Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Follicular Thyroid Carcinoma

  • Author: Luigi Santacroce, MD; Chief Editor: Jules E Harris, MD, FACP, FRCPC  more...
 
Updated: Jul 15, 2016
 

Background

Cancer of the thyroid is the most common endocrine malignancy. Thyroid neoplasms arising from follicular cells (adenoma, carcinoma, and follicular/papillary carcinoma) show a broad range of overlapping clinical and cytologic features. A clear distinction between benign and malignant disease based solely on cytological examination of a needle biopsy specimen may be difficult. For this reason, a surgical procedure to remove all or a large portion of the thyroid gland may be necessary to obtain sufficient tissue for a definitive diagnosis of follicular thyroid cancer. Pathological examination showing capsular or vascular invasion may be required for this determination.

Follicular thyroid carcinoma (FTC) is a well-differentiated tumor. In fact, FTC resembles the normal microscopic pattern of the thyroid. FTC originates in follicular cells and is the second most common cancer of the thyroid, after papillary carcinoma. Follicular and papillary thyroid cancers are considered to be differentiated thyroid cancers; together they make up 95% of thyroid cancer cases.

Papillary/follicular carcinoma must be considered a variant of papillary thyroid carcinoma (mixed form), and Hurthle cell carcinoma should be considered a variant of FTC.

Thyroid cancers are found more often in patients with a history of low-dose or high-dose external irradiation to the cervical or thyroid area. The most common thyroid tumor to develop after exposure to radiation is papillary thyroid cancer. Patients whose thyroid cancer has developed following radiation to the head and neck area may present with more extensive disease. Overall, about 5% of patients with thyroid cancer have metastases beyond the cervical or mediastinal area on initial presentation, as do 2-3% of patients with papillary thyroid cancer and 11% of patients with follicular thyroid cancer. Some 5-10% of patients with thyroid cancer will die of their disease.

Despite its well-differentiated characteristics, follicular carcinoma may be overtly or minimally invasive. In fact, FTC tumors may spread easily to other organs. Life expectancy of affected patients is related to their age; the prognosis is better for younger patients than for patients who are older than 45 years. Patients with FTC are more likely to develop lung and bone metastases than are patients with papillary thyroid cancer. The bone metastases in FTC are osteolytic. Older patients have an increased risk of developing bone and lung metastases.

Current National Comprehensive Cancer Network (NCCN) guidelines recommend lobectomy plus isthmusectomy as the initial surgery for patients with follicular neoplasms, with prompt completion of thyroidectomy if invasive FTC is found on the final histologic section. The NCCN recommends total thyroidectomy as the initial procedure only if invasive cancer or metastatic disease is apparent at the time of surgery, or if the patient wishes to avoid a second, completion thyroidectomy should the pathologic review reveal cancer.[1]

In a study by Asari et al of 207 patients with FTC, the 127 patients with minimally invasive growth had no lymph node metastases. According to the authors, total thyroidectomy is recommended for all patients with FTC, but patients with widely invasive FTC need more aggressive surgery because of a higher tendency toward lymph node metastases. Patients with minimally invasive disease have an excellent prognosis with a limited need for nodal surgery, according to this study.[2]

Next

Pathophysiology

Activating point mutations in the ras oncogene are well known in patients with follicular adenoma and carcinoma,[3, 4, 5] especially in poorly differentiated (55%) and anaplastic carcinoma (52%).

As a result of such mutations, p21-RAS becomes locked in its active conformation, leading to the constitutive activation of the protein and tumor development.[6] The biochemical pathways that this process follows may be therapeutic targets for FTC.[7]

Accidental (not diagnostic) x-ray exposure may influence both occurrence and pattern of ras mutation.

A study of differential gene expression profiling of aggressive and nonaggressive follicular carcinomas identified 94 genes that distinguish follicular carcinomas from follicular adenomas (including PBP and CKS2) and 4 genes that distinguish aggressive follicular carcinomas from nonaggressive follicular carcinomas (NID2, TM7SF2, TRIM2, and GLTSCR2).[8]

Previous
Next

Epidemiology

Frequency

United States

The American Cancer Society (ACS) estimates that 64,300 new thyroid cancers will occur in 2016, 14,950 in men and 49,350 in women; the ACS estimates 1980 deaths from thyroid cancer in 2016, 910 in men and 1070 in women.[9] In the United States, about 10-15% of all thyroid cancers are follicular.

