Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Attention Deficit Hyperactivity Disorder (ADHD)

  • Author: Stephen Soreff, MD; Chief Editor: Glen L Xiong, MD  more...
 
Updated: Jul 19, 2016
 

Background

Attention deficit hyperactivity disorder (ADHD) is a developmental condition of inattention and distractibility, with or without accompanying hyperactivity. There are 3 basic forms of ADHD described in the Diagnostic and Statistical Manual, Fifth Edition (DSM-5) of the American Psychiatric Association: inattentive; hyperactive-impulsive; and combined.[1]

Diagnostic criteria (DSM-5)

According to DSM-5, the 3 types of attention deficit/hyperactivity disorder (ADHD) are (1) predominantly inattentive, (2) predominantly hyperactive/impulsive, and (3) combined. The specific criteria for attention-deficit/hyperactivity disorder are as follows:[1]

Inattentive

This must include at least 6 of the following symptoms of inattention that must have persisted for at least 6 months to a degree that is maladaptive and inconsistent with developmental level:

  • Often fails to give close attention to details or makes careless mistakes in schoolwork, work, or other activities
  • Often has difficulty sustaining attention in tasks or play activities
  • Often does not seem to listen to what is being said
  • Often does not follow through on instructions and fails to finish schoolwork, chores, or duties in the workplace (not due to oppositional behavior or failure to understand instructions)
  • Often has difficulties organizing tasks and activities
  • Often avoids or strongly dislikes tasks (such as schoolwork or homework) that require sustained mental effort
  • Often loses things necessary for tasks or activities (school assignments, pencils, books, tools, or toys)
  • Often is easily distracted by extraneous stimuli
  • Often forgetful in daily activities

Hyperactivity/impulsivity

This must include at least 6 of the following symptoms of hyperactivity-impulsivity that must have persisted for at least 6 months to a degree that is maladaptive and inconsistent with developmental level:

  • Fidgeting with or tapping hands or feet, squirming in seat
  • Leaving seat in classroom or in other situations in which remaining seated is expected
  • Running about or climbing excessively in situations where this behavior is inappropriate (in adolescents or adults, this may be limited to subjective feelings of restlessness)
  • Difficulty playing or engaging in leisure activities quietly
  • Unable to be or uncomfortable being still for extended periods of time (may be experienced by others as “on the go” or difficult to keep up with)
  • Excessive talking
  • Blurting out answers to questions before the questions have been completed
  • Difficulty waiting in lines or awaiting turn in games or group situations
  • Interrupting or intruding on others (for adolescents and adults, may intrude into or take over what others are doing)

Other

  • Onset is no later than age 12 years
  • Symptoms must be present in 2 or more situations, such as school, work, or home
  • The disturbance causes clinically significant distress or impairment in social, academic, or occupational functioning
  • Disorder does not occur exclusively during the course of schizophrenia or other psychotic disorder and is not better accounted for by mood, anxiety, dissociative, personality disorder or substance intoxication or withdrawal

In addition, attention-deficit/hyperactivity disorder is specified by the severity based on social or occupational functional impairment: mild (minor impairment), moderate (impairment between “mild” and “severe”), severe (symptoms in excess of those required to meet diagnosis; marked impairment).

Case study

The parents of a 7-year-old boy take him to the family practitioner because they have become increasingly concerned about his behavior not only in school but also a home. In the first grade, he has been bored, disruptive, fighting with classmates, and rude to his teacher. At home he cannot sit still and meals have been very unpleasant. The lad himself wonders why he is there. The parents have 2 older daughters who say their brother is a “pain” and spoiled. There were no pregnancy or birth problems and the child is on no medications. He has had all his scheduled shots.

The doctor decides more information is required before any treatment is indicated. She wants careful observations of the child both at home and in school. She wishes to talk with his teacher and suggests psychological testing. She also wants some time to see the patient alone. Careful investigation and thorough observations must be done before any intervention. Both the physician and the parents are concerned about overuse of medications and the value for behavioral interventions.

Next

Pathophysiology

The pathology of ADHD is not clear. Psychostimulants (which facilitate dopamine release) and noradrenergic tricyclics used to treat this condition have led to speculation that certain brain areas related to attention are deficient in neural transmission. PET scan imaging indicates that methylphenidate acts to increase dopamine.[2] The neurotransmitters dopamine and norepinephrine have been associated with ADHD.

