Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pulmonary Alveolar Proteinosis Treatment & Management

  • Author: Roger B Olade, MD, MPH; Chief Editor: Zab Mosenifar, MD, FACP, FCCP  more...
 
Updated: Dec 17, 2015
 

Medical Care

Management of pulmonary alveolar proteinosis (PAP) depends on the progression of the illness, coexisting infections, and degree of physiological impairment. The standard of care for PAP is mechanical removal of the lipoproteinaceous material by whole-lung lavage. Historically, patients have been treated with systemic steroids, mucolytics (aerosol), and proteinase (aerosol) without much success. Indications for this procedure are a histologic diagnosis in combination with any of the following: (1) an alveolar-arterial oxygen gradient greater than or equal to 40 mm Hg, (2) dyspnea and hypoxemia at rest or with exercise, or (3) a PaO2 of less than 65 mm Hg.

In secondary PAP, appropriate treatment of the underlying cause is warranted. Inhaled and systemic GM-CSF has been shown to be safe and effective in providing a sustained therapeutic effect in autoimmune PAP.[18]

Whole-lung lavage is performed with a double-lumen endotracheal tube designed to allow simultaneous ventilation and lavage. Lung lavage is performed under general anesthesia, and the lung is ventilated briefly with 100% oxygen before lavage with isotonic sodium chloride solution. The standard is lavage with up to 50 L of fluid. Upon completion of the procedure, the lung is suctioned of most of the isotonic sodium chloride solution and allowed to recover before lavaging the other lung. Lung lavage has been performed in hyperbaric chambers, which has made lavage of both lungs possible on the same day. Lung lavage may require several hours.

Rarely, hyperbaric chamber or extracorporeal membrane oxygenation (ECMO) has been used to perform whole-lung lavages in cases of severe hypoxemia.[19]

Next

Surgical Care

Lung transplantation is the treatment of choice in patients with congenital PAP and in adult patients with end-stage interstitial fibrosis and cor pulmonale.

Previous
Next

Consultations

Pulmonologist consultation is warranted.

Previous
 
 
Contributor Information and Disclosures
Author

Roger B Olade, MD, MPH Medical Director, Genesis Health Group

Roger B Olade, MD, MPH is a member of the following medical societies: American College of Occupational and Environmental Medicine, American College of Physicians

Disclosure: Nothing to disclose.

Coauthor(s)

Klaus-Dieter Lessnau, MD, FCCP Clinical Associate Professor of Medicine, New York University School of Medicine; Medical Director, Pulmonary Physiology Laboratory; Director of Research in Pulmonary Medicine, Department of Medicine, Section of Pulmonary Medicine, Lenox Hill Hospital

Klaus-Dieter Lessnau, MD, FCCP is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Medical Association, American Thoracic Society, Society of Critical Care Medicine

Disclosure: Nothing to disclose.

Oluwatoyin E Ijitola, MD, PhD Dean and Professor, International University for Graduate Studies (IUGS)

Oluwatoyin E Ijitola, MD, PhD is a member of the following medical societies: American Medical Association, American Society of Tropical Medicine and Hygiene, International AIDS Society, American College of Healthcare Executives, HIV Medicine Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Zab Mosenifar, MD, FACP, FCCP Geri and Richard Brawerman Chair in Pulmonary and Critical Care Medicine, Professor and Executive Vice Chairman, Department of Medicine, Medical Director, Women's Guild Lung Institute, Cedars Sinai Medical Center, University of California, Los Angeles, David Geffen School of Medicine

Zab Mosenifar, MD, FACP, FCCP is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Federation for Medical Research, American Thoracic Society

Disclosure: Nothing to disclose.

Additional Contributors

Gregory Tino, MD Director of Pulmonary Outpatient Practices, Associate Professor, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Medical Center and Hospital

Gregory Tino, MD is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Thoracic Society

Disclosure: Nothing to disclose.

Acknowledgements

Gregg T Anders, DO Medical Director, Great Plains Regional Medical Command , Brooke Army Medical Center; Clinical Associate Professor, Department of Internal Medicine, Division of Pulmonary Disease, University of Texas Health Science Center at San Antonio

Disclosure: Nothing to disclose.

Ali Hmidi, MD Staff Physician, Department of Internal Medicine, Brooklyn Hospital Center, Cornell University

Disclosure: Nothing to disclose.

References
  1. Rosen SH, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med. 1958 Jun 5. 258(23):1123-42. [Medline].

  2. Griese M, Brasch F, Aldana VR, Cabrera MM, Goelnitz U, Ikonen E, et al. Respiratory disease in Niemann-Pick type C2 is caused by pulmonary alveolar proteinosis. Clin Genet. 2010 Feb. 77(2):119-30. [Medline].

  3. Xue Y, Han Y, Li T, Chen S, Zhang J, Pan J, et al. Pulmonary alveolar proteinosis as a terminal complication in a case of myelodysplastic syndrome with idic(20q-). Acta Haematol. 2010. 123(1):55-8. [Medline].

