Medscape is available in 5 Language Editions – Choose your Edition here.


Papillary Thyroid Carcinoma

  • Author: Keith M Baldwin, DO; Chief Editor: Jules E Harris, MD, FACP, FRCPC  more...
Updated: Oct 12, 2015


Papillary carcinoma (PTC) is the most common form of well-differentiated thyroid cancer, and the most common form of thyroid cancer to result from exposure to radiation. Papillary carcinoma appears as an irregular solid or cystic mass or nodule in a normal thyroid parenchyma. Papillary/follicular carcinoma must be considered a variant of papillary thyroid carcinoma (mixed form).[1]

Despite its well-differentiated characteristics, papillary carcinoma may be overtly or minimally invasive. In fact, these tumors may spread easily to other organs. Papillary tumors have a propensity to invade lymphatics but are less likely to invade blood vessels.

The life expectancy of patients with this cancer is related to their age. The prognosis is better for younger patients than for patients who are older than 45 years.

Of patients with papillary cancers, about 11% present with metastases outside the neck and mediastinum. Some years ago, lymph node metastases in the cervical area were thought to be aberrant (supernumerary) thyroids because they contained well-differentiated papillary thyroid cancer, but occult cervical lymph node metastases are now known to be a common finding in this disease.[2, 3, 4, 5, 6, 7]

Fine-needle aspiration biopsy (FNAB) is considered the best first-line diagnostic procedure for a thyroid nodule (see Workup). Surgery is the definitive management of papillary thyroid cancer. Approximately 4-6 weeks after surgical thyroid removal, patients may have radioiodine therapy to detect and destroy any metastasis and residual tissue in the thyroid. See Treatment.

For patient education information, see the Thyroid and Metabolism Center, as well as Thyroid Problems.

For discussion of other thyroid cancers, see the following:

An image depicting a thyroid mass can be seen below.

Standard open thyroidectomy. Standard open thyroidectomy.


Several chromosomal rearrangements have been identified in papillary thyroid carcinoma.The first oncogenic events identified in papillary thyroid carcinoma were chromosomal rearrangements involving the rearranged during transfection (RET) proto-oncogene, which arises from a paracentric inversion of chromosome 10.[8] RET fusion proteins (the RET/PTC family) appear to play an oncogenic role in approximately 20% of papillary thyroid carcinomas, with RET/PTC1, RET/PTC2, and RET/PTC3 accounting for most cases.[9, 8] In addition, the NTRK1 and the MET proto-oncogene may be overexpressed and/or amplified.[10, 11]

Evidence also suggests that some molecules that physiologically regulate the growth of the thyrocytes, such as interleukin-1 and interleukin-8, or other cytokines (eg, insulinlike growth factor-1, transforming growth factor-beta, epidermal growth factor) could play a role in the pathogenesis of this cancer.

Mutation in the BRAF gene resulting in the BRAF V60E protein is prominent in papillary thyroid carcinoma. A single-institution study by Mathur et al reported increasing rates of BRAF V600E mutations in papillary thyroid cancer from 1991 to 2005, suggesting that this may be contributing to the rise in thyroid cancer rates.[12] The BRAF V600E mutation is associated with aggressive clinicopathological characteristics of papillary thyroid carcinoma, including lymph node metastasis, extrathyroidal invasion, and loss of radioiodine avidity, which may lead to failure of radioiodine treatment and disease recurrence.[13]

There is also a clear association between radiation exposure (from radiotherapy or fallout) and incidence of papillary thyroid carcinoma.[14] Port et al reported that papillary thyroid cancers in patients exposed to radiation from the Chernobyl accident could be completely distinguished from sporadic papillary thyroid cancers in patients with no history of radiation exposure, on the basis of gene expression patterns involving seven genes (ie, SFRP1, MMP1, ESM1, KRTAP2-1, COL13A1, BAALC, PAGE1).[15]



The thyroid is particularly sensitive to the effects of ionizing radiation. Both accidental and medical exposure to ionizing radiation has been linked to increased risk for thyroid cancer.

Approximately 7% of individuals exposed to the atomic bombs in Japan developed thyroid cancers.[16] Individuals, especially children, who lived in Ukraine during the time of the Chernobyl nuclear event may have increased risk of papillary thyroid cancer.[17]

From 1920-1960, therapeutic irradiation was used to treat tumors and benign conditions, including acne; excessive facial hair; tuberculosis in the neck; fungus diseases of the scalp; sore throats; chronic coughs; and enlargement of the thymus, tonsils, and adenoids. Approximately 10% of individuals who were treated with head and neck irradiation for such disorders developed thyroid cancer after a latency period of 30 years.

