Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Bronchiectasis Medication

  • Author: Ethan E Emmons, MD; Chief Editor: Zab Mosenifar, MD, FACP, FCCP  more...
 
Updated: Jun 06, 2016
 

Medication Summary

No specific medical therapy exists for the treatment of bronchiectasis. Pharmacologic therapy focuses on the treatment of infectious exacerbations that these patients commonly experience, most often in the form of an acute bronchitis-type syndrome.

The most widely accepted and commonly used medications in the treatment of acute infectious processes associated with bronchiectasis include antibiotics, beta-agonists, inhaled corticosteroids, and expectorants. Other more controversial medications have been previously mentioned in this article for completeness but are not discussed here.

Next

Antibiotics

Class Summary

These are the mainstays of treatment of patients with bronchiectasis and infectious exacerbations. The route of antibiotic administration varies with the overall clinical condition, with most patients doing well on outpatient regimens. Some patients benefit from a set regimen of antibiotic therapy, such as therapy for 1 week of every month.

The choice of antibiotic is provider dependent, but, in general, the antibiotic chosen should have a reasonable spectrum of coverage, including the most common gram-positive and gram-negative organisms. Treatment of the patient who is more ill or the patient with CF often requires intravenous anti-Pseudomonas species coverage with an aminoglycoside, most often in combination with an antipseudomonal synthetic penicillin or cephalosporin. Aerosolized tobramycin has been found effective in patients with cystic fibrosis (CF).

Clarithromycin (Biaxin)

 

Clarithromycin is a semisynthetic macrolide antibiotic that reversibly binds to P site of 50S ribosomal subunit of susceptible organisms and may inhibit RNA-dependent protein synthesis by stimulating dissociation of peptidyl t-RNA from ribosomes, causing bacterial growth inhibition.

Azithromycin (Zithromax, Zmax)

 

Azithromycin is an azalide, a subclass of the macrolide antibiotics. Following oral administration, it is absorbed rapidly and widely distributed throughout body. Its mechanism of action is interference with microbial protein synthesis.

Azithromycin is effective against a wide range of organisms, including the most common gram-positive and gram-negative organisms. It has additional coverage of so-called atypical infections, such as Chlamydia, Mycoplasma, and Legionella species. This agent is indicated for treatment of patients with mild-to-moderate infections, including acute bronchitic infections that may be observed with bronchiectasis.

Trimethoprim and sulfamethoxazole (Septra DS, Bactrim DS)

 

Trimethoprim-sulfamethoxazole is a synthetic combination antibiotic. Each tab contains 80 mg of trimethoprim and 400 mg of sulfamethoxazole. It is rapidly absorbed after oral administration. The mechanism of action involves blockage of 2 consecutive steps in biosynthesis of nucleic acids and proteins needed by many microorganisms.

This agent provides coverage for common forms of both gram-positive and gram-negative organisms, including susceptible strains of Streptococcus pneumoniae and Haemophilus influenzae. It is indicated in the treatment of acute and chronic bronchitic symptoms in patients with bronchiectasis.

Doxycycline (Doryx, Oraxyl, Vibramycin)

 

Doxycycline is a broad-spectrum, synthetically derived bacteriostatic antibiotic in the tetracycline class. It is an alternative agent for patients who cannot be given macrolides or penicillins.

Doxycycline is almost completely absorbed, concentrates in bile, and is excreted in urine and feces as a biologically active metabolite in high concentrations. It inhibits protein synthesis and, thus, bacterial growth by binding to 30S and possibly 50S ribosomal subunits of susceptible bacteria. It may block dissociation of peptidyl tRNA from ribosomes, causing RNA-dependent protein synthesis to arrest.

Levofloxacin (Levaquin)

 

Fluoroquinolones should be used empirically in patients likely to develop exacerbation due to resistant organisms to other antibiotics. Levofloxacin is rapidly becoming a popular choice in pneumonia. It is the L stereoisomer of the D/L parent compound ofloxacin, the D form being inactive.

This agent is good for monotherapy, with extended coverage against Pseudomonas species and excellent activity against pneumococcus. It acts by inhibition of DNA gyrase activity. Bioavailability of the oral form reportedly is 99%.

Tobramycin (TOBI)

 

Tobramycin is an aminoglycoside specifically developed for administration with a nebulizer system. When inhaled, it is concentrated in airways, where it exerts an antibacterial effect by disrupting protein synthesis. Tobramycin is active against a wide range of gram-negative organisms, including P aeruginosa. It is indicated for treatment of patients with CF and P aeruginosa infection.

Gentamicin

 

A water-soluble injectable antibiotic of aminoglycoside group, gentamicin acts by inhibiting normal protein synthesis; it is active against variety of pathogenic organisms, including P aeruginosa. For treatment of Pseudomonas species, it is often used in combination with an antipseudomonal synthetic penicillin or cephalosporin.