  4. Bonfield TL, Farver CF, Barna BP, Malur A, Abraham S, Raychaudhuri B, et al. Peroxisome proliferator-activated receptor-gamma is deficient in alveolar macrophages from patients with alveolar proteinosis. Am J Respir Cell Mol Biol. 2003 Dec. 29(6):677-82. [Medline].

  5. Cummings KJ, Donat WE, Ettensohn DB, Roggli VL, Ingram P, Kreiss K. Pulmonary alveolar proteinosis in workers at an indium processing facility. Am J Respir Crit Care Med. 2010 Mar 1. 181(5):458-64. [Medline]. [Full Text].

  6. Cummings KJ, Nakano M, Omae K, et al. Indium lung disease. Chest. 2012 Jun. 141(6):1512-21. [Medline]. [Full Text].

  7. Cummings KJ, Donat WE, Ettensohn DB, Roggli VL, Ingram P, Kreiss K. Pulmonary alveolar proteinosis in workers at an indium processing facility. Am J Respir Crit Care Med. 2010 Mar 1. 181(5):458-64. [Medline].

  8. Wardwell NR Jr, Miller R, Ware LB. Pulmonary alveolar proteinosis associated with a disease-modifying antirheumatoid arthritis drug. Respirology. 2006 Sep. 11(5):663-5. [Medline].

  9. Suzuki T, Sakagami T, Young LR, et al. Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy. Am J Respir Crit Care Med. 2010 Nov 15. 182(10):1292-304. [Medline]. [Full Text].

  10. Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol. 2010 May. 135(2):223-35. [Medline]. [Full Text].

  11. Bonfield TL, John N, Barna BP, Kavuru MS, Thomassen MJ, Yen-Lieberman B. Multiplexed particle-based anti-granulocyte macrophage colony stimulating factor assay used as pulmonary diagnostic test. Clin Diagn Lab Immunol. 2005 Jul. 12(7):821-4. [Medline].

  12. Carraway MS, Ghio AJ, Carter JD, Piantadosi CA. Detection of granulocyte-macrophage colony-stimulating factor in patients with pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2000 Apr. 161(4 Pt 1):1294-9. [Medline].

  13. Fang SC, Lu KH, Wang CY, Zhang HT, Zhang YM. Elevated tumor markers in patients with pulmonary alveolar proteinosis. Clin Chem Lab Med. 2013 Jan 11. 1-6. [Medline].

  14. Godwin JD, Müller NL, Takasugi JE. Pulmonary alveolar proteinosis: CT findings. Radiology. 1988 Dec. 169(3):609-13. [Medline].

  15. Murayama S, Murakami J, Yabuuchi H, Soeda H, Masuda K. "Crazy paving appearance" on high resolution CT in various diseases. J Comput Assist Tomogr. 1999 Sep-Oct. 23(5):749-52. [Medline].

  16. Sunadome H, Nohara J, Noguchi T, Matsui C, Kono T, Terada Y. [A case of pulmonary alveolar proteinosis that showed solitary ground-glass opacity in the subpleural area]. Nihon Kokyuki Gakkai Zasshi. 2010 Jul. 48 (7):516-9. [Medline].

  17. Choi HK, Park CM, Goo JM, Lee HJ. Pulmonary alveolar proteinosis versus exogenous lipoid pneumonia showing crazy-paving pattern: Comparison of their clinical features and high-resolution CT findings. Acta Radiol. 2010 May. 51(4):407-12. [Medline].

  18. Tazawa R, Trapnell BC, Inoue Y, Arai T, Takada T, Nasuhara Y, et al. Inhaled Granulocyte/Macrophage-Colony Stimulating Factor as Therapy of Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med. 2010 Feb 18. [Medline].

  19. Hasan N, Bagga S, Monteagudo J, Hirose H, Cavarocchi NC, Hehn BT, et al. Extracorporeal membrane oxygenation to support whole-lung lavage in pulmonary alveolar proteinosis: salvage of the drowned lungs. J Bronchology Interv Pulmonol. 2013 Jan. 20(1):41-4. [Medline].

  20. Abdul Rahman JA, Moodley YP, Phillips MJ. Pulmonary alveolar proteinosis associated with psoriasis and complicated by mycobacterial infection: successful treatment with granulocyte-macrophage colony stimulating factor after a partial response to whole lung lavage. Respirology. 2004 Aug. 9(3):419-22. [Medline].

  21. Rosen LB, Freeman AF, Yang LM, et al. Anti-GM-CSF Autoantibodies in Patients with Cryptococcal Meningitis. J Immunol. 2013 Apr 15. 190(8):3959-66. [Medline].

  22. Trapnell BC, Suzuki T. Pulmonary Alveolar Proteinosis. Fishman AP, Elia JA, Fishman JA, Grippi MA, Kotloff R, Senior RM, Pack A, eds. Fishman's Pulmonary Diseases and Disorders. 5th ed. New York, NY: McGraw-Hill Educational; 2015. 1028-37.

 
Previous
Next
 
A periodic acid-Schiff histochemical stain of transbronchial biopsy: Alveolar spaces contain considerable amounts of granular material.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.