].

  2. Medarov BI. Milk-alkali syndrome. Mayo Clin Proc. 2009 Mar. 84(3):261-7. [Medline]. [Full Text].

  3. Tentori F, Karaboyas A, Robinson BM, Morgenstern H, Zhang J, Sen A, et al. Association of dialysate bicarbonate concentration with mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2013 Oct. 62(4):738-46. [Medline]. [Full Text].

  4. Gennari FJ, Weise WJ. Acid-base disturbances in gastrointestinal disease. Clin J Am Soc Nephrol. 2008 Nov. 3(6):1861-8. [Medline].

  5. Weise WJ, Serrano FA, Fought J, Gennari FJ. Acute electrolyte and acid-base disorders in patients with ileostomies: a case series. Am J Kidney Dis. 2008 Sep. 52(3):494-500. [Medline].

  6. Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol. 2007 Jan. 2(1):162-74. [Medline]. [Full Text].

  7. Stewart PA. How to understand acid-base: a quantitative acid-base primer for biology and medicine. [AcidBase.org]. Available at http://www.acidbase.org/index.php?show=sb. Accessed: Aug 10, 2009.

  8. Kaplan LJ, Cheung NH, Maerz L, et al. A physicochemical approach to acid-base balance in critically ill trauma patients minimizes errors and reduces inappropriate plasma volume expansion. J Trauma. 2009 Apr. 66(4):1045-51. [Medline].

  9. Fontana V, Santinelli S, Internullo M, Marinelli P, Sardo L, Alessandrini G, et al. Effect of acetazolamide on post-NIV metabolic alkalosis in acute exacerbated COPD patients. Eur Rev Med Pharmacol Sci. 2016. 20 (1):37-43. [Medline].

  10. Gennari FJ. Pathophysiology of metabolic alkalosis: a new classification based on the centrality of stimulated collecting duct ion transport. Am J Kidney Dis. 2011 Oct. 58(4):626-36. [Medline].

Previous
Next
 
Algorithm for metabolic alkalosis.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.