Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Chronic Obstructive Pulmonary Disease (COPD) Workup

  • Author: Zab Mosenifar, MD, FACP, FCCP; Chief Editor: Ryland P Byrd, Jr, MD  more...
 
Updated: Jul 11, 2016
 

Approach Considerations

The defining feature of COPD is irreversible airflow limitation during forced expiration. This may result from a loss of elastic recoil due to lung tissue destruction or from an increase in the resistance of the conducting airways. The formal diagnosis of COPD is made with spirometry; when the ratio of forced expiratory volume in 1 second over forced vital capacity (FEV1/FVC) is less than 70% of that predicted for a matched control, it is diagnostic for a significant obstructive defect. Other studies, including laboratory studies and imaging, are particularly important during acute exacerbations of disease.

No blood-based biomarkers are accepted in COPD. However, a study by Sin et al investigated the use of serum pulmonary and activation-regulated chemokine (PARC/CCL-18) as a potential biomarker.[40] The study determined that PARC/CCL-18 levels are elevated in COPD and track clinical outcomes.

A large retrospective review from the United Kingdom found that in the 5 years preceding a diagnosis of COPD, primary care practitioners and specialists had missed opportunities to diagnose the disease in 85% of patients. Of the almost 39,000 patients in the study, 32,900 had presented with clinical or test findings consistent with early COPD. Missed opportunities included lower respiratory tract consultations resulting in a prescription for antibiotics or oral steroids and chest radiography not leading to a COPD diagnosis. Women were more likely to be underdiagnosed than men.[41]

Next

Arterial Blood Gas Analysis

Arterial blood gas (ABG) analysis provides the best clues as to acuteness and severity of disease exacerbation.

Patients with mild COPD have mild to moderate hypoxemia without hypercapnia. As the disease progresses, hypoxemia worsens and hypercapnia may develop, with the latter commonly being observed as the FEV1 falls below 1 L/s or 30% of the predicted value. Lung mechanics and gas exchange worsen during acute exacerbations.

In general, renal compensation occurs even in chronic CO2 retainers (ie, bronchitics); thus, pH usually is near normal. Generally, consider any pH below 7.3 to be a sign of acute respiratory compromise.

Previous
Next

Serum Chemistries

Patients with COPD tend to retain sodium. In addition, serum potassium should be monitored carefully, because diuretics, beta-adrenergic agonists, and theophylline act to lower potassium levels.

Beta-adrenergic agonists also increase renal excretion of serum calcium and magnesium, which may be important in the presence of hypokalemia.

Chronic respiratory acidosis leads to compensatory metabolic alkalosis. In the absence of blood gas measurements, bicarbonate levels are useful for following disease progression.

Previous
Next

Alpha1-Antitrypsin

Measure alpha1-antitrypsin (AAT) in all patients younger than 40 years or in those with a family history of emphysema at an early age. The diagnosis of severe AAT deficiency is confirmed when the serum level falls below the protective threshold value of 11 mmol/L (ie, in the range of 3-7 mmol/L).

Specific phenotyping is reserved for patients in whom serum levels are 7-11 mmol/L or when genetic counseling or family analysis is needed.

Previous
Next

Sputum Evaluation

In persons with stable chronic bronchitis, the sputum is mucoid and macrophages are the predominant cells. With an exacerbation, sputum becomes purulent because of the presence of neutrophils. Although the quality of sputum can vary between patients in chronic stable disease, an increase in the quantity of sputum production is often a sign of an acute exacerbation.

A mixture of organisms often is visible with Gram stain (see Sputum Culture). The pathogens cultured most frequently during exacerbations are Streptococcus pneumoniae and Haemophilus influenzae.Moraxella catarrhalis is also a common organism, and Pseudomonas aeruginosa can be seen in patients with severe obstruction.

Previous
Next

B-Type Natriuretic Peptide

Human B-type natriuretic peptide (BNP) binds to particulate guanylate cyclase receptors of vascular smooth muscle and endothelial cells. Binding to the receptors causes an increase in cyclic guanosine monophosphate (GMP), which serves as a secondary messenger to dilate veins and arteries.

By measuring BNP, it was thought that the ability to differentiate between CHF and COPD exacerbations would become much easier. However, clinical observation and research have shown that in cases of mild CHF exacerbation, differentiation between CHF and COPD is still not straightforward. A mild elevation of BNP must be taken in context with the overall clinical picture.

New biomarkers such as pro-BNP peptide assays are in development and may prove helpful in differentiating COPD from CHF exacerbations in the future.

Previous
Next

Chest Radiography

As demonstrated in the images below, frontal and lateral chest radiographs of patients with emphysema reveal signs of hyperinflation, including flattening of the diaphragm, increased retrosternal air space, and a long, narrow heart shadow. Rapidly tapering vascular shadows accompanied by hyperlucency of the lungs are other signs of emphysema.

Chronic bronchitis is associated with increased bronchovascular markings and cardiomegaly.

With complicating pulmonary hypertension, the hilar vascular shadows are prominent, with possible right ventricular enlargement and opacity in the lower retrosternal air space.

