Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pulmonary Embolism Medication

  • Author: Daniel R Ouellette, MD, FCCP; Chief Editor: Zab Mosenifar, MD, FACP, FCCP  more...
 
Updated: Jun 22, 2016
 

Medication Summary

Immediate therapeutic anticoagulation is initiated for patients with suspected deep venous thrombosis (DVT) or pulmonary embolism (PE). Anticoagulation therapy with heparin reduces mortality rates from 30% to less than 10%. Anticoagulation is essential, but anticoagulation alone does not guarantee a successful outcome. DVT and PE may recur or extend despite full and effective heparin anticoagulation.

Chronic anticoagulation is critical to prevent relapse of DVT or PE following initial heparinization. Heparin works by activating antithrombin III to slow or prevent the progression of DVT and to reduce the size and frequency of PE. Heparin does not dissolve existing clot.

Next

Anticoagulants

Class Summary

Heparin augments the activity of antithrombin III and prevents the conversion of fibrinogen to fibrin. Full-dose LMWH or full-dose unfractionated IV heparin should be initiated at the first suspicion of DVT or PE.

With proper dosing, several LMWH products have been found safer and more effective than unfractionated heparin both for prophylaxis and for treatment of DVT and PE. Monitoring the aPTT is neither necessary nor useful when giving LMWH, because the drug is most active in a tissue phase and does not exert most of its effects on coagulation factor IIa.

Many different LMWH products are available around the world. Because of pharmacokinetic differences, dosing is highly product specific. Several LMWH products are approved for use in the United States: enoxaparin (Lovenox), dalteparin (Fragmin), and tinzaparin (Innohep). Enoxaparin and tinzaparin are currently approved by the FDA for treatment of DVT. Dalteparin is FDA approved for prophylaxis and has approval for cancer patients. Each of the other agents has been approved by the FDA at a lower dose for prophylaxis, but all appear to be safe and effective at some therapeutic dose in patients with active DVT or PE.

Fractionated LMWH administered subcutaneously is now the preferred choice for initial anticoagulation therapy. Unfractionated IV heparin can be nearly as effective but is more difficult to titrate for therapeutic effect. Warfarin maintenance therapy may be initiated after 1-3 days of effective heparinization.

The weight-adjusted heparin dosing regimens that are appropriate for prophylaxis and treatment of coronary artery thrombosis are too low to be used unmodified in the treatment of active DVT and PE. Coronary artery thrombosis does not result from hypercoagulability but rather from platelet adhesion to ruptured plaque. In contrast, patients with DVT and PE are in the midst of a hypercoagulable crisis, and aggressive countermeasures are essential to reduce mortality and morbidity rates.

Enoxaparin (Lovenox)

 

Exonaparin was the first low-molecular-weight heparin (LMWH) released in the United States. It was approved by the FDA for both treatment and prophylaxis of DVT and PE. Enoxaparin enhances the inhibition of factor Xa and thrombin by increasing antithrombin III activity. In addition, it preferentially increases the inhibition of factor Xa. LMWH has been used widely in pregnancy, although clinical trials are not yet available to demonstrate that it is as safe as unfractionated heparin. Except in overdoses, checking PT or aPTT has no utility, as aPTT does not correlate with anticoagulant effect of fractionated LMWH. Factor Xa levels can be monitored if concern arises about whether the dose is adequate.

Dalteparin (Fragmin)

 

Dalteparin is an LMWH with many similarities to enoxaparin but with a different dosing schedule. It is approved for DVT prophylaxis in patients undergoing abdominal surgery. Except in overdoses, checking PT or aPTT has no utility, as aPTT does not correlate with anticoagulant effect of fractionated LMWH. LMWH. Factor Xa levels can be monitored if concern arises about whether the dose is adequate.

Tinzaparin (Innohep)

 

Tinzaparin is approved for treatment of DVT in hospitalized patients. Enhances inhibition of factor Xa and thrombin by increasing antithrombin III activity. In addition, preferentially increases inhibition of factor Xa.

Heparin (Hep-Lock U/P, Hep-Lock, Hep-Flush-10)

 

Heparin augments the activity of antithrombin III and prevents conversion of fibrinogen to fibrin. It does not actively lyse but is able to inhibit further thrombogenesis. Heparin prevents the reaccumulation of a clot after spontaneous fibrinolysis. When UFH is used, the aPTT should not be checked until 6 hours after the initial heparin bolus, because an extremely high or low value during this time should not provoke any action

Warfarin (Coumadin, Jantoven)

 

Warfarin (Coumadin) interferes with the hepatic synthesis of vitamin K–dependent coagulation factors. It is used for the prophylaxis and treatment of venous thrombosis, pulmonary embolism, and thromboembolic disorders. Never administer warfarin to patients with thrombosis until after they have been fully anticoagulated with heparin (the first few days of warfarin therapy produce a hypercoagulable state). Failing to anticoagulate with heparin before starting warfarin causes clot extension and recurrent thromboembolism in approximately 40% of patients, compared with 8% of those who receive full-dose heparin before starting warfarin. Heparin should be continued for the first 5-7 days of oral warfarin therapy, regardless of the PT time, to allow time for depletion of procoagulant vitamin K–dependent proteins.