Exposure to diagnostic x-ray beams does not increase the risk of developing thyroid cancers. However, patients who receive radiotherapy for certain types of head and neck cancer, especially during childhood, may have an increased risk of developing thyroid cancer.

Several reports have shown a relationship between iodine deficiency and the incidence of thyroid carcinomas. Many other conditions have been considered as predisposing to papillary thyroid cancer, including oral contraceptive use, benign thyroid nodules, late menarche, and late age at first birth.[18, 19] Tobacco smoking seems to be associated with a decreased risk of thyroid cancer, but, obviously, it poses more health hazards than benefits.[20]

Unlike medullary thyroid carcinoma, papillary thyroid cancer is not a part of multiple endocrine neoplasia syndromes. Uncommon familial syndromes such as familial adenomatous polyposis, Gardner syndrome (Gardner's syndrome), and Cowden disease (Cowden's disease) may be associated with thyroid papillary tumors in about 5% of cases.[21]



Thyroid cancers are quite rare, accounting for only 1.5% of all cancers in adults and 3% of all cancers in children, but the rate of new cases has been increasing in recent decades.[22] The American Cancer Society estimates that approximately 62,450 new cases of thyroid cancer will occur in the United States in 2015, with about 42,230 occurring in women and 15,220 in men, and about 1,950 people (1,080 women and 870 men) will die of thyroid cancer.[23] The highest incidence of thyroid carcinomas in the world is found among female Chinese residents of Hawaii.

Of all thyroid cancers, 74-80% of cases are papillary cancer. Follicular carcinoma incidences are higher in regions where goiter is common.


In contrast to many other cancers, thyroid cancer is almost always curable. Most thyroid cancers grow slowly and are associated with a very favorable prognosis. The mean survival rate after 10 years is higher than 90%, and is 100% in very young patients with minimal nonmetastatic disease. Distant spread (ie, to lungs or bones) is very uncommon.

The 5-year relative survival rates by stage of diagnosis are as follows[23] :

  • All stages: 96.7%
  • Local: 99.7%
  • Regional: 96.9%
  • Distant: 56%


This cancer occurs more frequently in whites than in blacks. The 5-year relative survival rates by race increased from 1975 to 2003, as follows[23] :

  • Whites: Increase from 93% to 97%
  • African Americans: Increase from 91% to 94%
  • All races: Increase from 93% to 97%


Thyroid cancer is approximately three times more common in females than males. The female-to-male ratio varies by patient age, as follows:

  • In patients younger than 19 years, the female-to-male ratio is 3.2:1
  • In patients aged 20-45 years, the female-to-male ratio is 3.6:1
  • In patients older than 45 years, the female-to-male ratio is 2.8:1


Thyroid carcinoma is common in persons of all ages, with a mean age of 49 years and an age range of 15-84 years. In the younger population, papillary thyroid carcinoma tends to occur more frequently than follicular carcinoma, with a peak in patients aged 30-50 years.



The prognosis of papillary thyroid cancer is related to age, sex, and stage. In general, if the cancer does not extend beyond the capsule of the gland, life expectancy is minimally affected. Prognosis is better in female patients and in patients younger than 40 years. The survival rate is at least 95% with appropriate treatments.

If neglected, any thyroid cancer may result in symptoms because of compression and/or infiltration of the cancer mass into the surrounding tissues, and the cancer may metastasize to lung and bone. Metastases, in descending order of frequency, are most common in the neck lymph nodes and lung, followed by the bone, brain, liver, and other sites. Metastatic potential seems to be a function of the primary tumor size. Metastases in the absence of thyroid pathology in the physical examination findings are rare in patients with microscopic papillary carcinoma (occult carcinomas).