Posteroanterior (PA) and lateral chest radiograph Posteroanterior (PA) and lateral chest radiograph in a patient with severe chronic obstructive pulmonary disease (COPD). Hyperinflation, depressed diaphragm, increased retrosternal space, and hypovascularity of lung parenchyma are demonstrated.
A lung with emphysema shows increased anteroposter A lung with emphysema shows increased anteroposterior (AP) diameter, increased retrosternal airspace, and flattened diaphragm on lateral chest radiograph.
A lung with emphysema shows increased anteroposter A lung with emphysema shows increased anteroposterior (AP) diameter, increased retrosternal airspace, and flattened diaphragm on posteroanterior chest radiograph.
Previous
Next

Computed Tomography

High-resolution CT (HRCT) scanning is more sensitive than standard chest radiography and is highly specific for diagnosing emphysema (outlined bullae are not always visible on a radiograph).

HRCT scanning may provide an adjunct means of diagnosing various forms of COPD (ie, lower lobe disease may suggest AAT deficiency) and may help the clinician to determine whether surgical intervention would benefit the patient. (See the CT image below.)

Severe bullous disease as seen on a computed tomog Severe bullous disease as seen on a computed tomography (CT) scan in a patient with chronic obstructive pulmonary disease (COPD).
Previous
Next

Two-Dimensional Echocardiography

Many patients with long-standing COPD develop secondary pulmonary hypertension from chronic hypoxemia and vascular remodeling. This may result in eventual right-sided heart failure (cor pulmonale). However, even with severe COPD, the degree of pulmonary hypertension is usually only mild to moderate. Findings of severe pulmonary hypertension on echocardiogram or cardiac catheterization warrant further workup.

Two-dimensional echocardiography may be helpful as a screening tool to estimate pulmonary arterial systolic pressure and right ventricular systolic function, although formal cardiac catheterization is necessary to accurately confirm the diagnosis.

Previous
Next

Pulmonary Function Tests

Pulmonary function tests are essential for the diagnosis and assessment of the severity of disease, and they are helpful in following its progress. (See the images below.) FEV1 is a reproducible test and is the most commonly used index of airflow obstruction.

In addition to the spirometry findings that define the disease, lung volume measurements often show an increase in total lung capacity, functional residual capacity, and residual volume. The vital capacity often decreases. Dynamic hyperinflation during exercise is now thought be a greater contributor to the sensation of dyspnea than airflow obstruction alone (as measured by FEV1).

As many as 30% of patients have an increase in FEV1 of 15% or more after inhalation of a bronchodilator. However, the absence of bronchodilator response does not justify withholding therapy.

Carbon monoxide diffusing capacity is decreased in proportion to the severity of emphysema.

Pressure volume curve comparing lungs with emphyse Pressure volume curve comparing lungs with emphysema, lungs with restrictive disease, and normal lungs.
Flow volume curve of a patient with emphysema show Flow volume curve of a patient with emphysema shows marked decrease in expiratory flow, hyperinflation, and air trapping (patient B) compared with a patient with restrictive lung disease, who has reduced lung volumes and preserved flow (patient A).
Forced expiratory volume in 1 second (FEV1) can be Forced expiratory volume in 1 second (FEV1) can be used to evaluate the prognosis in patients with emphysema. The benefit of smoking cessation is shown here because the deterioration in lung function parallels that of a nonsmoker, even in late stages of the disease. Redrawn from Fletcher C, Peato R. The natural history of chronic airflow obstruction. Br Med J 1977; 1: 1645-1648.

Using lung function thresholds of 80% predicted and fixed cut points to determine whether a test result is abnormal could result in the misdiagnosis of more than 20% of patients referred for pulmonary function testing. This misclassification can be avoided by using the lower limit of normal-based 95% confidence interval.[42]

Previous
Next

Six-Minute Walking Distance

The distance walked in 6 minutes (6MWD) is a good predictor of all-cause and respiratory mortality in patients with moderate COPD.[2, 3] Patients with COPD who desaturate during the 6MWD have a higher mortality rate than do those who do not desaturate.

Consequently, this test is used as a part of the BODE index (body mass index, obstruction [FEV1], dyspnea [modified Medical Research Council dyspnea scale], and exercise capacity [6MWD]),[28] which was designed to help predict mortality in COPD patients.

Previous
Next

Other Studies

Pulse oximetry does not offer as much information as arterial blood gas (ABG) analysis. However, when combined with clinical observation, this test can be a powerful tool for instant feedback on a patient's status.

Electrocardiography

Coexisting cardiac disease is highly likely in patients with COPD. Electrocardiography can be used in establishing that hypoxia is not resulting in cardiac ischemia and that the underlying cause of respiratory difficulty is not cardiac in nature.

Right-Sided Heart catheterization

If pulmonary hypertension is suspected based on clinical findings or on estimates from 2-dimensional echocardiography, then right-sided heart catheterization may be performed to measure pulmonary artery pressures directly and to gauge the response to vasodilators.

Hematocrit

Chronic hypoxemia may lead polycythemia. A hematocrit greater than 52% in men or 47% in women is indicative of polycythemia. Patients should be evaluated for hypoxemia at rest, with exertion, or during sleep. Correction of hypoxemia should reduce secondary polycythemia in patients who have quit smoking.

Previous
 
 
Contributor Information and Disclosures
Author

Zab Mosenifar, MD, FACP, FCCP Geri and Richard Brawerman Chair in Pulmonary and Critical Care Medicine, Professor and Executive Vice Chairman, Department of Medicine, Medical Director, Women's Guild Lung Institute, Cedars Sinai Medical Center, University of California, Los Angeles, David Geffen School of Medicine

Zab Mosenifar, MD, FACP, FCCP is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Federation for Medical Research, American Thoracic Society

Disclosure: Nothing to disclose.