In patients with bronchiectasis, gentamicin (or other aminoglycosides) may be indicated in setting of severe respiratory tract infection or CF. Dosing regimens are numerous; adjust dose based on creatinine clearance (CrCl) and changes in volume of distribution. Gentamicin may be administered IV or IM.

Amikacin

 

Amikacin irreversibly binds to the 30S subunit of bacterial ribosomes; it blocks the recognition step in protein synthesis and causes growth inhibition. It is indicated for gram-negative bacterial coverage of infections resistant to gentamicin and tobramycin. Amikacin is effective against P aeruginosa. Use patient's ideal body weight (IBW) for dosage calculation. The same principles of drug monitoring for gentamicin apply to amikacin.

Previous
Next

Inhaled Beta Agonist

Class Summary

Although no long-term studies have been performed with inhaled beta-agonists, these medications are routinely used in patients with bronchiectasis for multiple reasons. Bronchiectasis may cause an obstructive defect on pulmonary function testing that may respond to inhaled beta-agonists. Many older patients with bronchiectasis often have a concomitant illness, such as chronic obstructive pulmonary disease, that responds to inhaled beta-agonists.

Finally, in the acute infectious bronchitic exacerbation that occurs in patients with bronchiectasis, patients may develop transient obstructive airway physiology that may improve with an inhaled beta-agonist. Along these same lines, many patients are started on inhaled steroids for long-term airway stabilization, but the efficacy of these medications in bronchiectasis is questionable, and any effect simply may be secondary to the treatment of other concomitant obstructive airway diseases.

Salmeterol (Serevent Diskus)

 

By relaxing the smooth muscles of the bronchioles in conditions associated with bronchitis, emphysema, asthma, or bronchiectasis, salmeterol can relieve bronchospasms. It also may facilitate expectoration.

Salmeterol has been shown to improve symptoms and morning peak flows. It may be useful when bronchodilators are used frequently. More studies are needed to establish the role for these agents.

The bronchodilating effect of salmeterol lasts >12 h. This agent is used on a fixed schedule in addition to regular use of anticholinergic agents. When salmeterol is administered at high or more frequent doses than recommended, the incidence of adverse effects is higher.

Albuterol sulfate (Proventil, Ventolin)

 

Albuterol is a relatively selective beta2-adrenergic bronchodilator that, when inhaled, relaxes bronchial smooth muscle and inhibits release of mediators of immediate hypersensitivity from cells, especially mast cells.

Albuterol is administered in a metered-dose aerosol unit for oral inhalation. It is indicated for prevention and relief of bronchospasm from any cause, including those observed in patients with bronchiectasis.

Previous
Next

Inhaled Corticosteroids

Class Summary

Studies suggest a benefit of inhaled corticosteroids in bronchiectasis, although the optimal dosing remains to be determined. No significant studies of oral steroid therapy in patients with bronchiectasis have been performed.

Beclomethasone (Qvar)

 

Beclomethasone inhibits bronchoconstriction mechanisms, produces direct smooth muscle relaxation, and may decrease the number and activity of inflammatory cells, in turn decreasing airway hyperresponsiveness. It is readily absorbed through the nasopharyngeal mucosa and GI tract. It has a weak hypothalamic-pituitary-adrenal (HPA) axis inhibitory potency when applied topically.

Various dose preparations are available and must be titrated in conjunction with other medications the patient is taking; most inhaled oral medications have an effect in 24 hours.

Fluticasone inhaled (Flovent Diskus)

 

Fluticasone may decrease the number and activity of inflammatory cells, in turn decreasing airway hyperresponsiveness. It also has vasoconstrictive activity.

Previous
Next

Expectorants

Class Summary

One of the hallmarks of bronchiectasis is a chronic, thick, viscid sputum production. In bronchiectasis, it is extremely difficult for the body's natural mucociliary clearance mechanisms to adequately clear the sputum produced. Although definitive evidence is lacking, expectorants are expected to increase respiratory tract fluid secretions and to help loosen phlegm and bronchial secretions.

By reducing the viscosity of secretions, expectorants increase the efficacy of the mucociliary clearance system. Expectorants are often marketed in combination with decongestants, which may provide some patients additional relief.

Guaifenesin (Mucinex)

 

The product contains 600 mg of guaifenesin in a sustained-release formulation intended for oral administration. It increases respiratory tract fluid secretions and helps to loosen phlegm and bronchial secretions. Humibid LA and guaifenesin are indicated for patients with bronchiectasis complicated by tenacious mucus and/or mucous plugs.