Tailor the warfarin dose to maintain an INR in the range of 2.5-3.5. The risk of serious bleeding (including hemorrhagic stroke) is approximately constant when the INR is 2.5-4.5 but rises dramatically when the INR is over 5. In the United Kingdom, a higher INR target of 3-4 often is recommended.

Evidence suggests that 6 months of anticoagulation reduces the rate of recurrence to half of the recurrence rate observed when only 6 weeks of anticoagulation is given. Long-term anticoagulation is indicated for patients with an irreversible underlying risk factor and recurrent DVT or recurrent pulmonary embolism.

Procoagulant vitamin K–dependent proteins are responsible for a transient hypercoagulable state when warfarin is first started and stopped. This is the phenomenon that occasionally causes warfarin-induced necrosis of large areas of skin or of distal appendages. Heparin is always used to protect against this hypercoagulability when warfarin is started; when warfarin is stopped, however, the problem resurfaces, causing an abrupt, temporary rise in the rate of recurrent venous thromboembolism.

At least 186 different foods and drugs reportedly interact with warfarin. Clinically significant interactions have been verified for a total of 26 common drugs and foods, including 6 antibiotics and 5 cardiac drugs. Every effort should be made to keep the patient adequately anticoagulated at all times, because procoagulant factors recover first when warfarin therapy is inadequate.

Patients who have difficulty maintaining adequate anticoagulation while taking warfarin may be asked to limit their intake of foods that contain vitamin K.

Foods that have moderate to high amounts of vitamin K include Brussels sprouts, kale, green tea, asparagus, avocado, broccoli, cabbage, cauliflower, collard greens, liver, soybean oil, soybeans, certain beans, mustard greens, peas (black-eyed peas, split peas, chick peas), turnip greens, parsley, green onions, spinach, and lettuce.

Fondaparinux sodium (Arixtra)

 

Fondaparinux sodium is a synthetic anticoagulant that works by inhibiting factor Xa, a key component involved in blood clotting. It provides a highly predictable response and has a bioavailability of 100%. The drug has a rapid onset of action and a half-life of 14-16 hours, allowing for sustained antithrombotic activity over a 24-hour period. Fondaparinux sodium does not affect prothrombin time or activated partial thromboplastin time, nor does it affect platelet function or aggregation.

Previous
Next

Thrombolytics

Class Summary

Thrombolysis is indicated for hemodynamically unstable patients with pulmonary embolism. Thrombolysis dramatically improves acute cor pulmonale. Thrombolytic therapy has replaced surgical embolectomy as the treatment for hemodynamically unstable patients with massive pulmonary embolism.

Fibrinolytic regimens currently in common use for pulmonary embolism include 2 forms of recombinant tPA, alteplase and reteplase, along with urokinase and streptokinase. Alteplase usually is given as a front-loaded infusion over 90 or 120 minutes. Urokinase and streptokinase usually are given as infusions over 24 hours or more. Reteplase is a new-generation thrombolytic with a longer half-life; it is given as a single bolus or as 2 boluses administered 30 minutes apart.

Of the 4 drugs, the faster-acting agents reteplase and alteplase are preferred for patients with pulmonary embolism, because the condition of patients with pulmonary embolism can deteriorate extremely rapidly.

Many comparative clinical studies have shown that administration of a 2-hour infusion of alteplase is more effective (and more rapidly effective) than urokinase or streptokinase over a 12-hour period. One prospective, randomized study comparing reteplase and alteplase found that total pulmonary resistance (along with pulmonary artery pressure and cardiac index) improved significantly after just one half hour in the reteplase group as compared with 2 hours in the alteplase group. Fibrinolytic agents do not seem to differ significantly with respect to safety or overall efficacy.

Streptokinase is least desirable of all the fibrinolytic agents because antigenic problems and other adverse reactions force the cessation of therapy in a large number of cases.

Empiric thrombolysis may be indicated in selected hemodynamically unstable patients, particularly when the clinical likelihood of pulmonary embolism is overwhelming and the patient's condition is deteriorating. The overall risk of severe complications from thrombolysis is low and the potential benefit in a deteriorating patient with pulmonary embolism is high. Empiric therapy especially is indicated when a patient is compromised so severely that he or she will not survive long enough to obtain a confirmatory study. Empiric thrombolysis should be reserved, however, for cases that truly meet these definitions, as many other clinical entities (including aortic dissection) may masquerade as pulmonary embolism, yet may not benefit from thrombolysis in any way.

