Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Renovascular Hypertension Clinical Presentation

  • Author: Rebecca J Schmidt, DO, FACP, FASN; Chief Editor: Vecihi Batuman, MD, FACP, FASN  more...
 
Updated: May 13, 2016
 

History

Patients with renovascular hypertension (RVHT) may be asymptomatic, and the hypertension may be discovered during routine examination or preparation for surgical treatment of another problem. In most pediatric studies, more than one half of children who were found to be hypertensive were asymptomatic, or their hypertension was discovered during a routine examination. When symptoms are present, they are nonspecific and are often related to the organ systems most affected by hypertension.

The most common symptom of RVHT seems to be headache. Other neurologic symptoms include altered mental status, vision changes, vomiting, seizures, coma, encephalopathy, hyperexcitability, and hyperirritability. Symptoms of congestive heart failure (eg, decreased energy, edema, and shortness of breath) may also develop. In patients with abdominal aortic narrowing, claudication may be present. Some children have anorexia, and infants or young children often present with failure to thrive. Occasionally, patients have oliguric renal failure.

Clinical risk factors for RVHT include the following:

  • A history of hypertension with azotemia (serum creatinine level >1.5 mg/dL) and modest proteinuria (levels <1.5 g/day)
  • Progressive renal insufficiency
  • Accelerated or malignant hypertension
  • Severe hypertension (diastolic blood pressure >120 mm Hg)
  • Hypertension with an asymmetric kidney
  • Paradoxical worsening of hypertension with diuretic therapy
  • Hypertension refractory to standard therapy

The following are common findings from the history:

  • Onset of hypertension occurring in patients younger than 30 years without risk factors
  • Abrupt onset of severe (stage II) hypertension (greater than 160/100 mm Hg in patients older than 55 years)
  • Severe or resistant hypertension despite appropriately dosed multidrug (>3 agents) antihypertensive therapy
  • Abrupt increase in blood pressure over previously stable baseline in patients with previously well-controlled essential hypertension, as well as patients with known renal artery stenosis (RAS)
  • Negative family history for hypertension
  • Smoking tobacco products
  • Acute sustained rise in serum creatinine levels with angiotensin-converting enzyme (ACE) inhibitor therapy
  • Unprovoked hypokalemia (serum potassium level <3.6 mEq/L, often associated with metabolic alkalosis)
  • Symptoms of atherosclerotic disease at other sites, in the presence of moderate-to-severe hypertension, particularly in patients older than 50 years
  • Recurrent pulmonary edema in the setting of moderate-to-severe hypertension
  • Moderate-to-severe hypertension in a patient with an unexplained atrophic kidney, significantly asymmetric kidneys (>1.5 cm difference), or diffuse atherosclerosis
Next

Physical Examination

Findings suggestive of long-standing hypertension may or may not be evident upon physical examination. Such findings may include the following:

  • Recurrent flash pulmonary edema or unexplained episodes of congestive heart failure
  • Advanced funduscopic changes
  • Abdominal bruit – A clear abdominal bruit is heard in 46% of patients with RVHT, as well as in 9% of patients with essential hypertension; however, innocent bruits are common in younger individuals; systolic-diastolic bruits in combination with hypertension are suggestive of RVHT

Upon physical examination, pediatric patients have a blood pressure elevation above the 95th percentile for their age, sex, and height. Generally, children with blood pressures higher than 140/100 mm Hg are thought to be more likely to have secondary hypertension, and RVHT is more likely in children with higher blood pressure.

Eye examination may reveal retinopathy and retinal hemorrhages. Patients with heart failure may present with tachypnea, cardiomegaly, and vasomotor instability leading to mottling and acrocyanosis. Lower-extremity pulses may be diminished with aortic coarctation, whether thoracic or abdominal.

An enlarged liver may be palpated, and an abdominal bruit may be auscultated. Patients with tumors impinging on renal vasculature may present with an abdominal mass in the area of the kidney. Rarely, signs or symptoms of visceral artery involvement are present because of the extensive collateralization that occurs.

Café-au-lait macules are classic findings in the presentation of neurofibromatosis. Patients with neurofibromatosis may also have macrocephaly, neurofibromas, dermal neurofibromas, and axillary freckling.

Previous
Next

Complications

RVHT can develop into chronic hypertension, and patients usually present with malignant hypertension. If left untreated, this can produce serious consequences, including coma and death. Chronic hypertension can damage blood vessels, leading to such pathology as plaques, aneurysms, claudication, and dissection.

The main comorbidity of RVHT is directly related to its capacity to lead to end-organ damage. Neurologic manifestations are often the presenting symptoms because severe hypertension can lead to retinopathy, headaches, dizziness, confusion, seizures, and stroke. The heart is frequently affected because increased afterload leads to congestive heart failure and ventricular hypertrophy.