In a long-term follow-up study of children and adolescents with papillary thyroid cancer, Hay et al found that all-causes mortality rates did not exceed expectation through 20 years after treatment, but the number of deaths was significantly higher than predicted from 30 through 50 years afterward. Nonthyroid malignancy accounted for 68% of deaths, and, of that group, 73% had received postoperative therapeutic irradiation.[24]

A study by Yu et al found that papillary thyroid microcarcinomas are generally associated with an excellent prognosis; however, 0.5% of patients may die. Risk factors for overall survival include the following:

  • Age older than 45 years
  • Male sex
  • Minority race
  • Node metastases
  • Extrathyroidal invasion
  • Distant metastases

If two or more risk factors are present, patients should be considered for more aggressive management.[25]

A study by Miyauchi et al found that serum thyroglobulin doubling time was a significant prognostic predictor in patients with papillary thyroid carcinoma. The authors concluded that this finding was superior to classical prognostic factors, including TNM stage, age, and gender.[26]

In a study comparing the behavior of 43 cases of encapsulated classical papillary thyroid carcinoma (PTC) with 63 cases of encapsulated follicular-variant PTC, Rivera et al reported that the papillary form had a lower rate of vascular invasion (5% versus 25%; P = 0.007) but a higher frequency of capsular invasion (65% vs 38%; P = 0.01) and a significantly higher lymph node metastatic rate (26% vs 3%; P = 0.0014). According to the authors, even a meticulous search for capsular and vascular invasion cannot reliably predict the metastatic potential of encapsulated classical CPTC, so those cases can be treated like unencapsulated classical PTC.[27]

In a study of 39,562 patients with papillary thyroid carcinoma from the National Cancer Data Base, risk factors for central lymph node metastasis included age ≤45 years, male sex, Asian race, and larger tumors.[28]

A family history of papillary thyroid carcinoma is an independent risk factor for disease recurrence in patients with papillary thyroid microcarcinoma.[29]

Contributor Information and Disclosures

Keith M Baldwin, DO IMPH, Assistant Professor of Surgery, Boston University School of Medicine; Endocrine and Surgical Oncologist, Department of General Surgery, Roger Williams Cancer Center

Keith M Baldwin, DO is a member of the following medical societies: American College of Surgeons, Society of Surgical Oncology, American Association of Endocrine Surgeons, Americas Hepato-Pancreato-Biliary Association, Society of International Humanitarian Surgeons/Surgeons OverSeas (SOS)

Disclosure: Nothing to disclose.


Andrew Scott Kennedy, MD Physician-in-Chief, Radiation Oncology

Andrew Scott Kennedy, MD is a member of the following medical societies: Alpha Omega Alpha, American Association for Cancer Research, American Society for Radiation Oncology, Radiological Society of North America, Americas Hepato-Pancreato-Biliary Association, American Society of Clinical Oncology

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Jules E Harris, MD, FACP, FRCPC Clinical Professor of Medicine, Section of Hematology/Oncology, University of Arizona College of Medicine, Arizona Cancer Center

Jules E Harris, MD, FACP, FRCPC is a member of the following medical societies: American Association for the Advancement of Science, American Society of Hematology, Central Society for Clinical and Translational Research, American Society of Clinical Oncology

Disclosure: Nothing to disclose.

Additional Contributors

Lodovico Balducci, MD Professor, Oncology Fellowship Director, Department of Internal Medicine, Division of Adult Oncology, H Lee Moffitt Cancer Center and Research Institute, University of South Florida Morsani College of Medicine

Lodovico Balducci, MD is a member of the following medical societies: American Association for the Advancement of Science, American Association for Cancer Research, American College of Physicians, American Geriatrics Society, American Society of Hematology, New York Academy of Sciences, American Society of Clinical Oncology, Southern Society for Clinical Investigation, International Society for Experimental Hematology, American Federation for Clinical Research, American Society of Breast Disease

Disclosure: Nothing to disclose.


Silvia Gagliardi, MD Consulting Staff, Department of Surgery, Medical Center Vita, Italy

Disclosure: Nothing to disclose.

  1. Wreesmann VB, Ghossein RA, Hezel M, et al. Follicular variant of papillary thyroid carcinoma: genome-wide appraisal of a controversial entity. Genes Chromosomes Cancer. 2004 Aug. 40(4):355-64. [Medline].

  2. Wada N, Sugino K, Mimura T, Nagahama M, Kitagawa W, Shibuya H, et al. Treatment Strategy of Papillary Thyroid Carcinoma in Children and Adolescents: Clinical Significance of the Initial Nodal Manifestation. Ann Surg Oncol. 2009 Sep 24. [Medline].