International

Thyroid cancers are quite rare, accounting for only 1.5% of all cancers in adults and 3% in children. The highest incidence of thyroid carcinomas in the world is among female Chinese residents of Hawaii. In Hawaii, incidence of FTC ranges from 10-30 new cases a year per million inhabitants. In recent years, the frequency of FTC has appeared to increase; however, this increase is related to improvement in diagnostic techniques and a successful campaign of information about this carcinoma.

Of all thyroid cancers, 17-20% are follicular. According to world epidemiologic data, follicular carcinoma is the second most common thyroid neoplasm; in some geographic areas, however, FTC is the most common thyroid tumor. The relative incidence of follicular carcinoma is higher in areas of endemic goiter.

Mortality/Morbidity

In contrast to other cancers, thyroid cancer is almost always curable. In fact, most FTCs are slow growing and are associated with a very favorable prognosis. Mean mortality rates are 1.5% in females and 1.4% in males.

Mean survival rate after 10 years is 60%. Metastases are still rare and are due to angioinvasion and hematogenous spread. Lymphatic involvement is even more rare, occurring in fewer than 10% of cases. In some patients, metastases are found at diagnosis.

Autopsy reviews show a high incidence of microscopic foci of thyroid carcinoma worldwide.

Unlike medullary thyroid carcinoma, FTC is not part of a multiple endocrine neoplasia (MEN) syndrome.

Race

FTC occurs more frequently in whites than in blacks.

Sex

Incidence is higher in women than men by a factor of 2-3 or more. The ratio varies by patient age:

  • In patients younger than 19 years, the female-to-male ratio is 4:1
  • In patients aged 20-45 years, the female-to-male ratio is 3:1
  • In patients older than 45 years, the female-to-male ratio is 4:1

In postmenopausal women, a weak positive association (relative risk < 1.20) has been found between increased body mass index and thyroid cancer.[10]

Age

Thyroid carcinoma is common in all age groups, with an age range of 15-84 years (mean age, 49 years). In older adults, FTC tends to occur more frequently than papillary carcinoma.

Previous
 
 
Contributor Information and Disclosures
Author

Luigi Santacroce, MD Assistant Professor, Medical School, State University at Bari, Italy

Disclosure: Nothing to disclose.

Coauthor(s)

Lodovico Balducci, MD Professor, Oncology Fellowship Director, Department of Internal Medicine, Division of Adult Oncology, H Lee Moffitt Cancer Center and Research Institute, University of South Florida Morsani College of Medicine

Lodovico Balducci, MD is a member of the following medical societies: American Association for the Advancement of Science, American Association for Cancer Research, American College of Physicians, American Geriatrics Society, American Society of Hematology, New York Academy of Sciences, American Society of Clinical Oncology, Southern Society for Clinical Investigation, International Society for Experimental Hematology, American Federation for Clinical Research, American Society of Breast Disease

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Benjamin Movsas, MD 

Benjamin Movsas, MD is a member of the following medical societies: American College of Radiology, American Radium Society, American Society for Radiation Oncology

Disclosure: Nothing to disclose.

Chief Editor

Jules E Harris, MD, FACP, FRCPC Clinical Professor of Medicine, Section of Hematology/Oncology, University of Arizona College of Medicine, Arizona Cancer Center

Jules E Harris, MD, FACP, FRCPC is a member of the following medical societies: American Association for the Advancement of Science, American Society of Hematology, Central Society for Clinical and Translational Research, American Society of Clinical Oncology

Disclosure: Nothing to disclose.

Additional Contributors

Philip Schulman, MD Chief, Medical Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center

Philip Schulman, MD is a member of the following medical societies: American Association for Cancer Research, American College of Physicians, American Society of Hematology, Medical Society of the State of New York

Disclosure: Nothing to disclose.

Acknowledgements

Silvia Gagliardi, MD Consulting Staff, Department of Surgery, Medical Center Vita, Italy

Disclosure: Nothing to disclose.