Renovascular hypertension may also damage the kidneys, especially when significant stenosis of the perfusing vessels is present. Although they are rare, oliguric renal failure and ischemic kidneys have been reported with renovascular disease.

Finally, RVHT is often associated with failure to thrive in young children.

Previous
 
 
Contributor Information and Disclosures
Author

Rebecca J Schmidt, DO, FACP, FASN Professor of Medicine, Section Chief, Department of Medicine, Section of Nephrology, West Virginia University School of Medicine

Rebecca J Schmidt, DO, FACP, FASN is a member of the following medical societies: American College of Physicians, American Medical Association, American Society of Nephrology, International Society of Nephrology, National Kidney Foundation, Renal Physicians Association, West Virginia State Medical Association

Disclosure: Nothing to disclose.

Coauthor(s)

Muhammad R Mustafa, MD Assistant Professor of Medicine, Section of Nephrology, West Virginia University Health Sciences Center

Muhammad R Mustafa, MD is a member of the following medical societies: American Society of Nephrology, National Kidney Foundation

Disclosure: Nothing to disclose.

Chief Editor

Vecihi Batuman, MD, FACP, FASN Huberwald Professor of Medicine, Section of Nephrology-Hypertension, Tulane University School of Medicine; Chief, Renal Section, Southeast Louisiana Veterans Health Care System

Vecihi Batuman, MD, FACP, FASN is a member of the following medical societies: American College of Physicians, American Society of Hypertension, American Society of Nephrology, International Society of Nephrology

Disclosure: Nothing to disclose.

Acknowledgements

George R Aronoff, MD Director, Professor, Departments of Internal Medicine and Pharmacology, Section of Nephrology, Kidney Disease Program, University of Louisville School of Medicine

George R Aronoff, MD is a member of the following medical societies: American Federation for Medical Research, American Society of Nephrology, Kentucky Medical Association, and National Kidney Foundation

Disclosure: Nothing to disclose.

Andre Hebra, MD Chief, Division of Pediatric Surgery, Professor of Surgery and Pediatrics, Medical University of South Carolina College of Medicine

Andre Hebra, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American College of Surgeons, American Medical Association, American Pediatric Surgical Association, Association for Academic Surgery, Society of Laparoendoscopic Surgeons, South Carolina Medical Association, Southeastern Surgical Congress, and Southern Medical Association

Disclosure: Nothing to disclose.

Mary C Mancini, MD, PhD Professor and Chief, Cardiothoracic Surgery, Department of Surgery, Louisiana State University Health Sciences Center-Shreveport

Mary C Mancini, MD, PhD is a member of the following medical societies: American Association for Thoracic Surgery, American College of Surgeons, American Surgical Association, Phi Beta Kappa, Society of Thoracic Surgeons, and Southern Surgical Association

Disclosure: Nothing to disclose.

John Myers, MD Director, Pediatric and Congenital Cardiovascular Surgery, Departments of Surgery and Pediatrics, Professor, Penn State Children's Hospital, Milton S Hershey Medical Center

John Myers, MD is a member of the following medical societies: American Association for Thoracic Surgery, American College of Cardiology, American College of Surgeons, American Heart Association, American Medical Association, Congenital Heart Surgeons Society, Pennsylvania Medical Society, and Society of Thoracic Surgeons

Disclosure: Nothing to disclose.

Jonah Odim, MD, PhD, MBA Senior Medical Officer, Transplantation Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health

Jonah Odim, MD, PhD, MBA is a member of the following medical societies: American College of Cardiology, American College of Chest Physicians, American College of Physician Executives, American College of Surgeons, American Heart Association, American Society for Artificial Internal Organs, American Society of Transplant Surgeons, Association for Academic Surgery, Association for Surgical Education, Canadian Cardiovascular Society,International Society for Heart and Lung Transplantation, National Medical Association, New York Academy of Sciences, Royal College of Physicians and Surgeons of Canada, Society of Critical Care Medicine, and Society of Thoracic Surgeons

Disclosure: Nothing to disclose.