Newborns may be relatively resistant to thrombolytics because of their lack of fibrinogen activity.

Reteplase (Retavase)

 

Reteplase is a second-generation recombinant tissue plasminogen activator (recombinant tPA) that forms plasmin after facilitating cleavage of endogenous plasminogen. In clinical trials, reteplase has been shown to be comparable to the recombinant tPA alteplase in achieving TIMI, 2 or 3 patency, at 90 minutes. Reteplase is given as a single bolus or as 2 boluses administered 30 minutes apart.

As a fibrinolytic agent, reteplase seems to work faster than its forerunner, alteplase, and may be more effective in patients with larger clot burdens. It has also been reported to be more effective than other agents in lysis of older clots. Two major differences help to explain these improvements. Because reteplase does not bind fibrin as tightly as does alteplase, this allows reteplase drug to diffuse more freely through the clot. Another advantage seems to be that reteplase does not compete with plasminogen for fibrin-binding sites, allowing plasminogen at the site of the clot to be transformed into clot-dissolving plasmin.

The FDA has not approved reteplase for administration to patients with pulmonary embolism. Studies of the drug's use for pulmonary embolism have employed the same dose approved by the FDA for coronary artery fibrinolysis.

Alteplase (Activase, Cathflo Activase)

 

Alteplase, a recombinant tPA, is used in the management of acute myocardial infarction (AMI), acute ischemic stroke, and pulmonary embolism. Alteplase is most often used to treat patients with pulmonary embolism in the ED. It is usually given as a front-loaded infusion over 90-120 minutes. It is FDA approved for this indication. Most ED personnel are familiar with alteplase's use, because it is widely employed in the treatment of patients with AMI. An accelerated 90-minute regimen is widely used, and most believe it is safer and more effective than the approved 2-hour infusion. An accelerated-regimen dose is based on patient weight.

Heparin therapy should be instituted or reinstituted near the end of or immediately following infusion, when the aPTT or thrombin time returns to twice normal or less.

Urokinase (Abbokinase, Kinlytic)

 

Urokinase is a direct plasminogen activator produced by human fetal kidney cells grown in culture. It acts on the endogenous fibrinolytic system and converts plasminogen to the enzyme plasmin, which, in turn, degrades fibrin clots, fibrinogen, and other plasma proteins. An advantage of urokinase is that it is nonantigenic; however, it is more expensive than streptokinase, which limits its use. When urokinase is used for localized fibrinolysis, it is given as a local, catheter-directed, continuous infusion directly into area of the thrombus with no loading dose. When it is used for pulmonary embolism, a loading dose is necessary.

Streptokinase (Streptase)

 

Streptokinase acts with plasminogen to convert plasminogen to plasmin. Plasmin degrades fibrin clots, fibrinogen, and other plasma proteins. An increase in fibrinolytic activity that degrades fibrinogen levels for 24-36 hours takes place with IV infusion of streptokinase. The agent is highly antigenic, and it is highly likely that treatment will be interrupted due to allergic drug reactions.

Chills, fever, nausea, and skin rashes are frequent (up to 20%). Blood pressure and heart rate drop in approximately 10% of cases during or shortly after treatment.

Late complications may include purpura, respiratory distress syndrome, serum sickness, Guillain-Barré syndrome, vasculitis, and renal or hepatic dysfunction.

Previous
Next

Direct Thrombin Inhibitors and Factor Xa Inhibitors

Class Summary

Factor Xa inhibitors inhibit platelet activation by selectively blocking the active site of factor Xa without requiring a cofactor (eg, antithrombin III) for activity. Direct thrombin inhibitors prevents thrombus development through direct, competitive inhibition of thrombin, thus blocking the conversion of fibrinogen to fibrin during the coagulation cascade.

Rivaroxaban (Xarelto)

 

Indicated for treatment of PE and for prevention of recurrence (following initial 6 months of treatment).

Apixaban (Eliquis)

 

Indicated for treatment of PE and for prevention of recurrence (following initial 6 months of treatment).

Dabigatran (Pradaxa)

 

Dabigatran is indicated for treatment of DVT and PE in patients who have been treated with a parenteral anticoagulant for 5-10 days. It is also indicated to reduce the risk of recurrence of DVT and PE in patients who have been previously treated.

Edoxaban (Savaysa)

 

Edoxaban is a factor Xa inhibitor indicated for treatment of DVT and PE in patients who have been initially treated with a parenteral anticoagulant for 5-10 days.

Previous
 
Contributor Information and Disclosures
Author

Daniel R Ouellette, MD, FCCP Associate Professor of Medicine, Wayne State University School of Medicine; Chair of the Clinical Competency Committee, Pulmonary and Critical Care Fellowship Program, Senior Staff and Attending Physician, Division of Pulmonary and Critical Care Medicine, Henry Ford Health System; Chair, Guideline Oversight Committee, American College of Chest Physicians

Daniel R Ouellette, MD, FCCP is a member of the following medical societies: American College of Chest Physicians, Society of Critical Care Medicine, American Thoracic Society

Disclosure: Nothing to disclose.