References
  1. [Guideline] NCCN Clinical Practice Guidelines in Oncology: Thyroid Carcinoma Version 1.2016. National Comprehensive Cancer Network. Available at http://www.nccn.org/professionals/physician_gls/PDF/thyroid.pdf. Accessed: July 15, 2016.

  2. Asari R, Koperek O, Scheuba C, Riss P, Kaserer K, Hoffmann M, et al. Follicular thyroid carcinoma in an iodine-replete endemic goiter region: a prospectively collected, retrospectively analyzed clinical trial. Ann Surg. 2009 Jun. 249(6):1023-31. [Medline].

  3. Johnson TL, Lloyd RV, Thor A. Expression of ras oncogene p21 antigen in normal and proliferative thyroidtissues. Am J Pathol. 1987 Apr. 127(1):60-5. [Medline].

  4. Wright PA, Lemoine NR, Mayall ES, et al. Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br J Cancer. 1989 Oct. 60(4):576-7. [Medline].

  5. Karga H, Lee JK, Vickery AL Jr, Thor A, Gaz RD, Jameson JL. Ras oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab. 1991 Oct. 73(4):832-6. [Medline].

  6. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989 Sep. 49(17):4682-9. [Medline].

  7. McCabe CJ. Moving towards the use of targeted therapies in thyroid cancer. Nat Clin Pract Endocrinol Metab. 2008 Nov. 4(11):604-5. [Medline].

  8. Williams MD, Zhang L, Elliott DD, et al. Differential gene expression profiling of aggressive and nonaggressive follicular carcinomas. Hum Pathol. 2011 Sep. 42(9):1213-20. [Medline]. [Full Text].

  9. Cancer Facts & Figures 2016. American Cancer Society. Available at http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf. Accessed: July 15, 2016.

  10. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008 Feb 16. 371(9612):569-78. [Medline].

  11. Handkiewcz-Junak D, Banasik T, Kolosza Z, Roskosz J, Kukulska A, Puch Z. Risk of malignant tumors in first-degree relatives of patients with differentiated thyroid cancer -- a hospital based study. Neoplasma. 2006. 53(1):67-72. [Medline].

  12. Williams ED, Abrosimov A, Bogdanova T, et al. Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness. Br J Cancer. 2004 Jun 1. 90(11):2219-24. [Medline].

  13. Zengi A, Karadeniz M, Erdogan M, et al. Does chernobyl accident have any effect on thyroid cancers in Turkey? Aretrospective review of thyroid cancers from 1982 to 2006. Endocr J. 2008 May. 55(2):325-30. [Medline].

  14. Ito Y, Uramoto H, Funa K, Yoshida H, Jikuzono T, Asahi S. Delta Np73 expression in thyroid neoplasms originating from follicular cells. Pathology. 2006 Jun. 38(3):205-9. [Medline].

  15. Xing P, Wu L, Zhang C, et al. Differentiation of benign from malignant thyroid lesions: calculation of the strain ratio on thyroid sonoelastography. J Ultrasound Med. 2011 May. 30(5):663-9. [Medline].

  16. Miyakawa M, Onoda N, Etoh M, et al. Diagnosis of thyroid follicular carcinoma by the vascular pattern and velocimetric parameters using high resolution pulsed and power Doppler ultrasonography. Endocr J. 2005 Apr. 52(2):207-12. [Medline].

  17. Palmedo H, Bucerius J, Joe A, Strunk H, Hortling N, Meyka S. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med. 2006 Apr. 47(4):616-24. [Medline].

  18. Hassan A, Khalid M, Riaz S, Nawaz MK, Bashir H. Follicular Thyroid Carcinoma: Disease Response Evaluation Using American Thyroid Association Risk Assessment Guidelines. Eur Thyroid J. 2015 Dec. 4 (4):260-5. [Medline]. [Full Text].

  19. Meadows KM, Amdur RJ, Morris CG, Villaret DB, Mazzaferri EL, Mendenhall WM. External beam radiotherapy for differentiated thyroid cancer. Am J Otolaryngol. 2006 Jan-Feb. 27(1):24-8. [Medline].

  20. Bikas A, Kundra P, Desale S, Mete M, O'Keefe K, Clark BG, et al. Phase 2 clinical trial of sunitinib as adjunctive treatment in patients with advanced differentiated thyroid cancer. Eur J Endocrinol. 2016 Mar. 174 (3):373-80. [Medline].