The underlying brain regions predominantly thought to be involved are frontal and prefrontal; the parietal lobe and cerebellum may also be involved. In one functional MRI study, children with ADHD who performed response-inhibition tasks were reported to have differing activation in frontostriatal areas compared with healthy controls. A 2010 study again indicated the presence of frontostriatal malfunctioning in the etiology of ADHD.[3] Although ADHD has been associated with structural and functional alterations in the frontostriatal circuitry, recent studies have further demonstrated changes just outside that region and more specifically in the cerebellum and the parietal lobes.[4] Another study using proton magnetic spectroscopy demonstrated right prefrontal neurochemical changes in adolescents with ADHD.[5]

Work by Sobel et al has demonstrated deformations in the basal ganglia nuclei (caudate, putamen, globus pallidus) in children with ADHD. The more prominent the deformations, the greater the severity of symptoms. Furthermore, Sobel et al have shown that stimulants may normalize the deformations.[6]

Adults with ADHD also have been reported to have deficits in anterior cingulate activation while performing similar tasks.

In a longitudinal analysis, Shaw et al used 389 neuroanatomic MRI images to compare 193 typically developing children with varying levels of symptoms of hyperactivity and impulsivity (measured with the Conners' Parent Rating Scale) with 197 children with ADHD (using 337 imaging scans).[7] Children with higher levels of hyperactivity/impulsivity had a slower rate of cortical thinning. This was most notable in prefrontal cortical regions, bilaterally in the middle frontal/premotor gyri, extending down the medial prefrontal wall to the anterior cingulate. It was also noted in the orbitofrontal cortex and the right inferior frontal gyrus. Slower cortical thinning during adolescence is characteristic of ADHD and provides neurobiological evidence for dimensionality.

A PET scan study by Volkow et al revealed that in adults with ADHD, depressed dopamine activity in caudate and preliminary evidence in limbic regions was associated with inattention and enhanced reinforcing responses to intravenous methylphenidate. This concludes that dopamine dysfunction may be involved with symptoms of inattention but may also contribute to substance abuse comorbidity.[8]

Individuals with ADHD have inhibition impairment, which is difficulty stopping their responses.[9]

Previous
Next

Epidemiology

Frequency

United States

Incidence in school-age children is estimated to be 3-7%.

A study by Akinbami and colleagues entitled Attention Deficit Hyperactivity Disorder Among Children Aged 5–17 Years in the United States, 1998–2009 showed the following key findings[10] :

  • From 1998-2000 through 2007-2009 - Percentage of children ever diagnosed with ADHD increased from 7-9%
  • ADHD prevalence varies by race and ethnicity, with Mexican children having consistently lower prevalence compared with other racial or ethnic groups.
  • From 1998 to 2009 - Prevalence of ADHD increased to 10% for children with family incomes less than 100% of the poverty level and to 11% for those with family income from 100-199% of the poverty level
  • From 1998 to 2009 - Prevalence of ADHD rose to 10% in the midwestern and southern regions of the United States

International

In Great Britain, incidence is reported to be less than 1%. The differences between the US and British reported frequencies may be cultural ("environmental expectations") and due to the heterogeneity of ADHD (ie, the many etiological paths to get to inattention/distractibility/hyperactivity). Furthermore, the International Classification of Diseases, 10th Revision (ICD-10) criteria for ADHD used in Great Britain may be considered stricter than the DSM-5 criteria. However, other studies suggest that the worldwide prevalence of ADHD is between 8% and 12%.

Mortality/Morbidity

No clear correlation with mortality exists in ADHD. However, studies suggest that childhood ADHD is a risk factor for subsequent conduct and substance abuse problems, which can carry significant mortality and morbidity.

ADHD may lead to difficulties with academics or employment and social difficulties that can profoundly affect normal development. However, exact morbidity has not been established.

Sex

In children, ADHD is 3-5 times more common in boys than in girls. Some studies report an incidence ratio of as high as 5:1. The predominantly inattentive type of ADHD is found more commonly in girls than in boys.

In adults, the sex ratio is closer to even.

Age

In DSM-IV, the age of onset criteria was "some hyperactive-impulsive or inattentive symptoms that caused impairment were present before age 7 years."  This reflected the view that ADHD emerged relatively early in development and interfered with a child's functioning at a relatively young age. In DSM-V this has been revised to "several inattentive or hyperactive-impulsive symptoms were present prior to 12 years."  Thus, symptoms can now appear up to 5 years later.  And, there is no longer the requirement that the symptoms create impairment by age 12, just that they are present. After childhood, symptoms may persist into adolescence and adulthood, or they may ameliorate or disappear.