Coauthor(s)

Nader Kamangar, MD, FACP, FCCP, FCCM Professor of Clinical Medicine, University of California, Los Angeles, David Geffen School of Medicine; Chief, Division of Pulmonary and Critical Care Medicine, Vice-Chair, Department of Medicine, Olive View-UCLA Medical Center

Nader Kamangar, MD, FACP, FCCP, FCCM is a member of the following medical societies: Academy of Persian Physicians, American Academy of Sleep Medicine, American Association for Bronchology and Interventional Pulmonology, American College of Chest Physicians, American College of Critical Care Medicine, American College of Physicians, American Lung Association, American Medical Association, American Thoracic Society, Association of Pulmonary and Critical Care Medicine Program Directors, Association of Specialty Professors, California Sleep Society, California Thoracic Society, Clerkship Directors in Internal Medicine, Society of Critical Care Medicine, Trudeau Society of Los Angeles, World Association for Bronchology and Interventional Pulmonology

Disclosure: Nothing to disclose.

Nidhi S Nikhanj, MD Fellow, Department of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles

Nidhi S Nikhanj, MD is a member of the following medical societies: American College of Physicians

Disclosure: Nothing to disclose.

Annie Harrington, MD Fellow in Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center

Annie Harrington, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Chest Physicians

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Chief Editor

Ryland P Byrd, Jr, MD Professor of Medicine, Division of Pulmonary Disease and Critical Care Medicine, James H Quillen College of Medicine, East Tennessee State University

Ryland P Byrd, Jr, MD is a member of the following medical societies: American College of Chest Physicians, American Thoracic Society

Disclosure: Nothing to disclose.

Acknowledgements

Ryland P Byrd Jr, MD Professor, Department of Internal Medicine, Division of Pulmonary Medicine and Critical Care Medicine, Program Director of Pulmonary Diseases and Critical Care Medicine Fellowship, East Tennessee State University, James H Quillen College of Medicine; Medical Director of Respiratory Therapy, James H Quillen Veterans Affairs Medical Center

Ryland P Byrd Jr, MD is a member of the following medical societies: American College of Chest Physicians and American Thoracic Society

Disclosure: Nothing to disclose.

Sat Sharma, MD, FRCPC Professor and Head, Division of Pulmonary Medicine, Department of Internal Medicine, University of Manitoba; Site Director, Respiratory Medicine, St Boniface General Hospital

Sat Sharma, MD, FRCPC is a member of the following medical societies: American Academy of Sleep Medicine, American College of Chest Physicians, American College of Physicians-American Society of Internal Medicine, American Thoracic Society, Canadian Medical Association, Royal College of Physicians and Surgeons of Canada, Royal Society of Medicine, Society of Critical Care Medicine, and World Medical Association

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Brooks M. FDA Clears Olodaterol (Striverdi Respimat) for COPD. Medscape Medical News. Available at http://www.medscape.com/viewarticle/829248. Accessed: August 4, 2014.

  2. Maclay JD, Rabinovich RA, MacNee W. Update in chronic obstructive pulmonary disease 2008. Am J Respir Crit Care Med. 2009 Apr 1. 179(7):533-41. [Medline].

  3. Casanova C, Cote C, Marin JM, Pinto-Plata V, de Torres JP, Aguirre-Jaime A, et al. Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. Chest. 2008 Oct. 134(4):746-52. [Medline].

  4. [Guideline] Global strategy for diagnosis, management, and prevention of COPD: 2016. Global Initiative for Chronic Obstructive Lung Disease. Available at http://goldcopd.org/gold-reports/ . Accessed: May 7, 2016.

  5. Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, Csizmadia E. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. Jan 15 2008. 177(2):156-63.

  6. Houben JM, Mercken EM, Ketelslegers HB, Bast A, Wouters EF, Hageman GJ. Telomere shortening in chronic obstructive pulmonary disease. Respir Med. 2009 Feb. 103(2):230-6. [Medline].

  7. Morissette MC, Vachon-Beaudoin G, Parent J, Chakir J, Milot J. Increased p53 level, Bax/Bcl-x(L) ratio, and TRAIL receptor expression in human emphysema. Am J Respir Crit Care Med. 2008 Aug 1. 178(3):240-7. [Medline].

  8. Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M, et al. Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008 Jul 15. 178(2):139-48. [Medline].

  9. Casanova C, de Torres JP, Navarro J, Aguirre-Jaime A, Toledo P, Cordoba E, et al. Microalbuminuria and hypoxemia in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010 Oct 15. 182(8):1004-10. [Medline].

  10. Ofir D, Laveneziana P, Webb KA, Lam YM, O'Donnell DE. Mechanisms of dyspnea during cycle exercise in symptomatic patients with GOLD stage I chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008 Mar 15. 177(6):622-9. [Medline].

  11. Belman MJ, Botnick WC, Shin JW. Inhaled bronchodilators reduce dynamic hyperinflation during exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996 Mar. 153(3):967-75. [Medline].

  12. O'Donnell DE, Lam M, Webb KA. Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999 Aug. 160(2):542-9. [Medline].

  13. Marin JM, Carrizo SJ, Gascon M, Sanchez A, Gallego B, Celli BR. Inspiratory capacity, dynamic hyperinflation, breathlessness, and exercise performance during the 6-minute-walk test in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001 May. 163(6):1395-9. [Medline].