Previous
 
Contributor Information and Disclosures
Author

Ethan E Emmons, MD Physician

Ethan E Emmons, MD is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Academy of Sleep Medicine

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Daniel R Ouellette, MD, FCCP Associate Professor of Medicine, Wayne State University School of Medicine; Chair of the Clinical Competency Committee, Pulmonary and Critical Care Fellowship Program, Senior Staff and Attending Physician, Division of Pulmonary and Critical Care Medicine, Henry Ford Health System; Chair, Guideline Oversight Committee, American College of Chest Physicians

Daniel R Ouellette, MD, FCCP is a member of the following medical societies: American College of Chest Physicians, Society of Critical Care Medicine, American Thoracic Society

Disclosure: Nothing to disclose.

Chief Editor

Zab Mosenifar, MD, FACP, FCCP Geri and Richard Brawerman Chair in Pulmonary and Critical Care Medicine, Professor and Executive Vice Chairman, Department of Medicine, Medical Director, Women's Guild Lung Institute, Cedars Sinai Medical Center, University of California, Los Angeles, David Geffen School of Medicine

Zab Mosenifar, MD, FACP, FCCP is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Federation for Medical Research, American Thoracic Society

Disclosure: Nothing to disclose.

Additional Contributors

Helen M Hollingsworth, MD Director, Adult Asthma and Allergy Services, Associate Professor, Department of Internal Medicine, Division of Pulmonary and Critical Care, Boston Medical Center

Helen M Hollingsworth, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American College of Chest Physicians, American Thoracic Society, Massachusetts Medical Society

Disclosure: Nothing to disclose.

References
  1. Reid LM. Reduction in bronchial subdivision in bronchiectasis. Thorax. 1950 Sep. 5(3):233-47. [Medline]. [Full Text].

  2. Tiddens HA. Chest computed tomography scans should be considered as a routine investigation in cystic fibrosis. Paediatr Respir Rev. 2006 Sep. 7(3):202-8. [Medline].

  3. Young K, Aspestrand F, Kolbenstvedt A. High resolution CT and bronchography in the assessment of bronchiectasis. Acta Radiol. 1991 Nov. 32(6):439-41. [Medline].

  4. Smith IE, Flower CD. Review article: imaging in bronchiectasis. Br J Radiol. 1996 Jul. 69(823):589-93. [Medline].

  5. Chalmers JD, McHugh BJ, Docherty C, Govan JR, Hill AT. Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax. 2013 Jan. 68(1):39-47. [Medline]. [Full Text].

  6. Davies G, Wilson R. Prophylactic antibiotic treatment of bronchiectasis with azithromycin. Thorax. 2004 Jun. 59(6):540-1. [Medline]. [Full Text].

  7. Tagaya E, Tamaoki J, Kondo M, Nagai A. Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion. Chest. 2002 Jul. 122(1):213-8. [Medline].

  8. Yalçin E, Kiper N, Ozcelik U, Dogru D, Firat P, Sahin A. Effects of claritromycin on inflammatory parameters and clinical conditions in children with bronchiectasis. J Clin Pharm Ther. 2006 Feb. 31(1):49-55. [Medline].

  9. Luce JM. Bronchiectasis. Murray JF, Nadel JA, eds. Textbook of Respiratory Medicine. 2nd ed. Philadelphia, Pa: WB Saunders and Co; 1994. 1398-1417.

  10. Ip MS, Lam WK. Bronchiectasis and related disorders. Respirology. 1996 Jun. 1(2):107-14. [Medline].

  11. Kolbe J, Wells AU. Bronchiectasis: a neglected cause of respiratory morbidity and mortality. Respirology. 1996 Dec. 1(4):221-5. [Medline].

  12. Morrissey D. Pathogenesis of Bronchiectasis. Clin Chest Med. 2007. 28:289-296.

  13. Cole PJ. A new look at the pathogenesis, management of persistent bronchial sepsis: A 'viscious circle' hypothesis and its logical therapeutic connotations. Davies RJ. Strategies for the Management of Chronic Bacterial Sepsis. Oxford: Medicine Publishing Foundation; 1984. 1-20.

  14. Pasteur M, Helliwell S, Houghton S, et al. An investigation into causitive factors in patients with bronchiectasis. Am J Respir Crit Care Med. 2000. 162:1277-1284.

  15. Singleton R, Morris A, Redding G, et al. Bronchiectasis in Alaska Native children: causes and clinical courses. Pediatr Pulmonol. 2000 Mar. 29(3):182-7. [Medline].

  16. Chang A, Grimwood K, Mulholland E, et al. Bronchiectasis in indigenous children in remote Australian communities. Med J Aust. 2002. 117:200-204.

