Hip Arthroscopy

Updated: May 31, 2016
  • Author: Bart Eastwood, DO; Chief Editor: Dinesh Patel, MD, FACS  more...
  • Print
Overview

Background

The first investigations into hip arthroscopy date back to the 1930s. [1, 2]  However, it was not until the 1980s that this procedure began its ascent as a mainstream hip treatment. [3]  The indications for hip arthroscopy have become considerably broader over the past 10 years, expanding to include not only intra-articular conditions but also various extra-articular processes and peripheral hip issues. [4] Outcomes may vary substantially, depending on the specific pathologic condition that the procedure is being performed to address. 

Next:

Indications

One of the most common indications for hip arthroscopy is management of femoroacetabular impingement (FAI) and associated labral tears. [5] Loose bodies, chondral pathology, degenerative joint disease, avascular necrosis (AVN), synovial disease, instability, internal and external snapping hip, and joint sepsis have all been treated with this approach in the literature. [6, 7, 8]  The application of hip arthroscopy to the treatment of extra-articular issues, including hip abductor tears and other peripheral and posterior compartment pathologic conditions, has expanded greatly as well. Arthroscopy has also been used after total hip arthroplasty and hip resurfacing in some cases. [9, 10, 11]

Previous
Next:

Contraindications

Careful patient selection is paramount for achieving good outcomes after hip arthroscopy. Systemic illness, local wounds, and infection are all contraindications for the procedure. Disorders that affect bone strength or restrict joint mobility may affect the ability to access the joint. Bone must be able to withstand the traction forces of the procedure, and the joint must be mobile enough to allow distraction and manipulation.

Advanced arthritis and degenerative joint disease may be contraindications, but the level of disease that a patient may have while remaining capable of being helped by surgical treatment is still a matter of debate. [12] Significant obesity may be a contraindication in some patients whose habitus exceeds the physical limits of the surgical instruments. [7, 13, 8, 11]

Previous
Next:

Technical Considerations

Anatomic considerations

Proper portal placement for hip arthroscopy depends on an understanding of the anatomy about the hip. Anterior and medial structures to be taken into account include the femoral artery, the femoral vein, and the femoral nerve (see the images below); typically, these are 3.2 cm from the anterior portal. [14] Posteriorly, the sciatic nerve lies 2.9 cm from the posterior portal; it may be at risk if the portal drifts too far that direction. Superiorly, the superior gluteal nerve and artery lie 4.4 cm from the anterior and posterior lateral portals.

Frontal view of hip area, showing femoral vein, ne Frontal view of hip area, showing femoral vein, nerve, and artery, along with tensor fasciae latae. Courtesy of Wikimedia Commons.
Cross-section at hip, showing locations of femoral Cross-section at hip, showing locations of femoral nerve, artery, and vein. Courtesy of Wikimedia Commons.

More anteriorly, the lateral femoral cutaneous nerve (LFCN; see the images below), along with its terminal branches, lies closer to a portal than any other significant neurovascular structure and is the most commonly affected nerve in terms of complications. A study by Byrd et al found that the anterior portal came within 0.3 cm of LFCN branches. [14, 15]

Location of lateral femoral cutaneous nerve. Location of lateral femoral cutaneous nerve.
Location of femoral neurovascular structures and l Location of femoral neurovascular structures and lateral femoral cutaneous nerve in relation to acetabulum. Courtesy of Wikimedia Commons.

Best practices

Because hip arthroscopy is still a relatively new procedure, opinions continue to vary with regard to several aspects of its performance. A 2015 article on best practices surveyed 27 high-volume hip arthroscopists and reported the following results [16] :

  • Position and setup - 100% used the supine position and employed fluoroscopy for initial access
  • Procedures done by the group - Labral repair, 100%; FAI correction, 100%
  • Anchors used - Knotless, 59%; knotted, 30%; both, 11%
  • Capsule closure - Always, 11%; never, 11%; decision based on findings and underlying condition, 78%
  • Postoperative bracing -  Routine, 29.6%; in some cases, 29.6%; never, 40.7%; average time of bracing, 3.4 weeks
  • Weightbearing after the procedure - 92.5% limited weightbearing after surgery for a mean of 2.1 weeks
  • Postoperative intra-articular injections - Local anesthetic, 55.6%; platelet-rich plasma (PRP), 7.5%; nothing, 37% 
  • Heterotopic ossification prophylaxis - 100% prescribed some form of prophylaxis for 3 weeks after the procedure, either a nonsteroidal anti-inflammatory drug (NSAID; 89%) or aspirin (11%)
Previous
Next:

Outcomes

A systemic review that examined surgical treatment of FAI documented reduction of pain and improvement of function in 68-97% of patients. [17]  Success has also been reported in athletic populations, with 75% of athletes returning to the same level of competition. [18]  Many studies of long-term outcomes are currently under way. Although it has been theorized that surgical intervention may have an effect on the natural history of FAI as it relates to osteoarthritis of the hip, such intervention cannot be recommended for prophylaxis in asymptomatic hips. [19, 20]

Previous