  14. O'Donnell DE, Fluge T, Gerken F, Hamilton A, Webb K, Aguilaniu B. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J. 2004 Jun. 23(6):832-40. [Medline].

  15. Martinez FJ, de Oca MM, Whyte RI, Stetz J, Gay SE, Celli BR. Lung-volume reduction improves dyspnea, dynamic hyperinflation, and respiratory muscle function. Am J Respir Crit Care Med. 1997 Jun. 155(6):1984-90. [Medline].

  16. Celli BR. Update on the management of COPD. Chest. 2008 Jun. 133(6):1451-62. [Medline].

  17. Casanova C, Cote C, de Torres JP, Aguirre-Jaime A, Marin JM, Pinto-Plata V. Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005 Mar 15. 171(6):591-7. [Medline].

  18. Nagelmann A, Tonnov A, Laks T, Sepper R, Prikk K. Lung Dysfunction of Chronic Smokers with No Signs of COPD. COPD. 2011 Apr 22. [Medline].

  19. Lamprecht B, McBurnie MA, Vollmer WM, Gudmundsson G, Welte T, Nizankowska-Mogilnicka E, et al. COPD in Never Smokers: Results From the Population-Based Burden of Obstructive Lung Disease Study. Chest. 2011 Apr. 139(4):752-763. [Medline].

  20. Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Loft S, Sorensen M, et al. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study. Am J Respir Crit Care Med. 2011 Feb 15. 183(4):455-61. [Medline].

  21. Crothers K, Butt AA, Gibert CL, Rodriguez-Barradas MC, Crystal S, Justice AC. Increased COPD among HIV-positive compared to HIV-negative veterans. Chest. 2006 Nov. 130(5):1326-33. [Medline].

  22. Adams PF, Barnes PM, Vickerie JL. Summary health statistics for the U.S. population: National Health Interview Survey, 2007. Vital Health Stat 10. 2008 Nov. 1-104. [Medline].

  23. Buist AS, McBurnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet. 2007 Sep 1. 370(9589):741-50. [Medline].

  24. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006 Sep. 28(3):523-32. [Medline].

  25. Foreman MG, Zhang L, Murphy J, et al. Early-Onset COPD is Associated with Female Gender, Maternal Factors, and African American Race in the COPDGene Study. Am J Respir Crit Care Med. 2011 May 11. [Medline].

  26. Mintz ML, Yawn BP, Mannino DM, et al. Prevalence of airway obstruction assessed by lung function questionnaire. Mayo Clin Proc. 2011 May. 86(5):375-81. [Medline]. [Full Text].

  27. Spitzer C, Koch B, Grabe HJ, et al. Association of airflow limitation with trauma exposure and post-traumatic stress disorder. Eur Respir J. 2011 May. 37(5):1068-75. [Medline].

  28. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004 Mar 4. 350(10):1005-12. [Medline].

  29. Waschki B, Kirsten A, Holz O, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 2011 Aug. 140(2):331-42. [Medline].

  30. Abrams TE, Vaughan-Sarrazin M, Fan VS, Kaboli PJ. Geographic isolation and the risk for chronic obstructive pulmonary disease-related mortality: a cohort study. Ann Intern Med. 2011 Jul 19. 155(2):80-6. [Medline].

  31. Sundh J, Stallberg B, Lisspers K, Montgomery SM, Janson C. Co-Morbidity, Body Mass Index and Quality of Life in COPD Using the Clinical COPD Questionnaire. COPD. 2011 Apr 22. [Medline].

  32. McNamara D. Bronchiectasis Linked to Higher Mortality in COPD Patients. Medscape Medical News. February 8, 2013. [Full Text].

  33. Martinez-Garcia MA, de la Rosa D, Soler-Cataluna JJ, Donat-Sanz Y, Catalan Serra P, Agramunt Lerma M, et al. Prognostic Value of Bronchiectasis in Patients with Moderate-to-Severe Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2013 Feb 7. [Medline].

  34. [Guideline] Qaseem A, Wilt TJ, Weinberger SE, et al. Diagnosis and Management of Stable Chronic Obstructive Pulmonary Disease: A Clinical Practice Guideline Update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med. 2011 Aug 2. 155(3):179-191. [Medline].

  35. Hurst JR, Vestbo J, Anzueto A, Locantore N, Mullerova H, Tal-Singer R, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010 Sep 16. 363(12):1128-38. [Medline].

  36. Casanova C, Cote C, Marin JM, Pinto-Plata V, de Torres JP, Aguirre-Jaime A, et al. Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. Chest. 2008 Oct. 134(4):746-52. [Medline].

  37. Singh B, Parsaik AK, Mielke MM, et al. Chronic obstructive pulmonary disease and association with mild cognitive impairment: the Mayo Clinic study of aging. Mayo Clin Proc. 2013 Nov. 88(11):1222-30. [Medline]. [Full Text].

  38. Barclay L. COPD linked to cognitive impairment and memory loss. Medscape Medical News. December 12, 2013. [Full Text].

  39. Prosen G, Klemen P, Strnad M, Grmec S. Combination of lung ultrasound (a comet-tail sign) and N-terminal pro-brain natriuretic peptide in differentiating acute heart failure from chronic obstructive pulmonary disease and asthma as cause of acute dyspnea in prehospital emergency setting. Crit Care. 2011. 15(2):R114. [Medline].

