Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Emphysema Medication

  • Author: Kamran Boka, MD, MS; Chief Editor: Zab Mosenifar, MD, FACP, FCCP  more...
 
Updated: Oct 23, 2014
 

Medication Summary

Oral and inhaled medications are used for patients with stable emphysema to reduce dyspnea and improve exercise tolerance. Most of the medications used in emphysema treatment are directed at the 4 potentially reversible mechanisms of airflow limitation: (1) bronchial smooth muscle contraction, (2) bronchial mucosal congestion and edema, (3) airway inflammation, and (4) increased airway secretions.

Next

Bronchodilators

Class Summary

These agents decrease muscle tone in both the small and large airways of the lungs, thereby increasing ventilation. This category includes beta-adrenergic agents, methylxanthines, and anticholinergics.

Albuterol (Proventil, Ventolin)

 

Beta2 agonist that relaxes bronchial smooth muscle by action on beta2 receptors, with little effect on cardiac muscle contractility. Most patients (even those who have no measurable increase in expiratory flow) benefit from treatment. Inhaled beta-agonists initially are prescribed as needed. Frequency may be increased. Institute regular schedule in patients on anticholinergic drugs who remain symptomatic. Available as liquid for nebulizer, metered-dose inhalers (MDIs), and dry-powder inhalers.

Metaproterenol (Alupent)

 

Relaxes bronchial smooth muscle by action on beta2 receptors, with little effect on cardiac muscle contractility. Most patients (even those who have no measurable increase in expiratory flow) benefit from treatment. Inhaled beta-agonists initially are prescribed as needed. Frequency may be increased. Institute regular schedule in patients on anticholinergic drugs who remain symptomatic. Available as liquid for nebulizer, MDIs, and dry-powder inhalers.

Levalbuterol (Xopenex)

 

Used for treatment or prevention of bronchospasm. A selective beta2-agonist agent. Albuterol is a racemic mixture, while levalbuterol contains only the active R- enantiomer of albuterol. The S-enantiomer does not bind to beta2-receptors, but may be responsible for some adverse effects of racemic albuterol, including bronchial hyperreactivity and reduced pulmonary function during prolonged use.

Ipratropium (Atrovent)

 

Chemically related to atropine. Has antisecretory properties, and, when applied locally, inhibits secretions from serous and seromucous glands lining the nasal mucosa. Used on a fixed schedule with a beta-agonist.

Salmeterol (Serevent)

 

By relaxing the smooth muscles of the bronchioles in conditions associated with bronchitis, emphysema, asthma, or bronchiectasis, salmeterol can relieve bronchospasm. Effect also may facilitate expectoration. May be useful when bronchodilators are used frequently. More studies are needed to establish the role for these agents. When administered at high or more frequent doses than recommended, incidence of adverse effects is higher. The bronchodilating effect lasts >12 h. Used on a fixed schedule in addition to regular use of anticholinergic agents.

Formoterol (Oxis, Foradil)

 

Currently not available in the United States (investigational beta-agonist with rapid onset and long duration of action). By relaxing the smooth muscles of the bronchioles in conditions associated with bronchitis, emphysema, asthma, or bronchiectasis, it can relieve bronchospasms. Effect also may facilitate expectoration.

Shown to improve symptoms and morning peak flows in asthma. May be useful when bronchodilators are used frequently. More studies are needed to establish the role for these agents.

When administered at high or more frequent doses than recommended, incidence of adverse effects is higher. The bronchodilating effect lasts >12 h. Used on a fixed schedule in addition to regular use of anticholinergic agents.

Indacaterol, inhaled (Arcapta Neohaler)

 

Long-acting beta2-agonist (LABA) indicated for long-term, once-daily maintenance bronchodilator treatment of airflow obstruction in patients with chronic obstructive pulmonary disease (COPD), including chronic bronchitis and/or emphysema. LABAs act locally in the lungs as bronchodilators. Stimulates intracellular adenyl cyclase, causing conversion of ATP to cyclic AMP; increased cyclic AMP levels cause relaxation of bronchial smooth muscle. Not for use as initial therapy in patients with acute deteriorating COPD.

Tiotropium (Spiriva)

 

A quaternary ammonium compound. Elicits anticholinergic/antimuscarinic effects with inhibitory effects on M3 receptors on airway smooth muscles, leading to bronchodilation. Available as cap dosage form containing a dry powder for oral inhalation via HandiHaler inhalation device. Helps COPD patients by dilating narrowed airways and keeping them open for 24 h.