Coauthor(s)

Nader Kamangar, MD, FACP, FCCP, FCCM Professor of Clinical Medicine, University of California, Los Angeles, David Geffen School of Medicine; Chief, Division of Pulmonary and Critical Care Medicine, Vice-Chair, Department of Medicine, Olive View-UCLA Medical Center

Nader Kamangar, MD, FACP, FCCP, FCCM is a member of the following medical societies: Academy of Persian Physicians, American Academy of Sleep Medicine, American Association for Bronchology and Interventional Pulmonology, American College of Chest Physicians, American College of Critical Care Medicine, American College of Physicians, American Lung Association, American Medical Association, American Thoracic Society, Association of Pulmonary and Critical Care Medicine Program Directors, Association of Specialty Professors, California Sleep Society, California Thoracic Society, Clerkship Directors in Internal Medicine, Society of Critical Care Medicine, Trudeau Society of Los Angeles, World Association for Bronchology and Interventional Pulmonology

Disclosure: Nothing to disclose.

Annie Harrington, MD Fellow in Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center

Annie Harrington, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Chest Physicians

Disclosure: Nothing to disclose.

Chief Editor

Zab Mosenifar, MD, FACP, FCCP Geri and Richard Brawerman Chair in Pulmonary and Critical Care Medicine, Professor and Executive Vice Chairman, Department of Medicine, Medical Director, Women's Guild Lung Institute, Cedars Sinai Medical Center, University of California, Los Angeles, David Geffen School of Medicine

Zab Mosenifar, MD, FACP, FCCP is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Federation for Medical Research, American Thoracic Society

Disclosure: Nothing to disclose.

Acknowledgements

Judith K Amorosa, MD, FACR Clinical Professor and Program Director, Department of Radiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School; Consulting Staff, Department of Radiology, Robert Wood Johnson University Hospital

Judith K Amorosa, MD, FACR is a member of the following medical societies: American College of Radiology, American Roentgen Ray Society, Association of University Radiologists, Radiological Society of North America, and Society of Thoracic Radiology

Disclosure: Nothing to disclose.

Michael S Beeson, MD, MBA, FACEP Professor of Emergency Medicine, Northeastern Ohio Universities College of Medicine and Pharmacy; Attending Faculty, Akron General Medical Center

Michael S Beeson, MD, MBA, FACEP is a member of the following medical societies: American College of Emergency Physicians, Council of Emergency Medicine Residency Directors, National Association of EMS Physicians, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Kavita Garg, MD Professor, Department of Radiology, University of Colorado School of Medicine

Kavita Garg, MD is a member of the following medical societies: American College of Radiology, American Roentgen Ray Society, Radiological Society of North America, and Society of Thoracic Radiology

Disclosure: Nothing to disclose.

Eugene C Lin, MD Attending Radiologist, Teaching Coordinator for Cardiac Imaging, Radiology Residency Program, Virginia Mason Medical Center; Clinical Assistant Professor of Radiology, University of Washington School of Medicine

Eugene C Lin, MD is a member of the following medical societies: American College of Nuclear Medicine, American College of Radiology, Radiological Society of North America, and Society of Nuclear Medicine

Disclosure: Nothing to disclose.

Robert E O'Connor, MD, MPH Professor and Chair, Department of Emergency Medicine, University of Virginia Health System

Robert E O'Connor, MD, MPH is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, American College of Physician Executives, American Heart Association, American Medical Association, Medical Society of Delaware, National Association of EMS Physicians, Society for Academic Emergency Medicine, and Wilderness Medical Society

Disclosure: Nothing to disclose.

Gary Setnik, MD Chair, Department of Emergency Medicine, Mount Auburn Hospital; Assistant Professor, Division of Emergency Medicine, Harvard Medical School

Gary Setnik, MD is a member of the following medical societies: American College of Emergency Physicians, National Association of EMS Physicians, and Society for Academic Emergency Medicine

Disclosure: SironaHealth Salary Management position; South Middlesex EMS Consortium Salary Management position; ProceduresConsult.com Royalty Other

Eric J Stern, MD Professor of Radiology, Adjunct Professor of Medicine, Adjunct Professor of Medical Education and Biomedical Informatics, Adjunct Professor of Global Health, Vice-Chair, Academic Affairs, University of Washington School of Medicine

Eric J Stern, MD is a member of the following medical societies: American Roentgen Ray Society, Association of University Radiologists, European Society of Radiology, Radiological Society of North America, and Society of Thoracic Radiology

Disclosure: Nothing to disclose.