  21. Nixon IJ, Ganly I, Patel SG, Palmer FL, Whitcher MM, Tuttle RM, et al. Thyroid lobectomy for treatment of well differentiated intrathyroid malignancy. Surgery. 2012 Apr. 151(4):571-9. [Medline].

  22. Lee S, Ryu HR, Park JH, et al. Excellence in robotic thyroid surgery: a comparative study of robot-assisted versus conventional endoscopic thyroidectomy in papillary thyroid microcarcinoma patients. Ann Surg. 2011 Jun. 253(6):1060-6. [Medline].

  23. Brassard M, Borget I, Edet-Sanson A, et al. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J Clin Endocrinol Metab. 2011 May. 96(5):1352-9. [Medline].

  24. Sisson JC, Freitas J, McDougall IR, et al. Radiation safety in the treatment of patients with thyroid diseases by radioiodine 131I : practice recommendations of the American Thyroid Association. Thyroid. 2011 Apr. 21(4):335-46. [Medline].

  25. Carling T, Udelsman R. Thyroid Tumors. DeVita VT Jr, Lawrence TS, Rosenberg SA. DeVita, Hellman, and Rosenberg's Cancer: Principles and Practice of Oncology. 9th. Philadelphia: Lippincott Williams & Wilkins; 2011. 1457-1472.

  26. Huang SC, Wu VC, Lin SY, Sheu WH, Song YM, Lin YH, et al. Factors related to clinical hypothyroid severity in thyroid cancer patients after thyroid hormone withdrawal. Thyroid. 2009 Jan. 19(1):13-20. [Medline].

  27. Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012 May 3. 366(18):1674-85. [Medline].

  28. Ríos A, Rodríguez JM, Ferri B, Martínez-Barba E, Torregrosa NM, Parrilla P. Prognostic factors of follicular thyroid carcinoma. Endocrinol Nutr. 2014 Aug 21. [Medline].

  29. Sugino K, Ito K, Nagahama M, et al. Prognosis and prognostic factors for distant metastases and tumor mortality in follicular thyroid carcinoma. Thyroid. 2011 Jul. 21(7):751-7. [Medline].

  30. Hari CK, Kumar M, Abo-Khatwa MM, Adams-Williams J, Zeitoun H. Follicular variant of papillary carcinoma arising from lingual thyroid. Ear Nose Throat J. 2009 Jun. 88(6):[Medline].

  31. Arnaldi LA, Borra RC, Maciel RM, Cerutti JM. Gene expression profiles reveal that DCN, DIO1, and DIO2 are underexpressed in benign and malignant thyroid tumors. Thyroid. 2005 Mar. 15(3):210-21. [Medline].

  32. Baloch ZW, LiVolsi VA. Fine-needle aspiration of the thyroid: today andtomorrow. Best Pract Res Clin Endocrinol Metab. 2008 Dec. 22(6):929-39. [Medline].

  33. Cameselle-Teijeiro J, Pardal F, Eloy C, Ruiz-Ponte C, Celestino R, Castro P, et al. Follicular thyroid carcinoma with an unusual glomeruloid pattern of growth. Hum Pathol. 2008 Oct. 39(10):1540-7. [Medline].

  34. Castro P, Eknaes M, Teixeira MR, et al. Adenomas and follicular carcinomas of the thyroid display two major patterns of chromosomal changes. J Pathol. 2005 Jul. 206(3):305-11. [Medline].

  35. Chao TC, Lin JD, Chen MF. Surgical treatment of thyroid cancers with concurrent graves disease. Ann Surg Oncol. 2004 Apr. 11(4):407-12. [Medline].

  36. Clark JR, Lai P, Hall F, et al. Variables predicting distant metastases in thyroid cancer. Laryngoscope. 2005 Apr. 115(4):661-7. [Medline].

  37. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2006 Feb. 16(2):109-42. [Medline].

  38. D'Avanzo A, Treseler P, Ituarte PH, et al. Follicular thyroid carcinoma: histology and prognosis. Cancer. 2004 Mar 15. 100(6):1123-9. [Medline].