The percentages in each group are not well established, but at least an estimated 15-20% of children with ADHD maintain the full diagnosis into adulthood. As many as 65% of these children will have ADHD or some residual symptoms of ADHD as adults.

The prevalence rate in adults has been estimated at 2-7%. The prevalence rate of ADHD in the adult general population is 4-5%.[11]

Previous
 
 
Contributor Information and Disclosures
Author

Stephen Soreff, MD President of Education Initiatives, Nottingham, NH; Faculty, Boston University, Boston, MA and Daniel Webster College, Nashua, NH

Stephen Soreff, MD is a member of the following medical societies: ACMHA: The College for Behavioral Health Leadership

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Glen L Xiong, MD Associate Clinical Professor, Department of Psychiatry and Behavioral Sciences, Department of Internal Medicine, University of California, Davis, School of Medicine; Medical Director, Sacramento County Mental Health Treatment Center

Glen L Xiong, MD is a member of the following medical societies: AMDA - The Society for Post-Acute and Long-Term Care Medicine, American College of Physicians, American Psychiatric Association, Central California Psychiatric Society

Disclosure: Received royalty from Lippincott Williams & Wilkins for book editor; Received grant/research funds from National Alliance for Research in Schizophrenia and Depression for independent contractor; Received consulting fee from Blue Cross Blue Shield Association for consulting. for: Received book royalty from American Psychiatric Publishing Inc.

References
  1. Moffitt TE, Houts R, Asherson P, Belsky DW, Corcoran DL, Hammerle M, et al. Is Adult ADHD a Childhood-Onset Neurodevelopmental Disorder? Evidence From a Four-Decade Longitudinal Cohort Study. Am J Psychiatry. 2015 May 22. appiajp201514101266. [Medline].

  2. Rosack J. PET Scans Reveal Action of Methylphenidate in Brain. Psychiatric News. Sept 21, 2001. 36, 18:

  3. Kooistra L, van der Meere JJ, Edwards JD, Kaplan BJ, Crawford S, Goodyear BG. Preliminary fMRI findings on the effects of event rate in adults with ADHD. J Neural Transm. 2010 Feb 16. [Medline].

  4. Cherkasova MV, Hechtman L. Neuroimaging in attention-deficit hyperactivity disorder: beyond the frontostriatal circuitry. Can J Psychiatry. 2009 Oct. 54(10):651-64. [Medline].

  5. Yang P, Wu MT, Dung SS, Ko CW. Short-TE proton magnetic resonance spectroscopy investigation in adolescents with attention-deficit hyperactivity disorder. Psychiatry Res. 2010 Feb 10. [Medline].

  6. Sobel LJ, Bansal R, Maia TV, Sanchez J, Mazzone L, Durkin K, et al. Basal Ganglia surface morphology and the effects of stimulant medications in youth with attention deficit hyperactivity disorder. Am J Psychiatry. 2010 Aug. 167(8):977-86. [Medline].

  7. Shaw P, Gilliam M, Liverpool M, et al. Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: support for a dimensional view of attention deficit hyperactivity disorder. Am J Psychiatry. 2011 Feb. 168(2):143-51. [Medline].

  8. Volkow ND, Wang GJ, Newcorn J, Telang F, Solanto MV, Fowler JS, et al. Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2007 Aug. 64(8):932-40. [Medline].

  9. Morein-Zamir S, Hommersen P, Johnston C, Kingstone A. Novel Measures of Response Performance and Inhibition in Children with ADHD. J Abnorm Child Psychol. 2008 May 9. [Medline].

  10. Akinbami LJ, Liu X, Pastor PN, Reuben CA. Attention deficit hyperactivity disorder among children aged 5-17 years in the United States, 1998-2009. NCHS Data Brief. 2011 Aug. 1-8. [Medline].

  11. Goodman DW, Thase ME. Recognizing ADHD in adults with comorbid mood disorders: implications for identification and management. Postgrad Med. 2009 Sep. 121(5):20-30. [Medline].

  12. Semiz UB, Basoglu C, Oner O, Munir KM, Ates A, Algul A, et al. Effects of diagnostic comorbidity and dimensional symptoms of attention-deficit-hyperactivity disorder in men with antisocial personality disorder. Aust N Z J Psychiatry. 2008 May. 42(5):405-13. [Medline].

  13. Upadhyaya HP, Carpenter MJ. Is attention deficit hyperactivity disorder (ADHD) symptom severity associated with tobacco use?. Am J Addict. 2008 May-Jun. 17(3):195-8. [Medline].