  3. Clayman GL, Shellenberger TD, Ginsberg LE, Edeiken BS, El-Naggar AK, Sellin RV, et al. Approach and safety of comprehensive central compartment dissection in patients with recurrent papillary thyroid carcinoma. Head Neck. 2009 Sep. 31(9):1152-63. [Medline].

  4. Rosenbaum MA, McHenry CR. Contemporary management of papillary carcinoma of the thyroid gland. Expert Rev Anticancer Ther. 2009 Mar. 9(3):317-29. [Medline].

  5. Pelizzo MR, Merante Boschin I, Toniato A, Pagetta C, Casal Ide E, Mian C, et al. Diagnosis, treatment, prognostic factors and long-term outcome in papillary thyroid carcinoma. Minerva Endocrinol. 2008 Dec. 33(4):359-79. [Medline].

  6. Thyroid Carcinoma Task Force. AACE/AAES Medical/Surgical Guidelines for Clinical Practice: Management of Thyroid Carcinoma. AACE Guidelines. Available at Accessed: October 8, 2015.

  7. NCCN Clinical Practice Guidelines in Oncology. Thyroid carcinoma: Version 2.2014. National Comprehensive Cancer Network. Available at Accessed: October 8, 2015.

  8. Legakis I, Syrigos K. Recent advances in molecular diagnosis of thyroid cancer. J Thyroid Res. 2011. 2011:384213. [Medline]. [Full Text].

  9. Prescott JD, Zeiger MA. The RET oncogene in papillary thyroid carcinoma. Cancer. 2015 Mar 2. [Medline].

  10. Wasenius VM, Hemmer S, Karjalainen-Lindsberg ML, et al. MET receptor tyrosine kinase sequence alterations in differentiated thyroid carcinoma. Am J Surg Pathol. 2005 Apr. 29(4):544-9. [Medline].

  11. Musholt TJ, Musholt PB, Khaladj N, et al. Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery. 2000 Dec. 128(6):984-93. [Medline].

  12. Mathur A, Moses W, Rahbari R, et al. Higher rate of BRAF mutation in papillary thyroid cancer over time: a single-institution study. Cancer. 2011 Oct 1. 117(19):4390-5. [Medline]. [Full Text].

  13. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013 Apr 10. 309 (14):1493-501. [Medline]. [Full Text].

  14. Li Z, Franklin J, Zelcer S, Sexton T, Husein M. Ultrasound surveillance for thyroid malignancies in survivors of childhood cancer following radiotherapy: a single institutional experience. Thyroid. 2014 Dec. 24 (12):1796-805. [Medline].

  15. Port M, Boltze C, Wang Y, et al. A radiation-induced gene signature distinguishes post-Chernobyl from sporadic papillary thyroid cancers. Radiat Res. 2007 Dec. 168(6):639-49. [Medline].

  16. Ronckers CM, McCarron P, Engels EA, et al. New Malignancies Following Cancer of the Thyroid and Other Endocrine Glands. Curtis RE, Freedman DM, Ron E, Ries LAG, Hacker DG, Edwards BK, Tucker MA, Fraumeni JF Jr. New Malignancies Among Cancer Survivors: SEER Cancer Registries, 1973-2000. No. 05-5302. Bethesda, MD: NIH Publ.; 2006. 375-395. [Full Text].

  17. Williams ED, Abrosimov A, Bogdanova T, Demidchik EP, Ito M, LiVolsi V, et al. Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness. Br J Cancer. 2004 Jun 1. 90 (11):2219-24. [Medline]. [Full Text].

  18. Negri E, Dal Maso L, Ron E, et al. A pooled analysis of case-control studies of thyroid cancer. II. Menstrual and reproductive factors. Cancer Causes Control. 1999. 10(2):143-155. [Medline].

  19. Franceschi S, Preston-Martin S, Dal Maso L, et al. A pooled analysis of case-control studies of thyroid cancer. IV.Benign thyroid diseases. Cancer Causes Control. 1999. 10(6):583-595. [Medline].

  20. Mack WJ, Preston-Martin S, Dal Maso L, et al. A pooled analysis of case-control studies of thyroid cancer: cigarettesmoking and consumption of alcohol, coffee, and tea. Cancer. 2003. 14(8):773-785. [Medline].

  21. Musholt TJ, Musholt PB, Petrich T, et al. Familial papillary thyroid carcinoma: genetics, criteria for diagnosis, clinical features, and surgical treatment. World J Surg. 2000 Nov. 24(11):1409-17. [Medline].