  17. Barker AF. Bronchiectasis. N Engl J Med. 2002 May 2. 346(18):1383-93. [Medline].

  18. Holmes AH, Trotman-Dickenson B, Edwards A, Peto T, Luzzi GA. Bronchiectasis in HIV disease. Q J Med. 1992 Nov-Dec. 85(307-308):875-82. [Medline].

  19. Reich JM, Johnson RE. Mycobacterium avium complex pulmonary disease presenting as an isolated lingular or middle lobe pattern. The Lady Windermere syndrome. Chest. 1992 Jun. 101(6):1605-9. [Medline].

  20. Koh WJ, Kwon OJ. Bronchiectasis and non-tuberculous mycobacterial pulmonary infection. Thorax. 2006 May. 61(5):458; author reply 458. [Medline]. [Full Text].

  21. Wickremasinghe M, Ozerovitch LJ, Davies G, et al. Non-tuberculous mycobacteria in patients with bronchiectasis. Thorax. 2005 Dec. 60(12):1045-51. [Medline]. [Full Text].

  22. Angrill J, Augusti C, de Celis R, et al. Bacterial colonization in patients with bronchiectasis: microbiological pattern and risk factors. Thorax. 2002. 57:15-19.

  23. King PT, Holdsworth SR, Freezer NJ, Villanueva E, Holmes PW. Microbiologic follow-up study in adult bronchiectasis. Respir Med. 2007 Aug. 101(8):1633-8. [Medline].

  24. Davies G, Wells AU, Doffman S, Watanabe S, Wilson R. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur Respir J. 2006 Nov. 28(5):974-9. [Medline].

  25. Tsang KW, Lam SK, Lam WK, et al. High seroprevalence of Helicobacter pylori in active bronchiectasis. Am J Respir Crit Care Med. 1998 Oct. 158(4):1047-51. [Medline].

  26. Tsang KW, Lam WK, Kwok E, et al. Helicobacter pylori and upper gastrointestinal symptoms in bronchiectasis. Eur Respir J. 1999 Dec. 14(6):1345-50. [Medline].

  27. De Groote M, Huitt G, Fulton K, et al. Retrospective analysis of aspiration risk and genetic predisposition in bronchiectasis patients with and without non-tuberculous mycobacteria infection. Am J Respir Crit Care Med. 2003. 163:A763.

  28. National Institutes of Health. Genetic testing for cystic fibrosis. National Institutes of Health Consensus Development Conference Statement on genetic testing for cystic fibrosis. Arch Intern Med. 1999 Jul 26. 159(14):1529-39. [Medline].

  29. Yankaskas JR, Marshall BC, Sufian B, Simon RH, Rodman D. Cystic fibrosis adult care: consensus conference report. Chest. 2004 Jan. 125(1 Suppl):1S-39S. [Medline].

  30. Kerem E, Corey M, Kerem BS, et al. The relation between genotype and phenotype in cystic fibrosis--analysis of the most common mutation (delta F508). N Engl J Med. 1990 Nov 29. 323(22):1517-22. [Medline].

  31. Groman JD, Meyer ME, Wilmott RW, Zeitlin PL, Cutting GR. Variant cystic fibrosis phenotypes in the absence of CFTR mutations. N Engl J Med. 2002 Aug 8. 347(6):401-7. [Medline].

  32. Drumm ML, Konstan MW, Schluchter MD, et al. Genetic modifiers of lung disease in cystic fibrosis. N Engl J Med. 2005 Oct 6. 353(14):1443-53. [Medline].

  33. Li Z, Kosorok MR, Farrell PM, et al. Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA. 2005 Feb 2. 293(5):581-8. [Medline].

  34. Handelsman DJ, Conway AJ, Boylan LM, Turtle JR. Young's syndrome. Obstructive azoospermia and chronic sinopulmonary infections. N Engl J Med. 1984 Jan 5. 310(1):3-9. [Medline].

  35. Sturgess JM, Thompson MW, Czegledy-Nagy E, Turner JA. Genetic aspects of immotile cilia syndrome. Am J Med Genet. 1986 Sep. 25(1):149-60. [Medline].

  36. Noone PG, Leigh MW, Sannuti A, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med. 2004 Feb 15. 169(4):459-67. [Medline].

  37. Lillington GA. Dyskinetic cilia and Kartagener's syndrome. Bronchiectasis with a twist. Clin Rev Allergy Immunol. 2001 Aug. 21(1):65-9. [Medline].

  38. Morrissey B, Louie S. Allergic bronchopulmonary aspergillosis: an evolving challenge in asthma. Gershwin M, Albertson T, eds. Bronchial Asthma: A Guide for Practical Understanding and Treatment. 5th ed. Totowa, NJ: Humana Press; 2006. 279-309.