  40. Sin DD, Miller BE, Duvoix A, et al. Serum PARC/CCL-18 Concentrations and Health Outcomes in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2011 May 1. 183(9):1187-1192. [Medline].

  41. Osterweil N. COPD: Clinicians Miss Myriad Chances to Spot It Early. Medscape Medical News. Available at http://www.medscape.com/viewarticle/820597. Accessed: February 18, 2014.

  42. Miller MR, Quanjer PH, Swanney MP, Ruppel G, Enright PL. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest. 2011 Jan. 139(1):52-9. [Medline].

  43. Rice KL, Dewan N, Bloomfield HE, Grill J, Schult TM, Nelson DB, et al. Disease management program for chronic obstructive pulmonary disease: a randomized controlled trial. Am J Respir Crit Care Med. 2010 Oct 1. 182(7):890-6. [Medline].

  44. Dewan NA, Rice KL, Caldwell M, Hilleman DE. Economic Evaluation of a Disease Management Program for Chronic Obstructive Pulmonary Disease. COPD. 2011 Apr 22. [Medline].

  45. Stephenson A, Seitz D, Bell CM, et al. Inhaled anticholinergic drug therapy and the risk of acute urinary retention in chronic obstructive pulmonary disease: a population-based study. Arch Intern Med. 2011 May 23. 171(10):914-20. [Medline].

  46. Gershon A, Croxford R, Calzavara A, To T, Stanbrook MB, Upshur R, et al. Cardiovascular Safety of Inhaled Long-Acting Bronchodilators in Individuals With Chronic Obstructive Pulmonary Disease. JAMA Intern Med. 2013 May 20. 1-9. [Medline].

  47. Wood S. Inhaled Long-Acting Bronchodilators in COPD Flagged Again for CV Hazard. Medscape Medical News. Available at http://www.medscape.com/viewarticle/804441. Accessed: June 4, 2013.

  48. Canavan N. Dual-Action Bronchodilator Eases COPD Exacerbations. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/810739. Accessed: September 16, 2013.

  49. Decramer ML, Chapman KR, Dahl R, et al. Once-daily indacaterol versus tiotropium for patients with severe chronic obstructive pulmonary disease (INVIGORATE): a randomised, blinded, parallel-group study. The Lancet Respiratory Medicine. Available at http://www.thelancet.com/journals/lanres/article/PIIS2213-2600(13)70158-9/abstract. Accessed: October 7, 2013.

  50. Macfarlane L. Indacaterol and Tiotropium Similar in Effect and Safety. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/811871. Accessed: October 7, 2013.

  51. Mahler DA, Kerwin E, Ayers T, FowlerTaylor A, Maitra S, Thach C, et al. FLIGHT1 and FLIGHT2: Efficacy and Safety of QVA149 (Indacaterol/Glycopyrrolate) versus Its Monocomponents and Placebo in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2015 Nov 1. 192 (9):1068-79. [Medline].

  52. Rabe K, Martinez F, Rodriguez-Roisin R, Fabbri LM, Ferguson GT, Jones P, et al. PT003, a novel co-suspension MDI glycopyrronium/formoterol fixed-dose combination is superior to monocomponents in patients with COPD. Eur Respir J. 2015 Sep 01. 46(suppl 59):[Full Text].

  53. US Food and Drug Administration. FDA approves Anoro Ellipta to treat chronic obstructive pulmonary disease [press release]. December 18, 2013. Available at http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm379057.htm. Accessed: December 30, 2013.

  54. Brown T. FDA approves umeclidinium and vilanterol combo for COPD. Medscape Medical News. December 18, 2013. [Full Text].

  55. Donohue JF, Maleki-Yazdi MR, Kilbride S, Mehta R, Kalberg C, Church A. Efficacy and safety of once-daily umeclidinium/vilanterol 62.5/25 mcg in COPD. Respir Med. 2013 Oct. 107(10):1538-46. [Medline].

  56. Koch A, Pizzichini E, Hamilton A, Hart L, Korducki L, De Salvo MC. Lung function efficacy and symptomatic benefit of olodaterol once daily delivered via Respimat versus placebo and formoterol twice daily in patients with GOLD 2-4 COPD: results from two replicate 48-week studies. Int J Chron Obstruct Pulmon Dis. 2014. 9:697-714. [Medline].

  57. Ferguson GT, Feldman GJ, Hofbauer P, Hamilton A, Allen L, Korducki L, et al. Efficacy and safety of olodaterol once daily delivered via Respimat in patients with GOLD 2-4 COPD: results from two replicate 48-week studies. Int J Chron Obstruct Pulmon Dis. 2014. 9:629-45. [Medline]. [Full Text].

  58. Casaburi R, Mahler DA, Jones PW, Wanner A, San PG, ZuWallack RL, et al. A long-term evaluation of once-daily inhaled tiotropium in chronic obstructive pulmonary disease. Eur Respir J. 2002 Feb. 19(2):217-24. [Medline].

  59. Donohue JF, van Noord JA, Bateman ED, Langley SJ, Lee A, Witek TJ Jr, et al. A 6-month, placebo-controlled study comparing lung function and health status changes in COPD patients treated with tiotropium or salmeterol. Chest. 2002 Jul. 122(1):47-55. [Medline].

  60. Vincken W, van Noord JA, Greefhorst AP, Bantje TA, Kesten S, Korducki L, et al. Improved health outcomes in patients with COPD during 1 yr's treatment with tiotropium. Eur Respir J. 2002 Feb. 19(2):209-16. [Medline].