Theophylline (Aminophylline, Theo-24, Theo-Dur, Slo-bid)

 

Potentiates exogenous catecholamines. Stimulates endogenous catecholamine release and diaphragmatic muscular relaxation, which stimulates bronchodilation.

Popularity has decreased because of narrow therapeutic range and frequent toxicity. Bronchodilation may require near-toxic (>20 mg/dL) levels. However, clinical efficacy is controversial, especially in the acute setting.

Shown to increase exercise capacity, decrease dyspnea, and improve gas exchange. A longer-acting agent is used qd or bid.

Target concentration is 5-10 mcg/mL. Dosing = (target concentration - current level) X 0.5 (ideal body weight). Alternatively, 1 mg/kg results in approximately a 2-mcg/mL increase in serum levels.

Previous
Next

Corticosteroids

Class Summary

These agents attempt to moderate the inflammatory component of COPD. They should only be added to a regimen that includes a long-acting bronchodilator.

Fluticasone inhaled

 

Has extremely potent vasoconstrictive and anti-inflammatory activity. Has weak inhibitory effects on HPA axis when used at high doses for prolonged periods of time. Effectiveness is not established in COPD.

Budesonide inhaled

 

Has extremely potent vasoconstrictive and anti-inflammatory activity. Has weak inhibitory effects on HPA axis when used at high doses for prolonged periods of time. Effectiveness is not established in COPD.

Previous
Next

Phosphodiesterase-4 Inhibitors

Class Summary

Selective phosphodiesterase-4 (PDE-4) inhibitors reduce exacerbations, improve dyspnea, and increase lung function in patients with severe COPD.

Roflumilast (Daliresp)

 

Roflumilast is a selective phosphodiesterase-4 (PDE-4) inhibitor. The specific mechanism of action is not well defined but is thought to be related to the effects of increased intracellular cyclic AMP in lung cells. It is indicated to decrease the frequency of exacerbations or the worsening of symptoms from severe COPD.

Previous
Next

Smoking cessation therapies

Class Summary

Most effective when used in conjunction with a support program (ie, counseling, group therapy, and behavioral therapy).

Bupropion is used as a nonnicotine aid to smoking cessation. One study demonstrated 23% sustained cessation with bupropion tablets at 1 year, compared with a 12% sustained cessation with placebo. Bupropion also may be effective in patients who do not quit with nicotine replacement therapy.

Varenicline (Chantix) is a partial agonist selective for alpha4, beta2 nicotinic acetylcholine receptors. It is used in conjunction with support groups and/or behavioral counseling. Gradually increase dose upward within 1 wk before quit date to 1 mg PO bid pc. Decrease dose with severe renal impairment or end-stage renal disease.

Nicotine transdermal system (Nicotrol, Habitrol, NicoDerm CQ)

 

Individuals who smoke >1 pack/d initially need a 21-mg patch followed by 14- and 7-mg patches.

Nicotine polacrilex (Nicorette)

 

Nicotine is absorbed through oral mucosa. Quickly absorbed and closely approximates time course of plasma nicotine levels observed after cigarette smoking.

Available as 2- or 4-mg gum in box containing 96 pieces. Careful adherence to chewing instructions is important for effective use. Manufacturer recommends that gum not be used longer than 6 mo.

Individual who smokes 1 pack/d should use 4-mg pieces. The 2-mg pieces are to be used by individuals who smoke < 1 pack/d. Instruct patient to chew hourly and for initial cravings for 2 wk, then gradually reduce amount chewed over 3 mo.

Bupropion (Zyban)

 

Used in conjunction with a support group and/or behavioral counseling. Inhibits neuronal dopamine reuptake in addition to being a weak blocker of serotonin and norepinephrine reuptake.

Varenicline (Chantix)

 

Partial agonist selective for alpha4, beta2 nicotinic acetylcholine receptors. Action is thought to be the result of activity at a nicotinic receptor subtype where its binding produces agonist activity, while simultaneously preventing nicotine binding. The agonistic activity is significantly lower than nicotine. Also elicits moderate affinity for 5-HT3 receptors. Maximum plasma concentrations occur within 3-4 h after oral administration. Following regular dosing, steady state is reached within 4 d.