  39. Vendrell M, de Gracia J, Rodrigo MJ, et al. Antibody production deficiency with normal IgG levels in bronchiectasis of unknown etiology. Chest. 2005 Jan. 127(1):197-204. [Medline].

  40. De Gracia J, Rodrigo MJ, Morell F, et al. IgG subclass deficiencies associated with bronchiectasis. Am J Respir Crit Care Med. 1996 Feb. 153(2):650-5. [Medline].

  41. Thickett KM, Kumararatne DS, Banerjee AK, Dudley R, Stableforth DE. Common variable immune deficiency: respiratory manifestations, pulmonary function and high-resolution CT scan findings. QJM. 2002 Oct. 95(10):655-62. [Medline].

  42. Notarangelo LD, Plebani A, Mazzolari E, Soresina A, Bondioni MP. Genetic causes of bronchiectasis: primary immune deficiencies and the lung. Respiration. 2007. 74(3):264-75. [Medline].

  43. Stover DE, White DA, Romano PA, Gellene RA, Robeson WA. Spectrum of pulmonary diseases associated with the acquired immune deficiency syndrome. Am J Med. 1985 Mar. 78(3):429-37. [Medline].

  44. McGuinness G, Naidich DP, Garay S, Leitman BS, McCauley DI. AIDS associated bronchiectasis: CT features. J Comput Assist Tomogr. 1993 Mar-Apr. 17(2):260-6. [Medline].

  45. Jones VF, Eid NS, Franco SM, Badgett JT, Buchino JJ. Familial congenital bronchiectasis: Williams-Campbell syndrome. Pediatr Pulmonol. 1993 Oct. 16(4):263-7. [Medline].

  46. Woodring JH, Howard RS 2nd, Rehm SR. Congenital tracheobronchomegaly (Mounier-Kuhn syndrome): a report of 10 cases and review of the literature. J Thorac Imaging. 1991 Apr. 6(2):1-10. [Medline].

  47. Cordasco EM Jr, Beder S, Coltro A, Bavbek S, Gurses H, Mehta AC. Clinical features of the yellow nail syndrome. Cleve Clin J Med. 1990 Jul-Aug. 57(5):472-6. [Medline].

  48. Shin MS, Ho KJ. Bronchiectasis in patients with alpha 1-antitrypsin deficiency. A rare occurrence?. Chest. 1993 Nov. 104(5):1384-6. [Medline].

  49. Chan E, Feldman N, Chmura K. Do mutations of the alpha-1-antitrypsin gene predispose to non-tuberculous mycobacterial infection?. Am J Respir Crit Care Med. 2004. 169:A132.

  50. Parr DG, Guest PG, Reynolds JH, Dowson LJ, Stockley RA. Prevalence and impact of bronchiectasis in alpha1-antitrypsin deficiency. Am J Respir Crit Care Med. 2007 Dec 15. 176(12):1215-21. [Medline].

  51. Cuvelier A, Muir JF, Hellot MF, Benhamou D, Martin JP, Benichou J. Distribution of alpha(1)-antitrypsin alleles in patients with bronchiectasis. Chest. 2000 Feb. 117(2):415-9. [Medline].

  52. Walker WC. Pulmonary infections and rheumatoid arthritis. Q J Med. 1967 Apr. 36(142):239-51. [Medline].

  53. Perez T, Remy-Jardin M, Cortet B. Airways involvement in rheumatoid arthritis: clinical, functional, and HRCT findings. Am J Respir Crit Care Med. 1998 May. 157(5 Pt 1):1658-65. [Medline].

  54. McMahon MJ, Swinson DR, Shettar S, Wolstenholme R, Chattopadhyay C, Smith P. Bronchiectasis and rheumatoid arthritis: a clinical study. Ann Rheum Dis. 1993 Nov. 52(11):776-9. [Medline].

  55. Swinson DR, Symmons D, Suresh U, Jones M, Booth J. Decreased survival in patients with co-existent rheumatoid arthritis and bronchiectasis. Br J Rheumatol. 1997 Jun. 36(6):689-91. [Medline].

  56. Robinson DA, Meyer CF. Primary Sjögren's syndrome associated with recurrent sinopulmonary infections and bronchiectasis. J Allergy Clin Immunol. 1994 Aug. 94(2 Pt 1):263-4. [Medline].

  57. Casserly IP, Fenlon HM, Breatnach E, Sant SM. Lung findings on high-resolution computed tomography in idiopathic ankylosing spondylitis--correlation with clinical findings, pulmonary function testing and plain radiography. Br J Rheumatol. 1997 Jun. 36(6):677-82. [Medline].