L Michael Prisant, MD, FACC Director of Hypertension and Clinical Pharmacology Unit, Professor of Medicine, Department of Medicine, Medical College of Georgia

L Michael Prisant, MD, FACC is a member of the following medical societies: American College of Cardiology, American College of Chest Physicians, American College of Clinical Pharmacology, American College of Forensic Examiners, American College of Physicians, American Heart Association, and American Medical Association

Disclosure: Abbott Grant/research funds Investigator; Boehringer-Ingelheim Grant/research funds Other; Eli Lilly None Investigator; Novartis None Investigator; Abbott, Boehringer-Ingelheim, Forest, Gilead, Merck, Merck/Schering-Plough, Novartis, Oscient, Sciele, SunTech Medical Consulting fee Consulting; Abbott, Boehringer-Ingelheim, Merck, Merck/Schering-Plough, Novartis, Oscient Honoraria Speaking and teaching

Sandeep S Soman, MBBS, MD, DNB Senior Staff Physician, Department of Internal Medicine, Division of Nephrology and Hypertension, Henry Ford Hospital

Sandeep S Soman, MBBS, MD, DNB is a member of the following medical societies: American College of Physicians, American Medical Association, and American Society of Nephrology

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Reference Salary Employment

Patrick B Thomas, MD Fellow, Department of Pediatric Surgery, Texas Children's Hospital

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. Mehta AN, Fenves A. Current opinions in renovascular hypertension. Proc (Bayl Univ Med Cent). 2010 Jul. 23(3):246-9. [Medline]. [Full Text].

  2. [Guideline] Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the... Circulation. 2006 Mar 21. 113(11):e463-654. [Medline]. [Full Text].

  3. Stanley JC, Zelenock GB, Messina LM, Wakefield TW. Pediatric renovascular hypertension: a thirty-year experience of operative treatment. J Vasc Surg. 1995 Feb. 21(2):212-26; discussion 226-7. [Medline].

  4. Tyagi S, Kaul UA, Satsangi DK, Arora R. Percutaneous transluminal angioplasty for renovascular hypertension in children: initial and long-term results. Pediatrics. 1997 Jan. 99(1):44-9. [Medline].

  5. Williams KM, Shah AN, Morrison D, Sinha MD. Hypertensive retinopathy in severely hypertensive children: demographic, clinical, and ophthalmoscopic findings from a 30-year British cohort. J Pediatr Ophthalmol Strabismus. 2013 Jul-Aug. 50(4):222-8. [Medline].

  6. [Guideline] European Stroke Organisation, Tendera M, Aboyans V, et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2011 Nov. 32 (22):2851-906. [Medline]. [Full Text].

  7. [Guideline] Parikh SA, Shishehbor MH, Gray BH, White CJ, Jaff MR. SCAI expert consensus statement for renal artery stenting appropriate use. Catheter Cardiovasc Interv. 2014 Dec 1. 84 (7):1163-71. [Medline]. [Full Text].

  8. [Guideline] National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004 Aug. 114 (2 Suppl 4th Report):555-76. [Medline]. [Full Text].

  9. Roditi G. MR in hypertension. J Magn Reson Imaging. 2011 Nov. 34(5):989-1006. [Medline].

  10. Gloviczki ML, Lerman LO, Textor SC. Blood oxygen level-dependent (BOLD) MRI in renovascular hypertension. Curr Hypertens Rep. 2011 Oct. 13(5):370-7. [Medline].

  11. Textor SC, Glockner JF, Lerman LO, et al. The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol. 2008 Apr. 19(4):780-8. [Medline]. [Full Text].

  12. Textor SC, Lerman L. Renovascular hypertension and ischemic nephropathy. Am J Hypertens. 2010 Nov. 23(11):1159-69. [Medline]. [Full Text].

  13. Textor SC, Lerman L, McKusick M. The uncertain value of renal artery interventions: where are we now?. JACC Cardiovasc Interv. 2009 Mar. 2(3):175-82. [Medline]. [Full Text].

  14. Bakris GL, Townsend RR, Flack JM, Brar S, Cohen SA, D'Agostino R, et al. 12-month blood pressure results of catheter-based renal artery denervation for resistant hypertension: the SYMPLICITY HTN-3 trial. J Am Coll Cardiol. 2015 Apr 7. 65 (13):1314-21. [Medline].

  15. Esler M. Illusions of truths in the Symplicity HTN-3 trial: generic design strengths but neuroscience failings. J Am Soc Hypertens. 2014 Aug. 8 (8):593-8. [Medline].

  16. Jensen G, Annerstedt M, Klingenstierna H, Herlitz H, Aurell M, Hellström M. Survival and quality of life after renal angioplasty: a five-year follow-up study. Scand J Urol Nephrol. 2009. 43(3):236-41. [Medline].

  17. Guzzetta PC. Arterial disease. Surgery of Infants and Children: Scientific Principles and Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 1997:1722-4.:

  18. Casalini E, Sfondrini MS, Fossali E. Two-year clinical follow-up of children and adolescents after percutaneous transluminal angioplasty for renovascular hypertension. Invest Radiol. 1995 Jan. 30(1):40-3. [Medline].