  22. Hall P, Adami HO. Thyroid Cancer. Adami H, Hunter D, Trichopoulos D, eds. Textbook of Cancer Epidemiology. 2nd ed. New York, NY: Oxford University Press; 2008.

  23. American Cancer Society. Cancer Facts & Figures 2015. American Cancer Society. Available at Accessed: October 8, 2015.

  24. Hay ID, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010 Jun. 34(6):1192-202. [Medline].

  25. Yu XM, Wan Y, Sippel RS, Chen H. Should all papillary thyroid microcarcinomas be aggressively treated? An analysis of 18,445 cases. Ann Surg. 2011 Oct. 254(4):653-60. [Medline].

  26. Miyauchi A, Kudo T, Miya A, et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 2011 Jul. 21(7):707-16. [Medline].

  27. Rivera M, Tuttle RM, Patel S, Shaha A, Shah JP, Ghossein RA. Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on its morphologic subtypes (histologic growth pattern). Thyroid. 2009 Feb. 19(2):119-27. [Medline].

  28. Suman P, Wang CH, Abadin SS, Moo-Young TA, Prinz RA, Winchester DJ. Risk factors for central lymph node metastasis in papillary thyroid carcinoma: A National Cancer Data Base (NCDB) study. Surgery. 2015 Oct 1. [Medline].

  29. Cao J, Chen C, Chen C, Wang QL, Ge MH. Clinicopathological features and prognosis of familial papillary thyroid carcinoma - a large-scale, matched, case-control study. Clin Endocrinol (Oxf). 2015 Jul 20. [Medline].

  30. Bradly DP, Reddy V, Prinz RA, Gattuso P. Incidental papillary carcinoma in patients treated surgically for benign thyroid diseases. Surgery. 2009 Dec. 146(6):1099-104. [Medline].

  31. Kim KW, Park YJ, Kim EH, et al. Elevated risk of papillary thyroid cancer in Korean patients with Hashimoto's thyroiditis. Head Neck. 2011 May. 33(5):691-5. [Medline].

  32. Spencer CA. Clinical review: Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011 Dec. 96(12):3615-27. [Medline].

  33. Segev DL, Umbricht C, Zeiger MA. Molecular pathogenesis of thyroid cancer. Surg Oncol. 2003 Aug. 12(2):69-90. [Medline].

  34. Choi WH, Chung YA, Han EJ, Sohn HS, Lee SH. Clinical value of integrated [18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in the preoperative assessment of papillary thyroid carcinoma: comparison with sonography. J Ultrasound Med. 2011 Sep. 30(9):1267-73. [Medline].

  35. Ng CM, Choi CH, Tiu SC. False-negatives in thyroid nodule aspiration cytology. Hong Kong Med J. 2007 Apr. 13(2):168-9. [Medline].

  36. Liu Z, Kakudo K, Bai Y, et al. Loss of cellular polarity/cohesiveness in the invasive front of papillary thyroid carcinoma, a novel predictor for lymph node metastasis; possible morphological indicator of epithelial mesenchymal transition. J Clin Pathol. 2011 Apr. 64(4):325-9. [Medline].

  37. Chao TC, Lin JD, Chen MF. Gasless video-assisted total thyroidectomy in the treatment of low risk intrathyroid papillary carcinoma. World J Surg. 2004 Sep. 28(9):876-9. [Medline].

  38. Ruggieri M, Straniero A, Pacini FM, et al. Video-assisted surgery of the thyroid diseases. Eur Rev Med Pharmacol Sci. 2003 Jul-Aug. 7(4):91-6. [Medline].

  39. Lee S, Ryu HR, Park JH, et al. Excellence in robotic thyroid surgery: a comparative study of robot-assisted versus conventional endoscopic thyroidectomy in papillary thyroid microcarcinoma patients. Ann Surg. 2011 Jun. 253(6):1060-6. [Medline].

  40. Ywata de Carvalho A, Chulam TC, Kowalski LP. Long-term Results of Observation vs Prophylactic Selective Level VI Neck Dissection for Papillary Thyroid Carcinoma at a Cancer Center. JAMA Otolaryngol Head Neck Surg. 2015 Jul. 141 (7):599-606. [Medline].

  41. Roh JL, Kim JM, Park CI. Central lymph node metastasis of unilateral papillary thyroid carcinoma: patterns and factors predictive of nodal metastasis, morbidity, and recurrence. Ann Surg Oncol. 2011 Aug. 18(8):2245-50. [Medline].