  61. Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008 Oct 9. 359(15):1543-54. [Medline].

  62. Brusasco V, Hodder R, Miravitlles M, Korducki L, Towse L, Kesten S. Health outcomes following treatment for six months with once daily tiotropium compared with twice daily salmeterol in patients with COPD. Thorax. 2003 May. 58(5):399-404. [Medline]. [Full Text].

  63. Vogelmeier C, Hederer B, Glaab T, Schmidt H, Rutten-van Molken MP, Beeh KM, et al. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med. 2011 Mar 24. 364(12):1093-103. [Medline].

  64. Singh S, Loke YK, Enright PL, Furberg CD. Mortality associated with tiotropium mist inhaler in patients with chronic obstructive pulmonary disease: systematic review and meta-analysis of randomised controlled trials. BMJ. 2011 Jun 14. 342:d3215. [Medline]. [Full Text].

  65. Jones PW, Rennard SI, Agusti A, Chanez P, Magnussen H, Fabbri L, et al. Efficacy and safety of once-daily aclidinium in chronic obstructive pulmonary disease. Respir Res. 2011 Apr 26. 12:55. [Medline]. [Full Text].

  66. Hand L. FDA OKs Umeclidinium (Incruse Ellipta) for COPD. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/824419. Accessed: May 4, 2014.

  67. Anoro Ellipta (umeclidinium and vilanterol inhalation powder) [package insert]. Research Triangle Park, NC: GlaxoSmithKline. 2013. Available at [Full Text].

  68. Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009 Aug 29. 374(9691):685-94. [Medline].

  69. Gifford AH, Mahler DA, Waterman LA, et al. Neuromodulatory Effect of Endogenous Opioids on the Intensity and Unpleasantness of Breathlessness during Resistive Load Breathing in COPD. COPD. 2011 Apr 22. [Medline].

  70. Short PM, Lipworth SI, Elder DH, Schembri S, Lipworth BJ. Effect of beta blockers in treatment of chronic obstructive pulmonary disease: a retrospective cohort study. BMJ. 2011 May 10. 342:d2549. [Medline]. [Full Text].

  71. Mottillo S, Filion KB, Belisle P, Joseph L, Gervais A, O'Loughlin J. Behavioural interventions for smoking cessation: a meta-analysis of randomized controlled trials. Eur Heart J. 2009 Mar. 30(6):718-30. [Medline].

  72. Wood-Baker RR, Gibson PG, Hannay M, Walters EH, Walters JA. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2005. (1):CD001288. [Medline].

  73. Walters JA, Walters EH, Wood-Baker R. Oral corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2005 Jul 20. CD005374. [Medline].

  74. Spencer S, Calverley PM, Burge PS, Jones PW. Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004 May. 23(5):698-702. [Medline].

  75. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007 Feb 22. 356(8):775-89. [Medline].

  76. Sin DD, Tashkin D, Zhang X, Radner F, Sjobring U, Thoren A. Budesonide and the risk of pneumonia: a meta-analysis of individual patient data. Lancet. 2009 Aug 29. 374(9691):712-9. [Medline].

  77. Chen D, Restrepo MI, Fine MJ, et al. Observational study of inhaled corticosteroids on outcomes for COPD patients with pneumonia. Am J Respir Crit Care Med. 2011 Aug 1. 184(3):312-6. [Medline].

  78. Seemungal TA, Wilkinson TM, Hurst JR, Perera WR, Sapsford RJ, Wedzicha JA. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2008 Dec 1. 178(11):1139-47. [Medline].

  79. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011 Aug 25. 365(8):689-98. [Medline].

  80. Daniels JM, Snijders D, de Graaff CS, Vlaspolder F, Jansen HM, Boersma WG. Antibiotics in addition to systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010 Jan 15. 181(2):150-7. [Medline].

  81. Sasaki T, Nakayama K, Yasuda H, Yoshida M, Asamura T, Ohrui T, et al. A randomized, single-blind study of lansoprazole for the prevention of exacerbations of chronic obstructive pulmonary disease in older patients. J Am Geriatr Soc. 2009 Aug. 57(8):1453-7. [Medline].

  82. Duiverman ML, Wempe JB, Bladder G, Jansen DF, Kerstjens HA, Zijlstra JG. Nocturnal non-invasive ventilation in addition to rehabilitation in hypercapnic patients with COPD. Thorax. 2008 Dec. 63(12):1052-7. [Medline].

  83. Crockett AJ, Moss JR, Cranston JM, Alpers JH. Domicilary oxygen for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2000. (2):CD001744. [Medline].

  84. Ringbaek TJ. Continuous oxygen therapy for hypoxic pulmonary disease: guidelines, compliance and effects. Treat Respir Med. 2005. 4(6):397-408. [Medline].

  85. Sandland CJ, Morgan MD, Singh SJ. Patterns of domestic activity and ambulatory oxygen usage in COPD. Chest. 2008 Oct. 134(4):753-60. [Medline].

  86. Lightowler JV, Wedzicha JA, Elliott MW, Ram FS. Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis. BMJ. 2003 Jan 25. 326(7382):185. [Medline]. [Full Text].

  87. Carrera M, Marin JM, Anton A, Chiner E, Alonso ML, Masa JF, et al. A controlled trial of noninvasive ventilation for chronic obstructive pulmonary disease exacerbations. J Crit Care. 2009 Sep. 24(3):473.e7-14. [Medline].