Sara F Sutherland, MD, MBA, FACEP Assistant Professor of Emergency Medicine, University of Virginia Health System; Staff Physician, Department of Emergency Medicine, Martha Jefferson Hospital

Sara F Sutherland, MD, MBA, FACEP is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Gregory Tino, MD Director of Pulmonary Outpatient Practices, Associate Professor, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Medical Center and Hospital

Gregory Tino, MD is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, and American Thoracic Society

Disclosure: Nothing to disclose.

References
  1. Amesquita M, Cocchi MN, Donnino MW. Pulmonary Embolism Presenting as Flank Pain: A Case Series. J Emerg Med. 2009 Mar 26. [Medline].

  2. Carrascosa MF, Batán AM, Novo MF. Delirium and pulmonary embolism in the elderly. Mayo Clin Proc. 2009. 84(1):91-2. [Medline]. [Full Text].

  3. Tapson VF. Acute pulmonary embolism. N Engl J Med. 2008 Mar 6. 358(10):1037-52. [Medline].

  4. [Guideline] Qaseem A, Snow V, Barry P, Hornbake ER, Rodnick JE, Tobolic T, et al. Current diagnosis of venous thromboembolism in primary care: a clinical practice guideline from the American Academy of Family Physicians and the American College of Physicians. Ann Fam Med. 2007 Jan-Feb. 5 (1):57-62. [Medline]. [Full Text].

  5. [Guideline] Guyatt GH, Akl EA, Crowther M, Gutterman DD, Schuünemann HJ, American College of Chest Physicians Antithrombotic Therapy and Prevention of Thrombosis Panel. Executive summary: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012 Feb. 141 (2 Suppl):7S-47S. [Medline].

  6. Ozsu S, Oztuna F, Bulbul Y, et al. The role of risk factors in delayed diagnosis of pulmonary embolism. Am J Emerg Med. 2011 Jan. 29(1):26-32. [Medline].

  7. Kline JA, Runyon MS. Pulmonary embolism and deep venous thrombosis. In: Marx JA, Hockenberger RS, Walls RM, eds. Rosen's Emergency Medicine Concepts and Clinical Practice. 6th ed. 1368-1382. Vol 2.:

  8. Boyden EA. Segmental Anatomy of the Lungs: Study of the Patterns of the Segmental Bronchi and Related Pulmonary Vessels. New York, NY: McGraw-Hill; 1955:. 23-32.

  9. Mitchell RN, Kumar V. Hemodynamic disorders, thrombosis, and shock. In: Kumar V, Cotran RS, Robbins SL, eds. Basic Pathology. 6th ed. Philadelphia, Pa: WB Saunders; 1997:. 60-80.

  10. Wharton LR, Pierson JW. JAMA. Minor forms of pulmonary embolism after abdominal operations.

  11. Malek J, Rogers R, Kufera J, Hirshon JM. Venous thromboembolic disease in the HIV-infected patient. Am J Emerg Med. 2011 Mar. 29(3):278-82. [Medline].

  12. Geerts WH, Code KI, Jay RM, Chen E, Szalai JP. A prospective study of venous thromboembolism after major trauma. N Engl J Med. 1994 Dec 15. 331(24):1601-6. [Medline].

  13. van den Heuvel-Eibrink MM, Lankhorst B, Egeler RM, Corel LJ, Kollen WJ. Sudden death due to pulmonary embolism as presenting symptom of renal tumors. Pediatr Blood Cancer. 2008 May. 50(5):1062-4. [Medline].

  14. Arzt M, Luigart R, Schum C, Lüthje L, Stein A, Koper I, et al. Sleep-disordered breathing in deep vein thrombosis and acute pulmonary embolism. Eur Respir J. 2012 Oct. 40(4):919-24. [Medline].

  15. Stein PD, Beemath A, Matta F, Weg JG, Yusen RD, Hales CA, et al. Clinical characteristics of patients with acute pulmonary embolism: data from PIOPED II. Am J Med. 2007 Oct. 120(10):871-9. [Medline]. [Full Text].

  16. David M, Andrew M. Venous thromboembolic complications in children. J Pediatr. 1993 Sep. 123(3):337-46. [Medline].

  17. Biss TT, Brandão LR, Kahr WH, Chan AK, Williams S. Clinical features and outcome of pulmonary embolism in children. Br J Haematol. 2008 Sep. 142(5):808-18. [Medline].

  18. Nuss R, Hays T, Chudgar U, Manco-Johnson M. Antiphospholipid antibodies and coagulation regulatory protein abnormalities in children with pulmonary emboli. J Pediatr Hematol Oncol. 1997 May-Jun. 19(3):202-7. [Medline].

  19. Dollery CM. Pulmonary embolism in parenteral nutrition. Arch Dis Child. 1996 Feb. 74(2):95-8. [Medline]. [Full Text].