Previous
Next

Antibiotics

Class Summary

Empiric antimicrobial therapy must be comprehensive and should cover all likely pathogens in the context of the clinical setting.

Amoxicillin (Amoxil, Trimox, Moxatag)

 

Interferes with synthesis of cell wall mucopeptides during active multiplication resulting in bactericidal activity against susceptible bacteria

Doxycycline (Doryx, Monodox, Doxy, Adoxa)

 

Broad-spectrum, synthetically derived bacteriostatic antibiotic in the tetracycline class. Almost completely absorbed, concentrates in bile, and is excreted in urine and feces as a biologically active metabolite in high concentrations.

Inhibits protein synthesis and, thus, bacterial growth by binding to 30S and possibly 50S ribosomal subunits of susceptible bacteria. May block dissociation of peptidyl t-RNA from ribosomes, causing RNA-dependent protein synthesis to arrest.

Trimethoprim/sulfamethoxazole

 

Inhibits bacterial synthesis of dihydrofolic acid by competing with para-aminobenzoic acid, resulting in inhibition of bacterial growth. Antibacterial activity of TMP-SMZ includes common urinary tract pathogens, except Pseudomonas aeruginosa. Like tetracycline, it has in vitro activity against Bartonella pertussis. Not useful in mycoplasmal infections.

Azithromycin (Zithromax)

 

These agents are replacing erythromycin as therapy for community-acquired pneumonia. They cover most potential etiologic agents, including Mycoplasma. The newer macrolides offer decreased GI upset and potential for improved compliance through reduced dosing frequency. They also afford improved action against Haemophilus influenzae.

Previous
 
 
Contributor Information and Disclosures
Author

Kamran Boka, MD, MS Faculty, Division of Critical Care, Department of Internal Medicine, The University of Texas Health Science Center at Houston (UTHealth)

Kamran Boka, MD, MS is a member of the following medical societies: American College of Physicians, American Thoracic Society

Disclosure: Creator of Boka's Notes Internal Medicine Series Apps for: Vagal Thoughts, LLC.

Coauthor(s)

Daniel R Ouellette, MD, FCCP Associate Professor of Medicine, Wayne State University School of Medicine; Chair of the Clinical Competency Committee, Pulmonary and Critical Care Fellowship Program, Senior Staff and Attending Physician, Division of Pulmonary and Critical Care Medicine, Henry Ford Health System; Chair, Guideline Oversight Committee, American College of Chest Physicians

Daniel R Ouellette, MD, FCCP is a member of the following medical societies: American College of Chest Physicians, Society of Critical Care Medicine, American Thoracic Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Zab Mosenifar, MD, FACP, FCCP Geri and Richard Brawerman Chair in Pulmonary and Critical Care Medicine, Professor and Executive Vice Chairman, Department of Medicine, Medical Director, Women's Guild Lung Institute, Cedars Sinai Medical Center, University of California, Los Angeles, David Geffen School of Medicine

Zab Mosenifar, MD, FACP, FCCP is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Federation for Medical Research, American Thoracic Society

Disclosure: Nothing to disclose.

Additional Contributors

Helen M Hollingsworth, MD Director, Adult Asthma and Allergy Services, Associate Professor, Department of Internal Medicine, Division of Pulmonary and Critical Care, Boston Medical Center

Helen M Hollingsworth, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American College of Chest Physicians, American Thoracic Society, Massachusetts Medical Society

Disclosure: Nothing to disclose.

Acknowledgements

Berj George Demirjian, MD Fellow, Division of Pulmonary/Critical Care Medicine, Cedars-Sinai Medical Center

Berj George Demirjian, MD is a member of the following medical societies: American College of Chest Physicians, American Medical Association, California Medical Association, California Thoracic Society, and Phi Beta Kappa

Disclosure: Nothing to disclose.

Nader Kamangar, MD, FACP, FCCP, FCCM Associate Professor of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Los Angeles, David Geffen School of Medicine, Olive View-UCLA Medical Center; Associate Program Director, Pulmonary and Critical Care Multi-Campus Fellowship Program, Cedars-Sinai/West Los Angeles Veterans Affairs/Los Angeles Kaiser Permanente/Olive View-UCLA Medical Center; Site Director, Pulmonary/Critical Care Fellowship Program, Olive View-UCLA Medical Center

Nader Kamangar, MD, FACP, FCCP, FCCM is a member of the following medical societies: American Academy of Sleep Medicine, American Association of Bronchology, American College of Chest Physicians, American College of Physicians, American Lung Association, American Medical Association, American Thoracic Society, California Thoracic Society, and Society of Critical Care Medicine

Disclosure: Nothing to disclose.