  58. Fenlon HM, Doran M, Sant SM, Breatnach E. High-resolution chest CT in systemic lupus erythematosus. AJR Am J Roentgenol. 1996 Feb. 166(2):301-7. [Medline].

  59. Tillie-Leblond I, Wallaert B, Leblond D, et al. Respiratory involvement in relapsing polychondritis. Clinical, functional, endoscopic, and radiographic evaluations. Medicine (Baltimore). 1998 May. 77(3):168-76. [Medline].

  60. Camus P, Colby TV. The lung in inflammatory bowel disease. Eur Respir J. 2000 Jan. 15(1):5-10. [Medline].

  61. Rockoff SD, Rohatgi PK. Unusual manifestations of thoracic sarcoidosis. AJR Am J Roentgenol. 1985 Mar. 144(3):513-28. [Medline].

  62. Wood JR, Bellamy D, Child AH, Citron KM. Pulmonary disease in patients with Marfan syndrome. Thorax. 1984 Oct. 39(10):780-4. [Medline]. [Full Text].

  63. Driscoll JA, Bhalla S, Liapis H, Ibricevic A, Brody SL. Autosomal dominant polycystic kidney disease is associated with an increased prevalence of radiographic bronchiectasis. Chest. 2008 May. 133(5):1181-8. [Medline].

  64. Javidan-Nejad C, Bhalla S. Bronchiectasis. Radiol Clin North Am. 2009 Mar. 47(2):289-306. [Medline].

  65. Kennedy TP, Weber DJ. Nontuberculous mycobacteria. An underappreciated cause of geriatric lung disease. Am J Respir Crit Care Med. 1994 Jun. 149(6):1654-8. [Medline].

  66. Nikolaizik WH, Warner JO. Aetiology of chronic suppurative lung disease. Arch Dis Child. 1994 Feb. 70(2):141-2. [Medline]. [Full Text].

  67. Wallace RJ Jr. Mycobacterium avium complex lung disease and women. Now an equal opportunity disease. Chest. 1994 Jan. 105(1):6-7. [Medline].

  68. Iseman MD, Buschman DL, Ackerson LM. Pectus excavatum and scoliosis. Thoracic anomalies associated with pulmonary disease caused by Mycobacterium avium complex. Am Rev Respir Dis. 1991 Oct. 144(4):914-6. [Medline].

  69. Nicotra MB, Rivera M, Dale AM, Shepherd R, Carter R. Clinical, pathophysiologic, and microbiologic characterization of bronchiectasis in an aging cohort. Chest. 1995 Oct. 108(4):955-61. [Medline].

  70. Seitz AE, Olivier KN, Steiner CA, et al. Trends and burden of bronchiectasis-associated hospitalizations in the United States, 1993-2006. Chest. 2010 Oct. 138(4):944-9. [Medline]. [Full Text].

  71. Morrissey BM, Harper RW. Bronchiectasis: sex and gender considerations. Clin Chest Med. 2004 Jun. 25(2):361-72. [Medline].

  72. Perry K, King D. Bronchiectasis, a study of prognosis based on a follow-up of 400 patients. Am Rev Tuber. 1941. 40:53.

  73. Ellis DA, Thornley PE, Wightman AJ, Walker M, Chalmers J, Crofton JW. Present outlook in bronchiectasis: clinical and social study and review of factors influencing prognosis. Thorax. 1981 Sep. 36(9):659-64. [Medline]. [Full Text].

  74. Keistinen T, Saynajakangas O, Tuuponen T, Kivela SL. Bronchiectasis: an orphan disease with a poorly-understood prognosis. Eur Respir J. 1997 Dec. 10(12):2784-7. [Medline].

  75. Saynajakangas O, Keistinen T, Tuuponen T, Kivela SL. Bronchiectasis in Finland: trends in hospital treatment. Respir Med. 1997 Aug. 91(7):395-8. [Medline].

  76. Dupont M, Gacouin A, Lena H, et al. Survival of patients with bronchiectasis after the first ICU stay for respiratory failure. Chest. 2004 May. 125(5):1815-20. [Medline].

  77. Onen ZP, Gulbay BE, Sen E, et al. Analysis of the factors related to mortality in patients with bronchiectasis. Respir Med. 2007 Jul. 101(7):1390-7. [Medline].

  78. Janeczko L. Children With Chronic Wet Cough Despite Antibiotics May Have Bronchiectasis. Medscape Medical News. Available at http://www.medscape.com/viewarticle/822067. Accessed: March 24, 2014.

  79. Goyal V, Grimwood K, Marchant J, Masters IB, Chang AB. Does failed chronic wet cough response to antibiotics predict bronchiectasis?. Arch Dis Child. 2014 Feb 12. [Medline].