  20. Horlander KT, Mannino DM, Leeper KV. Pulmonary embolism mortality in the United States, 1979-1998: an analysis using multiple-cause mortality data. Arch Intern Med. 2003 Jul 28. 163(14):1711-7. [Medline].

  21. Burge AJ, Freeman KD, Klapper PJ, Haramati LB. Increased diagnosis of pulmonary embolism without a corresponding decline in mortality during the CT era. Clin Radiol. 2008 Apr. 63(4):381-6. [Medline].

  22. DeMonaco NA, Dang Q, Kapoor WN, Ragni MV. Pulmonary embolism incidence is increasing with use of spiral computed tomography. Am J Med. 2008 Jul. 121(7):611-7. [Medline]. [Full Text].

  23. Silverstein MD, Heit JA, Mohr DN, Petterson TM, O'Fallon WM, Melton LJ 3rd. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med. 1998 Mar 23. 158(6):585-93. [Medline].

  24. Heit JA. The epidemiology of venous thromboembolism in the community. Arterioscler Thromb Vasc Biol. 2008 Mar. 28(3):370-2. [Medline]. [Full Text].

  25. Sandler DA, Martin JF. Autopsy proven pulmonary embolism in hospital patients: are we detecting enough deep vein thrombosis?. J R Soc Med. 1989 Apr. 82(4):203-5. [Medline]. [Full Text].

  26. Kotsakis A, Cook D, Griffith L, Anton N, Massicotte P, MacFarland K, et al. Clinically important venous thromboembolism in pediatric critical care: a Canadian survey. J Crit Care. 2005 Dec. 20(4):373-80. [Medline].

  27. Van Ommen CH, Peters M. Acute pulmonary embolism in childhood. Thromb Res. 2006. 118(1):13-25. [Medline].

  28. Kabrhel C, Varraso R, Goldhaber SZ, Rimm E, Camargo CA Jr. Physical inactivity and idiopathic pulmonary embolism in women: prospective study. BMJ. 2011 Jul 4. 343:d3867. [Medline].

  29. Schneider D, Lilienfeld DE, Im W. The epidemiology of pulmonary embolism: racial contrasts in incidence and in-hospital case fatality. J Natl Med Assoc. 2006 Dec. 98(12):1967-72. [Medline]. [Full Text].

  30. Meyer G, Planquette B, Sanchez O. Long-term outcome of pulmonary embolism. Curr Opin Hematol. 2008 Sep. 15(5):499-503. [Medline].

  31. Bernstein D, Coupey S, Schonberg SK. Pulmonary embolism in adolescents. Am J Dis Child. 1986 Jul. 140(7):667-71. [Medline].

  32. Evans DA, Wilmott RW. Pulmonary embolism in children. Pediatr Clin North Am. 1994 Jun. 41(3):569-84. [Medline].

  33. Rajpurkar M, Warrier I, Chitlur M, Sabo C, Frey MJ, Hollon W, et al. Pulmonary embolism-experience at a single children's hospital. Thromb Res. 2007. 119(6):699-703. [Medline].

  34. Kuklina EV, Meikle SF, Jamieson DJ, Whiteman MK, Barfield WD, Hillis SD, et al. Severe obstetric morbidity in the United States: 1998-2005. Obstet Gynecol. 2009 Feb. 113(2 Pt 1):293-9. [Medline]. [Full Text].

  35. Worsley DF, Alavi A. Comprehensive analysis of the results of the PIOPED Study. Prospective Investigation of Pulmonary Embolism Diagnosis Study. J Nucl Med. 1995 Dec. 36(12):2380-7. [Medline].

  36. Cavallazzi R, Nair A, Vasu T, Marik PE. Natriuretic peptides in acute pulmonary embolism: a systematic review. Intensive Care Med. 2008 Dec. 34(12):2147-56. [Medline].

  37. Alonso-Martínez JL, Urbieta-Echezarreta M, Anniccherico-Sánchez FJ, Abínzano-Guillén ML, Garcia-Sanchotena JL. N-terminal pro-B-type natriuretic peptide predicts the burden of pulmonary embolism. Am J Med Sci. 2009 Feb. 337(2):88-92. [Medline].

  38. Vanni S, Viviani G, Baioni M, Pepe G, Nazerian P, Socci F, et al. Prognostic value of plasma lactate levels among patients with acute pulmonary embolism: the thrombo-embolism lactate outcome study. Ann Emerg Med. 2013 Mar. 61(3):330-8. [Medline].

  39. Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet. 1999 Apr 24. 353(9162):1386-9. [Medline].

  40. Wood KE. Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism. Chest. 2002 Mar. 121(3):877-905. [Medline].

  41. Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Massive pulmonary embolism. Circulation. 2006 Jan 31. 113(4):577-82. [Medline].

  42. [Guideline] Konstantinides SV, Torbicki A, Agnelli G, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014 Nov 14. 35 (43):3033-69, 3069a-3069k. [Medline].