Sat Sharma, MD, FRCPC Professor and Head, Division of Pulmonary Medicine, Department of Internal Medicine, University of Manitoba; Site Director, Respiratory Medicine, St Boniface General Hospital

Sat Sharma, MD, FRCPC is a member of the following medical societies: American Academy of Sleep Medicine, American College of Chest Physicians, American College of Physicians-American Society of Internal Medicine, American Thoracic Society, Canadian Medical Association, Royal College of Physicians and Surgeons of Canada, Royal Society of Medicine, Society of Critical Care Medicine, and World Medical Association

Disclosure: Nothing to disclose.

References
  1. Caverley P, Augusti A, Anzueto, et al, eds. Global Initiative for Chronic Obstructive Pulmonary Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Medical Communications Resources; 2008.

  2. Cottin V, Nunes H, Brillet PY, Delaval P, Devouassoux G, Tillie-Leblond I, et al. Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity. Eur Respir J. 2005 Oct. 26(4):586-93. [Medline].

  3. Goss AM, Morrisey EE. Wnt signaling and specification of the respiratory endoderm. Cell Cycle. 2010 Jan 1. 9(1):10-1. [Medline].

  4. Adapted from the ACCP Pulmonary Medicine Board Review. 25th ed. Northbrook, IL: American College of Chest Physicians; 2009.

  5. Rega PP. Phosgene Toxicity. Medscape Drugs and Diseases. Available at http://emedicine.medscape.com/article/832454-overview. Accessed: Sept 2014.

  6. Anthonisen NR, Connett JE, Murray RP. Smoking and lung function of Lung Health Study participants after 11 years. Am J Respir Crit Care Med. 2002 Sep 1. 166(5):675-9. [Medline].

  7. American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med. 2003 Oct 1. 168(7):818-900. [Medline].

  8. Tetley TD. Macrophages and the pathogenesis of COPD. Chest. 2002 May. 121(5 Suppl):156S-159S. [Medline].

  9. Saetta M, Di Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998 Mar. 157(3 Pt 1):822-6. [Medline].

  10. Luisetti M, Ma S, Iadarola P, Stone PJ, Viglio S, Casado B, et al. Desmosine as a biomarker of elastin degradation in COPD: current status and future directions. Eur Respir J. 2008 Nov. 32(5):1146-57. [Medline].

  11. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004 Aug 21-27. 364(9435):709-21. [Medline].

  12. Takahashi M, Fukuoka J, Nitta N, Takazakura R, Nagatani Y, Murakami Y. Imaging of pulmonary emphysema: a pictorial review. Int J Chron Obstruct Pulmon Dis. 2008. 3(2):193-204. [Medline].

  13. ATS Committee on Diagnostic Standards for Nontuberculous Respiratory Diseases, American Thoracic Society. Definitions and classification of chronic bronchitis, asthma, and pulmonary emphysema. Am Rev Respir Dis. 1962. 85:762–9.

  14. Finkelstein R, Ma HD, Ghezzo H, Whittaker K, Fraser RS, Cosio MG. Morphometry of small airways in smokers and its relationship to emphysema type and hyperresponsiveness. Am J Respir Crit Care Med. 1995 Jul. 152(1):267-76. [Medline].

  15. Adams PF, Barnes PM, Vickerie JL. Summary health statistics for the U.S. population: National Health Interview Survey, 2007. Vital Health Stat 10. 2008 Nov. 1-104. [Medline].

  16. Buist AS, McBurnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet. 2007 Sep 1. 370(9589):741-50. [Medline].

  17. Menezes AM, Perez-Padilla R, Jardim JR, Muino A, Lopez MV, Valdivia G, et al. Chronic obstructive pulmonary disease in five Latin American cities (the PLATINO study): a prevalence study. Lancet. 2005 Nov 26. 366(9500):1875-81. [Medline].

  18. Deaths from chronic obstructive pulmonary disease--United States, 2000-2005. MMWR Morb Mortal Wkly Rep. 2008 Nov 14. 57(45):1229-32. [Medline].