  42. Popadich A, Levin O, Lee JC, et al. A multicenter cohort study of total thyroidectomy and routine central lymph node dissection for cN0 papillary thyroid cancer. Surgery. 2011 Dec. 150(6):1048-57. [Medline].

  43. Yim JH, Kim WB, Kim EY, et al. Adjuvant radioactive therapy after reoperation for locoregionally recurrent papillary thyroid cancer in patients who initially underwent total thyroidectomy and high-dose remnant ablation. J Clin Endocrinol Metab. 2011 Dec. 96(12):3695-700. [Medline].

  44. [Guideline] Sisson JC, Freitas J, McDougall IR, et al. Radiation safety in the treatment of patients with thyroid diseases by radioiodine ¹³¹i: practice recommendations of the american thyroid association. Thyroid. 2011 Apr. 21(4):335-46. [Medline].

  45. Oluwasanjo A, Pathak R, Ukaigwe A, Alese O. Therapy-related acute myeloid leukemia following radioactive iodine treatment for thyroid cancer. Cancer Causes Control. 2015 Oct 9. [Medline].

  46. Heilo A, Sigstad E, Fagerlid KH, et al. Efficacy of ultrasound-guided percutaneous ethanol injection treatment in patients with a limited number of metastatic cervical lymph nodes from papillary thyroid carcinoma. J Clin Endocrinol Metab. 2011 Sep. 96(9):2750-5. [Medline].

  47. [Guideline] Salama JK, Golden DW, Yom SS, Garg MK, Lawson J, McDonald MW, et al. ACR Appropriateness Criteria® thyroid carcinoma. Oral Oncol. 2014 Jun. 50(6):577-86. [Medline].

  48. Perez CA, Santos ES, Arango BA, Raez LE, Cohen EE. Novel molecular targeted therapies for refractory thyroid cancer. Head Neck. 2012 May. 34(5):736-45. [Medline].

  49. Brassard M, Borget I, Edet-Sanson A, et al. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J Clin Endocrinol Metab. 2011 May. 96(5):1352-9. [Medline].

  50. Vadiveloo T, Donnan PT, Cochrane L, Leese GP. The Thyroid Epidemiology, Audit, and Research Study (TEARS): morbidity in patients with endogenous subclinical hyperthyroidism. J Clin Endocrinol Metab. 2011 May. 96(5):1344-51. [Medline].

  51. Fatourechi V. Subclinical hypothyroidism: an update for primary care physicians. Mayo Clin Proc. 2009. 84 (1):65-71. [Medline]. [Full Text].

  52. Rugge JB, Bougatsos C, Chou R. Screening for and Treatment of Thyroid Dysfunction: An Evidence Review for the U.S. Preventive Services Task Force [Internet]. 2014 Oct. [Medline]. [Full Text].

  53. [Guideline] AACE/AAES medical/surgical guidelines for clinical practice: management of thyroid carcinoma. American Association of Clinical Endocrinologists. American College of Endocrinology. Endocr Pract. 2001 May-Jun. 7(3):202-20. [Medline]. [Full Text].

  54. Al-Brahim N, Asa SL. Papillary thyroid carcinoma: an overview. Arch Pathol Lab Med. 2006 Jul. 130(7):1057-62. [Medline].

  55. Albores-Saavedra J, Wu J. The many faces and mimics of papillary thyroid carcinoma. Endocr Pathol. 2006. 17(1):1-18. [Medline].

  56. Baloch ZW, LiVolsi VA. Microcarcinoma of the thyroid. Adv Anat Pathol. 2006 Mar. 13(2):69-75. [Medline].

  57. Burman KD. Micropapillary thyroid cancer: should we aspirate all nodules regardless of size?. J Clin Endocrinol Metab. 2006 Jun. 91(6):2043-6. [Medline].

  58. Clark JR, Lai P, Hall F, et al. Variables predicting distant metastases in thyroid cancer. Laryngoscope. 2005 Apr. 115(4):661-7. [Medline].

  59. Das DK. Age of patients with papillary thyroid carcinoma: is it a key factor in the development of variants?. Gerontology. 2005 May-Jun. 51(3):149-54. [Medline].