  88. Keenan SP, Kernerman PD, Cook DJ, Martin CM, McCormack D, Sibbald WJ. Effect of noninvasive positive pressure ventilation on mortality in patients admitted with acute respiratory failure: a meta-analysis. Crit Care Med. 1997 Oct. 25(10):1685-92. [Medline].

  89. Confalonieri M, Garuti G, Cattaruzza MS, Osborn JF, Antonelli M, Conti G. A chart of failure risk for noninvasive ventilation in patients with COPD exacerbation. Eur Respir J. 2005 Feb. 25(2):348-55. [Medline].

  90. Hubbard RC, Crystal RG. Augmentation therapy of alpha 1-antitrypsin deficiency. Eur Respir J Suppl. 1990 Mar. 9:44s-52s. [Medline].

  91. Hurst JR, Donaldson GC, Quint JK, Goldring JJ, Baghai-Ravary R, Wedzicha JA. Temporal clustering of exacerbations in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009 Mar 1. 179(5):369-74. [Medline].

  92. Fishman A, Martinez F, Naunheim K, Piantadosi S, Wise R, Ries A, et al. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med. 2003 May 22. 348(21):2059-73. [Medline].

  93. Titman A, Rogers CA, Bonser RS, Banner NR, Sharples LD. Disease-specific survival benefit of lung transplantation in adults: a national cohort study. Am J Transplant. 2009 Jul. 9(7):1640-9. [Medline].

  94. Burton CM, Milman N, Carlsen J, Arendrup H, Eliasen K, Andersen CB, et al. The Copenhagen National Lung Transplant Group: survival after single lung, double lung, and heart-lung transplantation. J Heart Lung Transplant. 2005 Nov. 24(11):1834-43. [Medline].

  95. Cote CG, Celli BR. Pulmonary rehabilitation and the BODE index in COPD. Eur Respir J. 2005 Oct. 26(4):630-6. [Medline].

  96. Dodd JW, Hogg L, Nolan J, et al. The COPD assessment test (CAT): response to pulmonary rehabilitation. A multicentre, prospective study. Thorax. 2011 May. 66(5):425-9. [Medline].

  97. [Guideline] Guirguis-Blake JM, Senger CA, Webber EM, Mularski RA, Whitlock EP. Screening for Chronic Obstructive Pulmonary Disease: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2016 Apr 5. 315 (13):1378-93. [Medline].

  98. [Guideline] US Preventive Services Task Force. Counseling and interventions to prevent tobacco use and tobacco-caused disease in adults and pregnant women: US Preventive Services Task Force Reaffirmation Recommendation Statement. Ann Int Med. Apr 21 2009. 150(8):551-555. [Full Text].

  99. [Guideline] Management of Chronic Obstructive Pulmonary Disease Working Group. VA/DoD clinical practice guideline for the management of chronic obstructive pulmonary disease. Washington (DC): Department of Veterans Affairs, Department of Defense. Available at http://www.healthquality.va.gov/guidelines/cd/copd/. December 2014; Accessed: May 7, 2016.

  100. [Guideline] Keenan SP, Sinuff T, Burns KE, Muscedere J, Kutsogiannis J, Mehta S, et al. Clinical practice guidelines for the use of noninvasive positive-pressure ventilation and noninvasive continuous positive airway pressure in the acute care setting. CMAJ. 2011 Feb 22. 183(3):E195-214. [Medline]. [Full Text].

  101. [Guideline] Criner GJ, Bourbeau J, Diekemper RL, et al. Prevention of acute exacerbations of COPD: American College of Chest Physicians and Canadian Thoracic Society Guideline. Chest. 2015 Apr. 147 (4):894-942. [Medline].

  102. [Guideline] Institute for Clinical Systems Improvement. Diagnosis and Management of Chronic Obstructive Pulmonary Disease (COPD). 10th Edition. January 2016. Available at https://www.icsi.org/guidelines__more/catalog_guidelines_and_more/catalog_guidelines/catalog_respiratory_guidelines/copd/ . Accessed: May 6, 2016.

  103. Currow DC, McDonald C, Oaten S, Kenny B, Allcroft P, Frith P, et al. Once-daily opioids for chronic dyspnea: a dose increment and pharmacovigilance study. J Pain Symptom Manage. 2011 Sep. 42(3):388-99. [Medline].