  19. Silverman EK, Weiss ST, Drazen JM, Chapman HA, Carey V, Campbell EJ, et al. Gender-related differences in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000 Dec. 162(6):2152-8. [Medline].

  20. Lokke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD: a 25 year follow up study of the general population. Thorax. 2006 Nov. 61(11):935-9. [Medline].

  21. Crothers K, Butt AA, Gibert CL, Rodriguez-Barradas MC, Crystal S, Justice AC. Increased COPD among HIV-positive compared to HIV-negative veterans. Chest. 2006 Nov. 130(5):1326-33. [Medline].

  22. [Guideline] US Preventive Services Task Force. Counseling and interventions to prevent tobacco use and tobacco-caused disease in adults and pregnant women: U.S. Preventive Services Task Force reaffirmation recommendation statement. Ann Intern Med. 2009 Apr 21. 150(8):551-5. [Medline].

  23. COMBIVENT Inhalation Aerosol Study Group. In chronic obstructive pulmonary disease, a combination of ipratropium and albuterol is more effective than either agent alone. An 85-day multicenter trial. COMBIVENT Inhalation Aerosol Study Group. Chest. 1994 May. 105(5):1411-9. [Medline].

  24. Chapman KR, Rennard SI, Dogra A, Owen R, Lassen C, Kramer B. Long-term safety and efficacy of indacaterol, a long-acting beta2-agonist, in subjects with COPD: a randomized, placebo-controlled study. Chest. 2011 Jul. 140(1):68-75. [Medline].

  25. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007 Feb 22. 356(8):775-89. [Medline].

  26. O'Donnell DE, Fluge T, Gerken F, Hamilton A, Webb K, Aguilaniu B, et al. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J. 2004 Jun. 23(6):832-40. [Medline].

  27. Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008 Oct 9. 359(15):1543-54. [Medline].

  28. Brusasco V, Hodder R, Miravitlles M, Korducki L, Towse L, Kesten S. Health outcomes following treatment for six months with once daily tiotropium compared with twice daily salmeterol in patients with COPD. Thorax. 2003 May. 58(5):399-404. [Medline]. [Full Text].

  29. Donohue JF, van Noord JA, Bateman ED, Langley SJ, Lee A, Witek TJ Jr, et al. A 6-month, placebo-controlled study comparing lung function and health status changes in COPD patients treated with tiotropium or salmeterol. Chest. 2002 Jul. 122(1):47-55. [Medline].

  30. Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009 Aug 29. 374(9691):685-94. [Medline].

  31. Wood-Baker RR, Gibson PG, Hannay M, Walters EH, Walters JA. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2005 Jan 25. CD001288. [Medline].

  32. Spencer S, Calverley PM, Burge PS, Jones PW. Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004 May. 23(5):698-702. [Medline].

  33. Walters JA, Walters EH, Wood-Baker R. Oral corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2005 Jul 20. CD005374. [Medline].

  34. Sin DD, Tashkin D, Zhang X, Radner F, Sjobring U, Thorén A, et al. Budesonide and the risk of pneumonia: a meta-analysis of individual patient data. Lancet. 2009 Aug 29. 374(9691):712-9. [Medline].

  35. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JA Jr, Criner GJ, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011 Aug 25. 365(8):689-98. [Medline]. [Full Text].

  36. Petty TL. The National Mucolytic Study. Results of a randomized, double-blind, placebo-controlled study of iodinated glycerol in chronic obstructive bronchitis. Chest. 1990 Jan. 97(1):75-83. [Medline].

  37. Zheng JP, Wen FQ, Bai CX, Wan HY, Kang J, Chen P, et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2014 Mar. 2(3):187-94. [Medline].

  38. Sasaki T, Nakayama K, Yasuda H, Yoshida M, Asamura T, Ohrui T, et al. A randomized, single-blind study of lansoprazole for the prevention of exacerbations of chronic obstructive pulmonary disease in older patients. J Am Geriatr Soc. 2009 Aug. 57(8):1453-7. [Medline].

  39. Nocturnal Oxygen Therapy Trial Group. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Nocturnal Oxygen Therapy Trial Group. Ann Intern Med. 1980 Sep. 93(3):391-8. [Medline].

  40. Moberley S, Holden J, Tatham DP, Andrews RM. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev. 2013 Jan 31. 1:CD000422. [Medline].