  60. Donckier JE, Michel L, Delos M, et al. Interrelated overexpression of endothelial and inducible nitric oxide synthases, endothelin-1 and angiogenic factors in human papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2006 Jun. 64(6):703-10. [Medline].

  61. Haigh PI, Urbach DR, Rotstein LE. Extent of thyroidectomy is not a major determinant of survival in low- or high-risk papillary thyroid cancer. Ann Surg Oncol. 2005 Jan. 12(1):81-9. [Medline].

  62. Hunt JL, Tometsko M, LiVolsi VA, et al. Molecular evidence of anaplastic transformation in coexisting well-differentiated and anaplastic carcinomas of the thyroid. Am J Surg Pathol. 2003 Dec. 27(12):1559-64. [Medline].

  63. Jukkola A, Bloigu R, Ebeling T, et al. Prognostic factors in differentiated thyroid carcinomas and their implications for current staging classifications. Endocr Relat Cancer. 2004 Sep. 11(3):571-9. [Medline]. [Full Text].

  64. Kim S, Wei JP, Braveman JM, et al. Predicting outcome and directing therapy for papillary thyroid carcinoma. Arch Surg. 2004 Apr. 139(4):390-4; discussion 393-4. [Medline].

  65. Lyshchik A, Drozd V, Demidchik Y, et al. Diagnosis of thyroid cancer in children: value of gray-scale and power doppler US. Radiology. 2005 May. 235(2):604-13. [Medline].

  66. Matsumoto F, Fujii H, Abe M, et al. A novel tumor marker, Niban, is expressed in subsets of thyroid tumors and Hashimoto's thyroiditis. Hum Pathol. 2006 Dec. 37(12):1592-600. [Medline].

  67. Mazzaferri EL, Robbins RJ, Spencer CA, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003 Apr. 88(4):1433-41. [Medline].

  68. Monchik JM, Donatini G, Iannuccilli J, et al. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg. 2006 Aug. 244(2):296-304. [Medline].

  69. Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn. 2008 Jan. 8(1):83-95. [Medline].

  70. Ohmori N, Miyakawa M, Ohmori K, et al. Ultrasonographic findings of papillary thyroid carcinoma with Hashimoto's thyroiditis. Intern Med. 2007. 46(9):547-50. [Medline].

  71. Ramirez R, Hsu D, Patel A, et al. Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2000 Nov. 53(5):635-44. [Medline].

  72. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garca-Cabezas MA, et al. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr Relat Cancer. 2006 Mar. 13(1):257-69. [Medline].

  73. Roh JL, Park JY, Park CI. Total thyroidectomy plus neck dissection in differentiated papillary thyroid carcinoma patients: pattern of nodal metastasis, morbidity, recurrence, and postoperative levels of serum parathyroid hormone. Ann Surg. 2007 Apr. 245(4):604-10. [Medline].

  74. Rosario PW, Fagundes TA, Padrao EL, et al. Total thyroidectomy and lymph node dissection in patients with papillary thyroid carcinoma. Arch Surg. 2004 Dec. 139(12):1385. [Medline].

  75. Shaha AR. Prognostic factors in papillary thyroid carcinoma and implications of large nodal metastasis. Surgery. 2004 Feb. 135(2):237-9. [Medline].

  76. Shimura H, Haraguchi K, Hiejima Y, et al. Distinct diagnostic criteria for ultrasonographic examination of papillary thyroid carcinoma: a multicenter study. Thyroid. 2005 Mar. 15(3):251-8. [Medline].

  77. Stephens LA, Powell NG, Grubb J, et al. Investigation of loss of heterozygosity and SNP frequencies in the RET gene in papillary thyroid carcinoma. Thyroid. 2005 Feb. 15(2):100-4. [Medline].

  78. Sugitani I, Fujimoto Y, Yamamoto N. Papillary thyroid carcinoma with distant metastases: survival predictors and the importance of local control. Surgery. 2008 Jan. 143(1):35-42. [Medline].

  79. Woodrum DT, Gauger PG. Role of 131I in the treatment of well differentiated thyroid cancer. J Surg Oncol. 2005 Mar 1. 89(3):114-21. [Medline].

  80. Zhu RS, Yu YL, Lu HK, et al. Clinical study of 312 cases with matastatic differentiated thyroid cancer treated with large doses of 131I. Chin Med J (Engl). 2005 Mar 5. 118(5):425-8. [Medline].

Standard open thyroidectomy.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.