  39. Di Cristofaro J, Marcy M, Vasko V, Sebag F, Fakhry N, Wynford-Thomas D. Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: association of N-ras mutation in codon 61 with follicular variant. Hum Pathol. 2006 Jul. 37(7):824-30. [Medline].

  40. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006 Aug. 91(8):2892-9. [Medline].

  41. Eszlinger M, Krohn K, Kukulska A, et al. Perspectives and limitations of microarray-based gene expression profiling of thyroid tumors. Endocr Rev. 2007. 28(3):322-38. [Medline].

  42. Faquin WC. The thyroid gland: recurring problems in histologic and cytologic evaluation. Arch Pathol Lab Med. 2008 Apr. 132(4):622-32. [Medline].

  43. Farahati J, Geling M, Mader U, et al. Changing trends of incidence and prognosis of thyroid carcinoma in lower Franconia, Germany, from 1981-1995. Thyroid. 2004 Feb. 14(2):141-7. [Medline].

  44. Fernandes JK, Day TA, Richardson MS, Sharma AK. Overview of the management of differentiated thyroid cancer. Curr Treat Options Oncol. 2005 Jan. 6(1):47-57. [Medline].

  45. Fryknäs M, Wickenberg-Bolin U, Göransson H, Gustafsson MG, Foukakis T, Lee JJ. Molecular markers for discrimination of benign and malignant follicular thyroid tumors. Tumour Biol. 2006. 27(4):211-20. [Medline].

  46. Giorgadze TA, Baloch ZW, Pasha T, Zhang PJ, Livolsi VA. Lymphatic and blood vessel density in the follicular patterned lesions of thyroid. Mod Pathol. 2005 Nov. 18(11):1424-31. [Medline].

  47. Gosnell JE, Sackett WR, Sidhu S, et al. Minimal access thyroid surgery: technique and report of the first 25 cases. ANZ J Surg. 2004 May. 74(5):330-4. [Medline].

  48. Gyory F, Balazs G, Nagy EV. Differentiated thyroid cancer and outcome in iodine deficiency. Eur J Surg Oncol. 2004 Apr. 30(3):325-31. [Medline].

  49. Hall P, Adami HO. Thyroid Cancer. Adami HO, Hunter D, Trichopoulos D. eds. Textbook of Cancer Epidemiology. 2nd edition. Oxford University Press; 2008. 504-519.

  50. Ilias I, Alevizaki M, Lakka-Papadodima E, Koutras DA. Differentiated thyroid cancer in Greece: 1963-2000. Relation to demographic andenvironmental factors. Hormones. 2002 Jul-Sep. 1(3):174-8. [Medline].

  51. Kaya H, Barbaros U, Erbil Y, Bozbora A, Kapran Y, Aral F, et al. Metastatic thyroid carcinoma. N Z Med J. 2005 Oct 28. 118(1224):U1705. [Medline].

  52. Kebebew E, Clark OH. Differentiated thyroid cancer: "complete" rational approach. World J Surg. 2000 Aug. 24(8):942-51. [Medline].

  53. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006 Apr. 6(4):292-306. [Medline].

  54. Kuijt WJ, Huang SA. Children with differentiated thyroid cancer achieve adequate hyperthyrotropinemia within 14 days of levothyroxine withdrawal. J Clin Endocrinol Metab. 2005 Nov. 90(11):6123-5. [Medline].

  55. Kushwaha RA, Verma SK, Mahajan SV. Endobronchial metastasis of follicular thyroid carcinoma presenting as hemoptysis: a case report. J Cancer Res Ther. 2008. (1):44-5. [Medline].

  56. Lerma E, Mora J. Telomerase activity in "suspicious" thyroid cytology. Cancer. 2005 Dec 25. 105(6):492-7. [Medline].

  57. Lin JD, Chao TC. Follicular thyroid carcinoma: From diagnosis to treatment. Endocr J. 2006 Aug. 53(4):441-8. [Medline].

  58. Mazzaferri EL, Robbins RJ, Spencer CA, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003 Apr. 88(4):1433-41. [Medline].

  59. Muresan MM, Olivier P, Leclère J, et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer. 2008 Mar. 15(1):37-49. [Medline].

  60. Ogawa Y, Sugawara T, Seki H, Sakuma T. Thyroid follicular carcinoma metastasized to the lung, skull, and brain 12 years after initial treatment for thyroid gland--case report. Neurol Med Chir (Tokyo). 2006 Jun. 46(6):302-5. [Medline].