  41. Kyaw MH, Clarke S, Edwards GF, Jones IG, Campbell H. Serotypes/groups distribution and antimicrobial resistance of invasive pneumococcal isolates: implications for vaccine strategies. Epidemiol Infect. 2000 Dec. 125(3):561-72. [Medline].

  42. Centers for Disease Control and Prevention. Updated recommendations for prevention of invasive pneumococcal disease among adults using the 23-valent pneumococcal polysaccharide vaccine (PPSV23). MMWR Morb Mortal Wkly Rep. 2010 Sep 3. 59(34):1102-6. [Medline].

  43. Hubbard RC, Crystal RG. Augmentation therapy of alpha 1-antitrypsin deficiency. Eur Respir J Suppl. 1990 Mar. 9:44s-52s. [Medline].

  44. Naunheim KS, Wood DE, Mohsenifar Z, Sternberg AL, Criner GJ, DeCamp MM, et al. Long-term follow-up of patients receiving lung-volume-reduction surgery versus medical therapy for severe emphysema by the National Emphysema Treatment Trial Research Group. Ann Thorac Surg. 2006 Aug. 82(2):431-43. [Medline].

  45. Sciurba FC, Ernst A, Herth FJ, Strange C, Criner GJ, Marquette CH, et al. A randomized study of endobronchial valves for advanced emphysema. N Engl J Med. 2010 Sep 23. 363(13):1233-44. [Medline].

  46. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004 Mar 4. 350(10):1005-12. [Medline].

  47. Hurst JR, Donaldson GC, Quint JK, Goldring JJ, Baghai-Ravary R, Wedzicha JA. Temporal clustering of exacerbations in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009 Mar 1. 179(5):369-74. [Medline].

  48. O'Donnell DE, Parker CM. COPD exacerbations . 3: Pathophysiology. Thorax. 2006 Apr. 61(4):354-61. [Medline]. [Full Text].

  49. Lightowler JV, Wedzicha JA, Elliott MW, Ram FS. Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis. BMJ. 2003 Jan 25. 326(7382):185. [Medline]. [Full Text].

  50. Creutzberg EC, Wouters EF, Mostert R, Pluymers RJ, Schols AM. A role for anabolic steroids in the rehabilitation of patients with COPD? A double-blind, placebo-controlled, randomized trial. Chest. 2003 Nov. 124(5):1733-42. [Medline].

  51. Ries AL, Bauldoff GS, Carlin BW, Casaburi R, Emery CF, Mahler DA, et al. Pulmonary Rehabilitation: Joint ACCP/AACVPR Evidence-Based Clinical Practice Guidelines. Chest. 2007 May. 131(5 Suppl):4S-42S. [Medline].

  52. Haruna A, Muro S, Nakano Y, Ohara T, Hoshino Y, Ogawa E, et al. CT scan findings of emphysema predict mortality in COPD. Chest. 2010 Sep. 138(3):635-40. [Medline].

  53. Anthonisen NR. Prognosis in chronic obstructive pulmonary disease: results from multicenter clinical trials. Am Rev Respir Dis. 1989 Sep. 140(3 Pt 2):S95-9. [Medline].

  54. Anthonisen NR, Connett JE, Kiley JP, Altose MD, Bailey WC, Buist AS, et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA. 1994 Nov 16. 272(19):1497-505. [Medline].

  55. Bradi AC, Faughnan ME, Stanbrook MB, Deschenes-Leek E, Chapman KR. Predicting the need for supplemental oxygen during airline flight in patients with chronic pulmonary disease: a comparison of predictive equations and altitude simulation. Can Respir J. 2009 Jul-Aug. 16(4):119-24. [Medline].

  56. Brenes GA. Anxiety and chronic obstructive pulmonary disease: prevalence, impact, and treatment. Psychosom Med. 2003 Nov-Dec. 65(6):963-70. [Medline].

  57. Burrows B, Bloom JW, Traver GA, Cline MG. The course and prognosis of different forms of chronic airways obstruction in a sample from the general population. N Engl J Med. 1987 Nov 19. 317(21):1309-14. [Medline].

  58. Chapman KR. Therapeutic algorithm for chronic obstructive pulmonary disease. Am J Med. 1991 Oct 21. 91(4A):17S-23S. [Medline].

  59. Davis RM, Novotny TE. The epidemiology of cigarette smoking and its impact on chronic obstructive pulmonary disease. Am Rev Respir Dis. 1989 Sep. 140(3 Pt 2):S82-4. [Medline].