  14. Reiersen AM, Todd RD. Co-occurrence of ADHD and autism spectrum disorders: phenomenology and treatment. Expert Rev Neurother. 2008 Apr. 8(4):657-69. [Medline].

  15. Halmoy A, Halleland H, Dramsdahl M, Bergsholm P, Fasmer OB, Haavik J. Bipolar symptoms in adult attention-deficit/hyperactivity disorder: a cross-sectional study of 510 clinically diagnosed patients and 417 population-based controls. J Clin Psychiatry. 2010 Jan. 71(1):48-57. [Medline].

  16. Arcos-Burgos M, Jain M, Acosta MT, Shively S, Stanescu H, Wallis D, et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry. 2010 Feb 16. [Medline].

  17. Kopecková M, Paclt I, Petrásek J, Pacltová D, Malíková M, Zagatová V. Some ADHD polymorphisms (in genes DAT1, DRD2, DRD3, DBH, 5-HTT) in case-control study of 100 subjects 6-10 age. Neuro Endocrinol Lett. 2008 Apr. 29(2):246-51. [Medline].

  18. Faraone SV, Mick E. Molecular Genetics of Attention Deficit Hyperactivity Disorder. Psychiatr Clin North Am. 2010 Mar. 33(1):159-180. [Medline]. [Full Text].

  19. Bellgrove MA, O'Connell RG, Vance A. Genetics of cognitive deficits in ADHD: clues for novel treatment methods. Expert Rev Neurother. 2008 Apr. 8(4):553-61. [Medline].

  20. Padrón A, Galán I, García-Esquinas E, Fernández E, Ballbè M, Rodríguez-Artalejo F. Exposure to secondhand smoke in the home and mental health in children: a population-based study. Tob Control. 2015 Mar 25. [Medline].

  21. Martel MM, Nikolas M, Jernigan K, Friderici K, Nigg JT. Personality Mediation of Genetic Effects on Attention-Deficit/Hyperactivity Disorder. J Abnorm Child Psychol. 2010 Feb 10. [Medline].

  22. Tcheremissine OV, Salazar JO. Pharmacotherapy of adult attention deficit/hyperactivity disorder: review of evidence-based practices and future directions. Expert Opin Pharmacother. 2008 May. 9(8):1299-310. [Medline].

  23. Volkow ND, Swanson JM. Does childhood treatment of ADHD with stimulant medication affect substance abuse in adulthood?. Am J Psychiatry. 2008 May. 165(5):553-5. [Medline].

  24. Mannuzza S, Klein RG, Truong NL, Moulton JL 3rd, Roizen ER, Howell KH, et al. Age of methylphenidate treatment initiation in children with ADHD and later substance abuse: prospective follow-up into adulthood. Am J Psychiatry. 2008 May. 165(5):604-9. [Medline].

  25. Semrud-Clikeman M, Pliszka S, Liotti M. Executive functioning in children with attention-deficit/hyperactivity disorder: Combined type with and without a stimulant medication history. Neuropsychology. 2008 May. 22(3):329-40. [Medline].

  26. Blader JC, Schooler NR, Jensen PS, Pliszka SR, Kafantaris V. Adjunctive divalproex versus placebo for children with ADHD and aggression refractory to stimulant monotherapy. Am J Psychiatry. 2009 Dec. 166(12):1392-401. [Medline].

  27. Solanto MV, Marks DJ, Wasserstein J, Mitchell K, Abikoff H, Alvir JM, et al. Efficacy of Meta-Cognitive Therapy for Adult ADHD. Am J Psychiatry. 2010 Aug. 167(8):958-968. [Medline].

  28. Pelham WE Jr, Fabiano GA. Evidence-based psychosocial treatments for attention-deficit/hyperactivity disorder. J Clin Child Adolesc Psychol. 2008 Jan. 37(1):184-214. [Medline].

  29. Young S, Myanthi Amarasinghe J. Practitioner Review: Non-pharmacological treatments for ADHD: A lifespan approach. J Child Psychol Psychiatry. 2009 Nov 4. [Medline].

  30. Sonuga-Barke EJ, Brandeis D, Cortese S, et al. Nonpharmacological Interventions for ADHD: Systematic Review and Meta-Analyses of Randomized Controlled Trials of Dietary and Psychological Treatments. Am J Psychiatry. 2013 Mar 1. 170(3):275-89. [Medline].

  31. Adler LD, Nierenberg AA. Review of medication adherence in children and adults with ADHD. Postgrad Med. 2010 Jan. 122(1):184-91. [Medline].