  43. Vedovati MC, Becattini C, Agnelli G, Kamphuisen PW, Masotti L, Pruszczyk P, et al. MULTIDETECTOR COMPUTED TOMOGRAPHY FOR ACUTE PULMONARY EMBOLISM: EMBOLIC BURDEN AND CLINICAL OUTCOME. Chest. 2012 May 24. [Medline].

  44. Restrepo CS, Artunduaga M, Carrillo JA, Rivera AL, Ojeda P, Martinez-Jimenez S, et al. Silicone pulmonary embolism: report of 10 cases and review of the literature. J Comput Assist Tomogr. 2009 Mar-Apr. 33(2):233-7. [Medline].

  45. Vichinsky EP, Neumayr LD, Earles AN, Williams R, Lennette ET, Dean D, et al. Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group. N Engl J Med. 2000 Jun 22. 342(25):1855-65. [Medline].

  46. Douma RA, Mos IC, Erkens PM, Nizet TA, Durian MF, Hovens MM, et al. Performance of 4 clinical decision rules in the diagnostic management of acute pulmonary embolism: a prospective cohort study. Ann Intern Med. 2011 Jun 7. 154(11):709-18. [Medline].

  47. Stein PD, Hull RD, Patel KC, Olson RE, Ghali WA, Brant R, et al. D-dimer for the exclusion of acute venous thrombosis and pulmonary embolism: a systematic review. Ann Intern Med. 2004 Apr 20. 140(8):589-602. [Medline].

  48. Kearon C, Ginsberg JS, Douketis J, Turpie AG, Bates SM, Lee AY, et al. An evaluation of D-dimer in the diagnosis of pulmonary embolism: a randomized trial. Ann Intern Med. 2006 Jun 6. 144(11):812-21. [Medline].

  49. Geersing GJ, Erkens PM, Lucassen WA, Büller HR, Cate HT, Hoes AW, et al. Safe exclusion of pulmonary embolism using the Wells rule and qualitative D-dimer testing in primary care: prospective cohort study. BMJ. 2012 Oct 4. 345:e6564. [Medline]. [Full Text].

  50. Konstantinides S. Clinical practice. Acute pulmonary embolism. N Engl J Med. 2008 Dec 25. 359(26):2804-13. [Medline].

  51. Kline JA, Hogg MM, Courtney DM, Miller CD, Jones AE, Smithline HA, et al. D-dimer and exhaled CO2/O2 to detect segmental pulmonary embolism in moderate-risk patients. Am J Respir Crit Care Med. 2010 Sep 1. 182(5):669-75. [Medline]. [Full Text].

  52. Turedi S, Gunduz A, Mentese A, Topbas M, Karahan SC, Yeniocak S, et al. The value of ischemia-modified albumin compared with d-dimer in the diagnosis of pulmonary embolism. Respir Res. 2008 May 30. 9:49. [Medline]. [Full Text].

  53. Tick LW, Nijkeuter M, Kramer MH, Hovens MM, Büller HR, Leebeek FW, et al. High D-dimer levels increase the likelihood of pulmonary embolism. J Intern Med. 2008 Aug. 264(2):195-200. [Medline].

  54. Meyer T, Binder L, Hruska N, Luthe H, Buchwald AB. Cardiac troponin I elevation in acute pulmonary embolism is associated with right ventricular dysfunction. J Am Coll Cardiol. 2000 Nov 1. 36(5):1632-6. [Medline].

  55. Jiménez D, Uresandi F, Otero R, Lobo JL, Monreal M, Martí D, et al. Troponin-based risk stratification of patients with acute nonmassive pulmonary embolism: systematic review and metaanalysis. Chest. 2009 Oct. 136(4):974-82. [Medline].

  56. Becattini C, Vedovati MC, Agnelli G. Diagnosis and prognosis of acute pulmonary embolism: focus on serum troponins. Expert Rev Mol Diagn. 2008 May. 8(3):339-49. [Medline].

  57. Kline JA, Zeitouni R, Marchick MR, Hernandez-Nino J, Rose GA. Comparison of 8 biomarkers for prediction of right ventricular hypokinesis 6 months after submassive pulmonary embolism. Am Heart J. 2008 Aug. 156(2):308-14. [Medline].

  58. Aksay E, Yanturali S, Kiyan S. Can elevated troponin I levels predict complicated clinical course and inhospital mortality in patients with acute pulmonary embolism?. Am J Emerg Med. 2007 Feb. 25(2):138-43. [Medline].

  59. Dellas C, Lankeit M, Reiner C, Schäfer K, Hasenfuß G, Konstantinides S. BMI-independent inverse relationship of plasma leptin levels with outcome in patients with acute pulmonary embolism. Int J Obes (Lond). 2012 Mar 20. [Medline].