  19. Jokhi PP, Ramanathan K, Walsh S, Fung AY, Saw J, Fox RS, et al. Experience of stenting for atherosclerotic renal artery stenosis in a cardiac catheterization laboratory: technical considerations and complications. Can J Cardiol. 2009 Aug. 25(8):e273-8. [Medline]. [Full Text].

  20. Leesar MA, Varma J, Shapira A, Fahsah I, Raza ST, Elghoul Z, et al. Prediction of hypertension improvement after stenting of renal artery stenosis: comparative accuracy of translesional pressure gradients, intravascular ultrasound, and angiography. J Am Coll Cardiol. 2009 Jun 23. 53(25):2363-71. [Medline].

  21. Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, Reid DM, et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med. 2014 Jan 2. 370 (1):13-22. [Medline]. [Full Text].

  22. Saad A, Herrmann SM, Crane J, Glockner JF, McKusick MA, Misra S, et al. Stent revascularization restores cortical blood flow and reverses tissue hypoxia in atherosclerotic renal artery stenosis but fails to reverse inflammatory pathways or glomerular filtration rate. Circ Cardiovasc Interv. 2013 Aug. 6(4):428-35. [Medline]. [Full Text].

  23. Noory E, Sritharan K, Zeller T. To Stent or Not to Stent? Update on Revascularization for Atherosclerotic Renovascular Disease. Curr Hypertens Rep. 2016 Jun. 18 (6):45. [Medline].

  24. Guzzetta PC, Potter BM, Ruley EJ, Majd M, Bock GH. Renovascular hypertension in children: current concepts in evaluation and treatment. J Pediatr Surg. 1989 Dec. 24(12):1236-40. [Medline].

  25. O'Neill JA Jr. Renovascular hypertension. Semin Pediatr Surg. 1994 May. 3(2):114-23. [Medline].

  26. Berkowitz HD, O'Neill JA Jr. Renovascular hypertension in children. Surgical repair with special reference to the use of reinforced vein grafts. J Vasc Surg. 1989 Jan. 9(1):46-55. [Medline].

  27. Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, Baigent C, et al. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med. 2009 Nov 12. 361(20):1953-62. [Medline]. [Full Text].

  28. Böhlke M, Barcellos FC. From the 1990s to CORAL (Cardiovascular Outcomes in Renal Atherosclerotic Lesions) trial results and beyond: does stenting have a role in ischemic nephropathy?. Am J Kidney Dis. 2015 Apr. 65 (4):611-22. [Medline].

 
Previous
Next
 
Magnetic resonance angiography (MRA) showing renal artery stenosis. Courtesy of Patricia Stoltzfus, MD, Chief of Interventional Radiology, West Virginia University.
Proposed pathogenesis of renovascular hypertension.
Angiogram showing bilateral renal artery stenosis. Courtesy of Department of Radiology, Henry Ford Hospital.
After percutaneous transluminal angioplasty (right renal artery). Courtesy of Department of Radiology, Henry Ford Hospital.
After percutaneous transluminal angioplasty and stent placement (left renal artery). Courtesy of Department of Radiology, Henry Ford Hospital.
Close-up of the Palmaz stent. Courtesy of Department of Radiology, Henry Ford Hospital.
Aortogram of 4-year-old child with renovascular hypertension caused by stenosis of left renal artery. Note that left kidney has 2 renal arteries and that artery to superior pole has stenosis.
Close-up view of aortogram of 4-year-old child. Stenotic lesion begins at ostium of left superior renal artery. This lesion was caused by fibromuscular dysplasia and did not respond well to balloon angioplasty.
Operative photograph of 4-year-old child. Patient underwent aortorenal bypass with reinforced saphenous vein graft. Inferior pole renal artery was preserved.
Aortogram of 8-year-old child with neurofibromatosis and renovascular hypertension caused by right renal artery stenosis.
Operative photograph of 8-year-old child. Aortorenal bypass was performed with Dacron-reinforced saphenous vein graft. Aorta is completely exposed, and graft is visible inferior to native renal artery.
Although nephrectomy is rarely indicated in treatment of renovascular hypertension in children, it can be safely performed with modern pediatric surgical laparoscopy technique. This 3-month-old child with renal dysplasia and refractory hypertension underwent laparoscopic nephrectomy. Photograph illustrates patient positioning and placement of small trocars at time of nephrectomy. Dysplastic kidney was easily removed through slightly enlarged umbilical incision.
3-month-old child immediately after laparoscopic nephrectomy. This patient was discharged from hospital 2 days after surgery. This approach eliminates need for large incisions and facilitates recovery from surgery, minimizing pain and length of hospital stay.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.