  60. Dunn WF, Nelson SB, Hubmayr RD. Oxygen-induced hypercarbia in obstructive pulmonary disease. Am Rev Respir Dis. 1991 Sep. 144(3 Pt 1):526-30. [Medline].

  61. Fabbri LM, Luppi F, Beghé B, Rabe KF. Update in chronic obstructive pulmonary disease 2005. Am J Respir Crit Care Med. 2006 May 15. 173(10):1056-65. [Medline].

  62. Ferguson GT, Cherniack RM. Management of chronic obstructive pulmonary disease. N Engl J Med. 1993 Apr 8. 328(14):1017-22. [Medline].

  63. Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J. 1977 Jun 25. 1(6077):1645-8. [Medline]. [Full Text].

  64. Fletcher CM. Bronchitis and Emphysema. Proc R Soc Med. 1962. 55:451-3.

  65. Gough J. The pathological diagnosis of emphysema. Proc R Soc Med. 1952 Sep. 45(9):576-7. [Medline].

  66. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006 Sep. 28(3):523-32. [Medline].

  67. Karpel JP, Kotch A, Zinny M, Pesin J, Alleyne W. A comparison of inhaled ipratropium, oral theophylline plus inhaled beta-agonist, and the combination of all three in patients with COPD. Chest. 1994 Apr. 105(4):1089-94. [Medline].

  68. Laennec RTH. A treatise on the diseases of the chest and on mediate auscultation. Philadelphia: Desilver, Thomas & Co; 1835. 135-163.

  69. Lopez-Majano V, Dutton RE. Regulation of respiration during oxygen breathing in chronic obstructive lung disease. Am Rev Respir Dis. 1973 Aug. 108(2):232-40. [Medline].

  70. Mannino DM, Watt G, Hole D, Gillis C, Hart C, McConnachie A, et al. The natural history of chronic obstructive pulmonary disease. Eur Respir J. 2006 Mar. 27(3):627-43. [Medline].

  71. McKay SE, Howie CA, Thomson AH, Whiting B, Addis GJ. Value of theophylline treatment in patients handicapped by chronic obstructive lung disease. Thorax. 1993 Mar. 48(3):227-32. [Medline]. [Full Text].

  72. Medical Research Council Working Party. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet. 1981 Mar 28. 1(8222):681-6. [Medline].

  73. Mendelssohn A. Der mechanismus der respiration und cirkulation oder das explicirte wesen der lungenhyperamien. Berlin: B. Behrs; 1845. 91.

  74. O'Donnell DE, Sanii R, Anthonisen NR, Younes M. Effect of dynamic airway compression on breathing pattern and respiratory sensation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1987 Apr. 135(4):912-8. [Medline].

  75. O'Donnell R, Breen D, Wilson S, Djukanovic R. Inflammatory cells in the airways in COPD. Thorax. 2006 May. 61(5):448-54. [Medline]. [Full Text].

  76. Orens JB, Estenne M, Arcasoy S, Conte JV, Corris P, Egan JJ, et al. International guidelines for the selection of lung transplant candidates: 2006 update--a consensus report from the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2006 Jul. 25(7):745-55. [Medline].

  77. Papi A, Luppi F, Franco F, Fabbri LM. Pathophysiology of exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2006 May. 3(3):245-51. [Medline].

  78. Peto R, Speizer FE, Cochrane AL, Moore F, Fletcher CM, Tinker CM, et al. The relevance in adults of air-flow obstruction, but not of mucus hypersecretion, to mortality from chronic lung disease. Results from 20 years of prospective observation. Am Rev Respir Dis. 1983 Sep. 128(3):491-500. [Medline].

  79. Petty TL, Finigan MM. Clinical evaluation of prolonged ambulatory oxygen therapy in chronic airway obstruction. Am J Med. 1968 Aug. 45(2):242-52. [Medline].

  80. Postma DS, Sluiter HJ. Prognosis of chronic obstructive pulmonary disease: the Dutch experience. Am Rev Respir Dis. 1989 Sep. 140(3 Pt 2):S100-5. [Medline].

  81. Prigmore S. End-of-life decisions and respiratory disease. Nurs Times. 2006 Feb 14-20. 102(7):56, 59, 61. [Medline].

  82. Rutten FH, Cramer MJ, Lammers JW, Grobbee DE, Hoes AW. Heart failure and chronic obstructive pulmonary disease: An ignored combination?. Eur J Heart Fail. 2006 Nov. 8(7):706-11. [Medline].