  32. Hosenbocus S, Chahal R. A review of long-acting medications for ADHD in Canada. J Can Acad Child Adolesc Psychiatry. 2009 Nov. 18(4):331-9. [Medline]. [Full Text].

  33. Buitelaar J, Medori R. Treating attention-deficit/hyperactivity disorder beyond symptom control alone in children and adolescents: a review of the potential benefits of long-acting stimulants. Eur Child Adolesc Psychiatry. 2009 Oct 13. [Medline]. [Full Text].

  34. Cassels, C. FDA Okays Once-Daily Dyanavel XR for ADHD in Children. Medscape Medical News. Available at http://www.medscape.com/viewarticle/852988. October 21, 2015; Accessed: October 27, 2015.

  35. Pfizer. Pfizer Receives U.S. FDA Approval of New QuilliChew ER™ (methylphenidate hydrochloride) extended-release chewable tablets CII. December 7, 2015. Available at http://www.pfizer.com/news/press-release/press-release-detail/pfizer_receives_u_s_fda_approval_of_new_quillichew_er_methylphenidate_hydrochloride_extended_release_chewable_tablets_cii?linkId=19384409.

  36. Chang Z, Lichtenstein P, D'Onofrio BM, Sjölander A, Larsson H. Serious Transport Accidents in Adults With Attention-Deficit/Hyperactivity Disorder and the Effect of Medication: A Population-Based Study. JAMA Psychiatry. 2014 Jan 29. [Medline].

  37. Habel LA, Cooper WO, Sox CM, et al. ADHD medications and risk of serious cardiovascular events in young and middle-aged adults. JAMA. 2011 Dec 28. 306(24):2673-83. [Medline].

  38. FDA. FDA warns of rare risk of long-lasting erections in males taking methylphenidate ADHD medications and has approved label changes. US Food and Drug Administration. Available at http://www.fda.gov/Drugs/DrugSafety/ucm375796.htm. Accessed: January 16, 2014.

  39. Webb JR, Valasek MA, North CS. Prevalence of stimulant use in a sample of US medical students. Ann Clin Psychiatry. 2013 Feb. 25(1):27-32. [Medline].

  40. Lichtenstein P, Halldner L, Zetterqvist J, et al. Medication for attention deficit-hyperactivity disorder and criminality. N Engl J Med. 2012 Nov 22. 367(21):2006-14. [Medline]. [Full Text].

  41. Klein RG, Mannuzza S, Olazagasti MA, et al. Clinical and Functional Outcome of Childhood Attention-Deficit/Hyperactivity Disorder 33 Years Later. Arch Gen Psychiatry. 2012 Oct 15. 1-9. [Medline].

  42. Chronis-Tuscano A, Molina BS, Pelham WE, Applegate B, Dahlke A, Overmyer M, et al. Very early predictors of adolescent depression and suicide attempts in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2010 Oct. 67(10):1044-51. [Medline].

  43. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). 4th ed. Washington, DC: American Psychiatric Association; 2000. 78-85.

  44. Faraone SV, Perlis RH, Doyle AE, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005 Jun 1. 57(11):1313-23. [Medline].

  45. Faraone SV, Sergeant J, Gillberg C, Biederman J. The worldwide prevalence of ADHD: is it an American condition?. World Psychiatry. 2003 Jun. 2(2):104-113. [Medline].

  46. Kaplan HI, Sadock BJ, Grebb JA. Kaplan and Sadock's Synposis of Psychiatry. 7th ed. Baltimore, Md: Williams & Wilkins; 1994. 1063-8.

  47. Rugino TA, Samsock TC. Modafinil in children with attention-deficit hyperactivity disorder. Pediatr Neurol. 2003 Aug. 29(2):136-42. [Medline].

  48. Shillington AM, Reed MB, Lange JE, Clapp JD, Henry S. College undergraduate Ritalin abusers in Southwestern California: Protective and Risk Factors. J Drug Iss. 2006. 36:4:999-1014.

  49. Spencer T, Biederman J, Wilens T. Nonstimulant treatment of adult attention-deficit/hyperactivity disorder. Psychiatr Clin North Am. 2004 Jun. 27(2):373-83. [Medline].

  50. White BP, Becker-Blease KA, Grace-Bishop K. Stimulant medication use, misuse, and abuse in an undergraduate and graduate student sample. J Am Coll Health. 2006 Mar-Apr. 54(5):261-8. [Medline].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.