  80. Rosen MJ. Chronic cough due to bronchiectasis: ACCP evidence-based clinical practice guidelines. Chest. 2006 Jan. 129(1 Suppl):122S-131S. [Medline].

  81. King PT, Holdsworth SR, Freezer NJ, Villanueva E, Holmes PW. Characterisation of the onset and presenting clinical features of adult bronchiectasis. Respir Med. 2006 Dec. 100(12):2183-9. [Medline].

  82. Flume PA, Yankaskas JR, Ebeling M, Hulsey T, Clark LL. Massive hemoptysis in cystic fibrosis. Chest. 2005 Aug. 128(2):729-38. [Medline].

  83. Prys-Picard CO, Niven R. Urinary incontinence in patients with bronchiectasis. Eur Respir J. 2006 Apr. 27(4):866-7. [Medline].

  84. Hansell DM. Bronchiectasis. Radiol Clin North Am. 1998 Jan. 36(1):107-28. [Medline].

  85. Mannino DM, Davis KJ. Lung function decline and outcomes in an elderly population. Thorax. 2006 Jun. 61(6):472-7. [Medline]. [Full Text].

  86. Martinez-Garcia MA, Soler-Cataluna JJ, Perpina-Tordera M, Roman-Sanchez P, Soriano J. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest. 2007 Nov. 132(5):1565-72. [Medline].

  87. Chang C, Singleton R, Morris P and et al. Pneumococcal vaccines for children and adults with bronchiectasis. The Cochrane Database of Systematic Reviews. 2008. 3:

  88. Chang CC, Morris PS, Chang AB. Influenza vaccine for children and adults with bronchiectasis. Cochrane Database Syst Rev. 2007 Jul 18. CD006218. [Medline].

  89. Evans DJ, Bara AI, Greenstone M. Prolonged antibiotics for purulent bronchiectasis. Cochrane Database Syst Rev. 2003. (4):CD001392. [Medline].

  90. Evans DJ, Greenstone M. Long-term antibiotics in the management of non-CF bronchiectasis--do they improve outcome?. Respir Med. 2003 Jul. 97(7):851-8. [Medline].

  91. Rubin BK. Aerosolized antibiotics for non-cystic fibrosis bronchiectasis. J Aerosol Med Pulm Drug Deliv. 2008 Mar. 21(1):71-6. [Medline].

  92. Barker AF, Couch L, Fiel SB, et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am J Respir Crit Care Med. 2000 Aug. 162(2 Pt 1):481-5. [Medline].

  93. Bilton D, Henig N, Morrissey B, Gotfried M. Addition of inhaled tobramycin to ciprofloxacin for acute exacerbations of Pseudomonas aeruginosa infection in adult bronchiectasis. Chest. 2006 Nov. 130(5):1503-10. [Medline].

  94. Haciibrahimoglu G, Fazlioglu M, Olcmen A, Gurses A, Bedirhan MA. Surgical management of childhood bronchiectasis due to infectious disease. J Thorac Cardiovasc Surg. 2004 May. 127(5):1361-5. [Medline].

  95. Drobnic ME, Sune P, Montoro JB, Ferrer A, Orriols R. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann Pharmacother. 2005 Jan. 39(1):39-44. [Medline].

  96. Scheinberg P, Shore E. A pilot study of the safety and efficacy of tobramycin solution for inhalation in patients with severe bronchiectasis. Chest. 2005 Apr. 127(4):1420-6. [Medline].

  97. Lin H, Cheng H, Wang C, et al. Inhaled gentamicin reduces airway neutrophil activity and mucus secretion in bronchiectasis. Am J Respir Crit Care Med. 1999. 155:2024-2029.

  98. Steinfort DP, Steinfort C. Effect of long-term nebulized colistin on lung function and quality of life in patients with chronic bronchial sepsis. Intern Med J. 2007 Jul. 37(7):495-8. [Medline].

  99. Murray MP, Govan JR, Doherty CJ, et al. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2011 Feb 15. 183(4):491-9. [Medline].

  100. Patterson JE, Hewitt O, Kent L, Bradbury I, Elborn JS, Bradley JM. Acapella versus 'usual airway clearance' during acute exacerbation in bronchiectasis: a randomized crossover trial. Chron Respir Dis. 2007. 4(2):67-74. [Medline].

  101. Eaton T, Young P, Zeng I, Kolbe J. A randomized evaluation of the acute efficacy, acceptability and tolerability of flutter and active cycle of breathing with and without postural drainage in non-cystic fibrosis bronchiectasis. Chron Respir Dis. 2007. 4(1):23-30. [Medline].