  83. Ruysch F. Observationem Anatomico-Chirurgicarum. Amsterdam: Henricum Boom; 1691. 25–27.

  84. Sanders C. The radiographic diagnosis of emphysema. Radiol Clin North Am. 1991 Sep. 29(5):1019-30. [Medline].

  85. Schachter EN. Cilomilast. Drugs Today. 4. Barc; Apr 2006. 42: 237-47.

  86. Strawbridge HT. Chronic Pulmonary Emphysema (an Experimental Study): III. Experimental Pulmonary Emphysema. Am J Pathol. 1960 Oct. 37(4):391-411. [Medline]. [Full Text].

  87. Sutherland ER, Martin RJ. Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. J Allergy Clin Immunol. 2003 Nov. 112(5):819-27; quiz 828. [Medline].

  88. Thurlbeck WM. Overview of the pathology of pulmonary emphysema in the human. Clin Chest Med. 1983 Sep. 4(3):337-50. [Medline].

  89. Thurlbeck WM. Pathophysiology of chronic obstructive pulmonary disease. Clin Chest Med. 1990 Sep. 11(3):389-403. [Medline].

  90. Tsoumakidou M, Siafakas NM. Novel insights into the aetiology and pathophysiology of increased airway inflammation during COPD exacerbations. Respir Res. 2006. 7:80. [Medline].

  91. Vestbo J. Clinical assessment, staging, and epidemiology of chronic obstructive pulmonary disease exacerbations. Proc Am Thorac Soc. 2006 May. 3(3):252-6. [Medline].

  92. Weitzenblum E, Sautegeau A, Ehrhart M, Mammosser M, Pelletier A. Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1985 Apr. 131(4):493-8. [Medline].

 
Previous
Next
 
Gross pathology of bullous emphysema shows bullae on the surface of the lungs.
Gross pathology of emphysema shows bullae on the lung surface.
At high magnification, loss of airway walls and dilated airspaces are observed in emphysema.
Chest radiograph shows hyperinflation, flattened diaphragms, increased retrosternal space, and hyperlucency of the lung parenchyma in emphysema.
A CT scan shows emphysematous bullae in upper lobes.
Diffuse emphysema secondary to cigarette smoking.
Pressure-volume curve is drawn for a patient with restrictive lung disease and obstructive disease and is compared to healthy lungs.
Flow-volume curve of lungs with emphysema shows marked decrease in expiratory flows, hyperinflation, and air trapping (patient B) compared to a patient with restrictive lung disease, who has reduced lung volumes and preserved flows (patient A).
Forced expiratory volume in 1 second (FEV1) can be used to evaluate the prognosis in patients with emphysema. The benefit of smoking cessation is shown here because the deterioration in lung function parallels that of a nonsmoker, even in late stages of the disease.
A CT scan showing severe emphysema and bullous disease.
An emphysematous lung shows increased anteroposterior (AP) diameter, increased retrosternal airspace, and flattened diaphragms on posteroanterior (PA) film.
An emphysematous lung shows increased anteroposterior (AP) diameter, increased retrosternal airspace, and flattened diaphragms on lateral chest radiograph.
The differential diagnosis of unilateral hyperlucent lung includes pulmonary arterial hypoplasia and Swyer-James syndrome. The expiratory chest radiograph exhibits evidence of air trapping and is helpful in making the diagnosis. Swyer-James syndrome is unilateral bronchiolitis obliterans, which develops during early childhood.
Lateral chest radiograph of Swyer-James syndrome may demonstrate some of the features of emphysema.
Paraseptal emphysema. Courtesy of Dr Frank Gaillard, Radiopaedia.org (http://radiopaedia.org/cases/emphysema-diagrams).
Panlobular ephysema. Courtesy of Dr Frank Gaillard, Radiopaedia.org (http://radiopaedia.org/cases/emphysema-diagrams).
Centrilobular emphysema. Courtesy of Dr Frank Gaillard, Radiopaedia.org (http://radiopaedia.org/cases/emphysema-diagrams).
Early stethoscope drawing c 1819. Courtesy of Wikipedia.
Laennec's early stethoscope made of brass and wood c 1820. Courtesy of Wikipedia.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.