  61. Pacini F, Schlumberger M, Harmer C, Berg GG, Cohen O, Duntas L. Post-surgical use of radioiodine (131I) in patients with papillary and follicular thyroid cancer and the issue of remnant ablation: a consensus report. Eur J Endocrinol. 2005 Nov. 153(5):651-9. [Medline].

  62. Reiners C, Farahati J. 131I therapy of thyroid cancer patients. Q J Nucl Med. 1999 Dec. 43(4):324-35. [Medline].

  63. Riesco-Eizaguirre G, Santisteban P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr Relat Cancer. 2007 Dec. 14(4):957-77. [Medline].

  64. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006 Feb. 91(2):498-505. [Medline].

  65. Ronckers CM, McCarron P, Engels EA, Ron E. New Malignancies Following Cancer of the Thyroid and Other Endocrine Glands. Curtis RE, Freedman DM, Ron E, Ries LAG, Hacker DG, Edwards BK, Tucker MA, Fraumeni JF Jr. New Malignancies Among Cancer Survivors: SEER Cancer Registries, 1973-2000. Bethesda, MD: NIH Publ. No. 05-5302; 2006. 375-395. [Full Text].

  66. Ruschenburg I, Vollheim B, Stachura J, Cordon-Cardo C, Korabiowska M. Analysis of DNA mismatch repair gene expression and mutations in thyroid tumours. Anticancer Res. 2006 May-Jun. 26(3A):2107-12. [Medline].

  67. Sarquis MS, Weber F, Shen L, et al. High frequency of loss of heterozygosity in imprinted, compared with nonimprinted, genomic regions in follicular thyroid carcinomas and atypical adenomas. J Clin Endocrinol Metab. 2006. 91:262-9. [Medline]. [Full Text].

  68. Savin S, Cvejic D, Isic T, Paunovic I, Tatic S, Havelka M. The efficacy of the thyroid peroxidase marker for distinguishing follicular thyroid carcinoma from follicular adenoma. Exp Oncol. 2006 Mar. 28(1):70-4. [Medline].

  69. Schmitt TS, Elte JW, Rietveld AP, van Zaanen HC, Castro Cabezas M. Bone metastasis of a follicular thyroid carcinoma originated in a toxic multinodular goiter. Eur J Intern Med. 2008 Nov. 19(7):e64-6. [Medline].

  70. Siassakos D, Gourgiotis S, Moustafellos P, et al. Thyroid microcarcinoma during thyroidectomy. Singapore Med J. 2008 Jan. 49(1):23-5. [Medline].

  71. Suster S. Thyroid tumors with a follicular growth pattern: problems in differential diagnosis. Arch Pathol Lab Med. 2006 Jul. 130(7):984-8. [Medline].

  72. Ulger Z, Karaman N, Piskinpasa SV, Niksarlioglu YO, Kilickap S, Erman M. Endobronchial metastasis of thyroid follicular carcinoma. J Natl Med Assoc. 2006 May. 98(5):803-6. [Medline].

  73. Vasko VV, Gaudart J, Allasia C, et al. Thyroid follicular adenomas may display features of follicular carcinoma and follicular variant of papillary carcinoma. Eur J Endocrinol. 2004 Dec. 151(6):779-86. [Medline].

 
Previous
Next
 
Surgical specimen of a large goiter. Total thyroidectomy was performed because of the presence of a solid nodule in the right lobe (note the size of the thyroid lobe at left of the screen).
The right lobe of the thyroid was sectioned and reveals a large solid nodule with necrotic and hemorrhagic areas. Histologic diagnosis is follicular thyroid carcinoma.
Histologic pattern of a mildly differentiated follicular thyroid carcinoma (250 X). Image courtesy of Professor Pantaleo Bufo at University of Foggia, Italy.
Histologic pattern of a rare lymph node metastasis of follicular thyroid carcinoma (140 X). Image courtesy of Professor Pantaleo Bufo at University of Foggia, Italy.
Histologic pattern of a rare lymph node metastasis of follicular thyroid carcinoma (250 X). Image courtesy of Professor Pantaleo Bufo at University of Foggia, Italy.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.