  102. Langenderfer B. Alternatives to percussion and postural drainage. A review of mucus clearance therapies: percussion and postural drainage, autogenic drainage, positive expiratory pressure, flutter valve, intrapulmonary percussive ventilation, and high-frequency chest compression with the ThAIRapy Vest. J Cardiopulm Rehabil. 1998 Jul-Aug. 18(4):283-9. [Medline].

  103. Mutalithas K, Watkin G, Willig B, Wardlaw A, Pavord ID, Birring SS. Improvement in health status following bronchopulmonary hygiene physical therapy in patients with bronchiectasis. Respir Med. 2008 Aug. 102(8):1140-4. [Medline].

  104. Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med. 2006 Jan 19. 354(3):241-50. [Medline].

  105. Elkins MR, Robinson M, Rose BR, et al. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med. 2006 Jan 19. 354(3):229-40. [Medline].

  106. Florescu DF, Murphy PJ, Kalil AC. Effects of prolonged use of azithromycin in patients with cystic fibrosis: a meta-analysis. Pulm Pharmacol Ther. 2009 Dec. 22(6):467-72. [Medline].

  107. Fuchs HJ, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med. 1994 Sep 8. 331(10):637-42. [Medline].

  108. Paul K, Rietschel E, Ballmann M, et al. Effect of treatment with dornase alpha on airway inflammation in patients with cystic fibrosis. Am J Respir Crit Care Med. 2004 Mar 15. 169(6):719-25. [Medline].

  109. O'Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest. 1998 May. 113(5):1329-34. [Medline].

  110. Franco F, Sheikh A, Greenstone M. Short acting beta-2 agonists for bronchiectasis. Cochrane Database Syst Rev. 2003. CD003572. [Medline].

  111. Sheikh A, Nolan D, Greenstone M. Long-acting beta-2-agonists for bronchiectasis. Cochrane Database Syst Rev. 2001. CD002155. [Medline].

  112. Lasserson T, Holt K, Evans D, Greenstone M. Anticholinergic therapy for bronchiectasis. Cochrane Database Syst Rev. 2001. CD002163. [Medline].

  113. Kolbe J, Wells A, Ram FS. Inhaled steroids for bronchiectasis. Cochrane Database Syst Rev. 2000. CD000996. [Medline].

  114. Lasserson T, Holt K, Greenstone M. Oral steroids for bronchiectasis (stable and acute exacerbations). Cochrane Database Syst Rev. 2001. CD002162. [Medline].

  115. Corless JA, Warburton CJ. Leukotriene receptor antagonists for non-cystic fibrosis bronchiectasis. Cochrane Database Syst Rev. 2000. (4):CD002174. [Medline].

  116. Tsang KW, Tan KC, Ho PL, et al. Inhaled fluticasone in bronchiectasis: a 12 month study. Thorax. 2005 Mar. 60(3):239-43. [Medline]. [Full Text].

  117. Martinez-Garcia MA, Perpina-Tordera M, Roman-Sanchez P, Soler-Cataluna JJ. Inhaled steroids improve quality of life in patients with steady-state bronchiectasis. Respir Med. 2006 Sep. 100(9):1623-32. [Medline].

  118. Anwar GA, Bourke SC, Afolabi G, Middleton P, Ward C, Rutherford RM. Effects of long-term low-dose azithromycin in patients with non-CF bronchiectasis. Respir Med. 2008 Oct. 102(10):1494-6. [Medline].

  119. Wong C, Jayaram L, Karalus N, Eaton T, Tong C, Hockey H, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012 Aug 18. 380(9842):660-7. [Medline].

  120. Kapur N, Bell S, Kolbe J, Chang AB. Inhaled steroids for bronchiectasis. Cochrane Database Syst Rev. 2009 Jan 21. CD000996. [Medline].

  121. Corless JA, Warburton CJ. Surgery vs non-surgical treatment for bronchiectasis. Cochrane Database Syst Rev. 2000. (4):CD002180. [Medline].

  122. Balkanli K, Genc O, Dakak M, et al. Surgical management of bronchiectasis: analysis and short-term results in 238 patients. Eur J Cardiothorac Surg. 2003 Nov. 24(5):699-702. [Medline].

  123. Agasthian T, Deschamps C, Trastek VF, Allen MS, Pairolero PC. Surgical management of bronchiectasis. Ann Thorac Surg. 1996 Oct. 62(4):976-8; discussion 979-80. [Medline].

 
Previous
Next
 
Cylindrical bronchiectasis with signet-ring appearance. Note that the luminal airway diameter is greater than the diameter of the adjacent vessel.
Cystic and cylindrical bronchiectasis of the right lower lobe on a posterior-anterior chest radiograph.
Varicose bronchiectasis with alternating areas of bronchial dilatation and constriction.
This CT scan depicts areas of both cystic bronchiectasis and varicose bronchiectasis.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.