 
Previous
Next
 
Venn diagram of chronic obstructive pulmonary disease (COPD). Chronic obstructive lung disease is a disorder in which subsets of patients may have dominant features of chronic bronchitis, emphysema, or asthma. The result is airflow obstruction that is not fully reversible.
Histopathology of chronic bronchitis showing hyperplasia of mucous glands and infiltration of the airway wall with inflammatory cells.
Histopathology of chronic bronchitis showing hyperplasia of mucous glands and infiltration of the airway wall with inflammatory cells (high-powered view).
Gross pathology of advanced emphysema. Large bullae are present on the surface of the lung.
Gross pathology of a patient with emphysema showing bullae on the surface.
At high magnification, loss of alveolar walls and dilatation of airspaces in emphysema can be seen.
Posteroanterior (PA) and lateral chest radiograph in a patient with severe chronic obstructive pulmonary disease (COPD). Hyperinflation, depressed diaphragm, increased retrosternal space, and hypovascularity of lung parenchyma are demonstrated.
A lung with emphysema shows increased anteroposterior (AP) diameter, increased retrosternal airspace, and flattened diaphragm on lateral chest radiograph.
A lung with emphysema shows increased anteroposterior (AP) diameter, increased retrosternal airspace, and flattened diaphragm on posteroanterior chest radiograph.
Severe bullous disease as seen on a computed tomography (CT) scan in a patient with chronic obstructive pulmonary disease (COPD).
Pressure volume curve comparing lungs with emphysema, lungs with restrictive disease, and normal lungs.
Flow volume curve of a patient with emphysema shows marked decrease in expiratory flow, hyperinflation, and air trapping (patient B) compared with a patient with restrictive lung disease, who has reduced lung volumes and preserved flow (patient A).
Forced expiratory volume in 1 second (FEV1) can be used to evaluate the prognosis in patients with emphysema. The benefit of smoking cessation is shown here because the deterioration in lung function parallels that of a nonsmoker, even in late stages of the disease. Redrawn from Fletcher C, Peato R. The natural history of chronic airflow obstruction. Br Med J 1977; 1: 1645-1648.
Oxygen therapy via nasal cannula.
Home supplemental oxygen.
Bilevel positive airway pressure (BiPAP).
Pulmonary rehabilitation.
Chronic obstructive pulmonary disease (COPD). Pulmonary rehabilitation.
Chest radiograph of an emphysematous patient shows hyperinflated lungs with reduced vascular markings. Pulmonary hila are prominent, suggesting some degree of pulmonary hypertension (Correa da Silva, 2001).
Schematic representation of another sign of emphysema on the lateral chest radiograph. When the retrosternal space (defined as the space between the posterior border of the sternum and the anterior wall of the mediastinum) is larger than 2.5 cm, it is highly suggestive of overinflated lungs. This radiograph is from a patient with pectus carinatum, an important differential diagnosis to consider when this space is measured (Correa da Silva, 2001).
Close-up image shows emphysematous bullae in the left upper lobe. Note the subpleural, thin-walled, cystlike appearance (Correa da Silva, 2001).
A, Frontal posteroanterior (PA) chest radiograph shows no abnormality of the pulmonary vasculature, with normal intercostal spaces and a diaphragmatic dome between the 6th and 7th anterior ribs on both sides. B, Image in a patient with emphysema demonstrating reduced pulmonary vasculature resulting in hyperlucent lungs. The intercostal spaces are mildly enlarged, and the diaphragmatic domes are straightened and below the extremity of the seventh rib (Correa da Silva, 2001).
A, Lateral radiograph of the chest shows normal pulmonary vasculature, a retrosternal space within normal limits (< 2.5 cm), and a normal angle between the diaphragm and the anterior thoracic wall. B, Lateral view of the chest shows increased pulmonary transparency, increased retrosternal space (>2.5 cm), and an angle between the thoracic wall and the diaphragm >90 degrees. Straightening of the diaphragm can be more evident in this projection than on others (Correa da Silva, 2001).
High-resolution CT (HRCT) in a patient after viral bronchiolitis obliterans demonstrates areas of airtrapping, which is predominant in the inferior lobes and associated with bronchiectasis in the left lower lobe. Note that the decreased attenuation caused by the airtrapping can simulate emphysema (Correa da Silva, 2001).
Pediatric high-resolution CT (HRCT) shows a hyperinflated right lung with large pulmonary bullae due to congenital lobar emphysema (Correa da Silva, 2001).
High-resolution CT (HRCT) demonstrates areas of centriacinar emphysema. Note the low attenuation areas without walls due to destruction of the alveoli septae centrally in the acini. Red element shows the size of a normal acinus (Correa da Silva, 2001).
High-resolution CT (HRCT) shows large bullae in both inferior lobes due to uniform enlargement and destruction of the alveoli walls causing distortion of the pulmonary architecture (Correa da Silva, 2001).
Panacinar emphysema of the left lung in a patient with a right lung transplant. Note the red element showing the size of a normal acinus and its discrepancy with the destroyed and enlarged airspaces of the left lower lobe (Correa da Silva, 2001).
High-resolution CT (HRCT) shows subpleural bullae consistent with paraseptal emphysema. Red mark shows the size of a normal acinus (Correa da Silva, 2001).
High-resolution CT (HRCT) shows enlarged air-spaces or bullae adjoining pulmonary scars, consistent with paracicatricial emphysema. Red mark shows the size of a normal acinus (Correa da Silva, 2001).
CT densitovolumetry of a nonsmoker, healthy young patient shows normal lungs. Less than 0.35% of lungs have attenuations below -950 HU (Correa da Silva, 2001).
Expiratory CT densitovolumetry shows no areas of airtrapping (Correa da Silva, 2001).
CT densitovolumetry in a patient with lung cancer. Three-dimensional (3D) image shows that the cancer is in the portion of the right lung that was less affected by emphysema in a patient with poor pulmonary function (Correa da Silva, 2001).
CT densitovolumetry shows the attenuation mask. Green areas are those with attenuation below the selected threshold (here, -950 HU to evaluate emphysema), and pink areas are those with attenuations above the threshold. Area outside the patient is highlighted in green because of air (Correa da Silva, 2001).
CT densitovolumetry demonstrates irregular distribution of the emphysema, with substantial predominance in the left lung (Correa da Silva, 2001).
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.