  60. Söhne M, Ten Wolde M, Boomsma F, Reitsma JB, Douketis JD, Büller HR. Brain natriuretic peptide in hemodynamically stable acute pulmonary embolism. J Thromb Haemost. 2006 Mar. 4(3):552-6. [Medline].

  61. Kucher N, Printzen G, Goldhaber SZ. Prognostic role of brain natriuretic peptide in acute pulmonary embolism. Circulation. 2003 May 27. 107(20):2545-7. [Medline].

  62. Klok FA, Mos IC, Huisman MV. Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. Am J Respir Crit Care Med. 2008 Aug 15. 178(4):425-30. [Medline].

  63. Scherz N, Labarère J, Méan M, Ibrahim SA, Fine MJ, Aujesky D. Prognostic importance of hyponatremia in patients with acute pulmonary embolism. Am J Respir Crit Care Med. 2010 Nov 1. 182(9):1178-83. [Medline]. [Full Text].

  64. Ready T. Pulmonary Emboli Overdiagnosed by CT Angiography. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/807439. Accessed: July 15, 2013.

  65. Wiener RS, Schwartz LM, Woloshin S. When a test is too good: how CT pulmonary angiograms find pulmonary emboli that do not need to be found. BMJ. 2013 Jul 2. 347:f3368. [Medline].

  66. [Guideline] Remy-Jardin M, Pistolesi M, Goodman LR, Gefter WB, Gottschalk A, Mayo JR, et al. Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner Society. Radiology. 2007 Nov. 245(2):315-29. [Medline].

  67. Patel S, Kazerooni EA. Helical CT for the evaluation of acute pulmonary embolism. AJR Am J Roentgenol. 2005 Jul. 185(1):135-49. [Medline].

  68. Stein PD, Woodard PK, Weg JG, Wakefield TW, Tapson VF, Sostman HD, et al. Diagnostic pathways in acute pulmonary embolism: recommendations of the PIOPED II Investigators. Radiology. 2007 Jan. 242(1):15-21. [Medline].

  69. [Guideline] Bettmann MA, Baginski SG, White RD, Woodard PK, Abbara S, Atalay MK, et al. ACR Appropriateness Criteria® acute chest pain--suspected pulmonary embolism. J Thorac Imaging. 2012 Mar. 27 (2):W28-31. [Medline].

  70. Ward MJ, Sodickson A, Diercks DB, Raja AS. Cost-effectiveness of lower extremity compression ultrasound in emergency department patients with a high risk of hemodynamically stable pulmonary embolism. Acad Emerg Med. 2011 Jan. 18(1):22-31. [Medline].

  71. Drescher FS, Chandrika S, Weir ID, et al. Effectiveness and acceptability of a computerized decision support system using modified Wells criteria for evaluation of suspected pulmonary embolism. Ann Emerg Med. 2011 Jun. 57(6):613-21. [Medline].

  72. Remy-Jardin M, Remy J, Deschildre F, Artaud D, Beregi JP, Hossein-Foucher C, et al. Diagnosis of pulmonary embolism with spiral CT: comparison with pulmonary angiography and scintigraphy. Radiology. 1996 Sep. 200(3):699-706. [Medline].

  73. Becattini C, Agnelli G, Vedovati MC, et al. Multidetector computed tomography for acute pulmonary embolism: diagnosis and risk stratification in a single test. Eur Heart J. 2011 Jul. 32(13):1657-63. [Medline].

  74. Henzler T, Roeger S, Meyer M, Schoepf UJ, Nance JW Jr, Haghi D, et al. Pulmonary embolism: CT signs and cardiac biomarkers for predicting right ventricular dysfunction. Eur Respir J. 2012 Apr. 39(4):919-26. [Medline].

  75. Gottschalk A, Stein PD, Sostman HD, Matta F, Beemath A. Very low probability interpretation of V/Q lung scans in combination with low probability objective clinical assessment reliably excludes pulmonary embolism: data from PIOPED II. J Nucl Med. 2007 Sep. 48(9):1411-5. [Medline].

  76. Gupta A, Frazer CK, Ferguson JM, Kumar AB, Davis SJ, Fallon MJ, et al. Acute pulmonary embolism: diagnosis with MR angiography. Radiology. 1999 Feb. 210(2):353-9. [Medline].

  77. Meaney JF, Weg JG, Chenevert TL, Stafford-Johnson D, Hamilton BH, Prince MR. Diagnosis of pulmonary embolism with magnetic resonance angiography. N Engl J Med. 1997 May 15. 336(20):1422-7. [Medline].

  78. Vanni S, Polidori G, Vergara R, Pepe G, Nazerian P, Moroni F, et al. Prognostic value of ECG among patients with acute pulmonary embolism and normal blood pressure. Am J Med. 2009 Mar. 122(3):257-64. [Medline].

  79. Boggs W. Bedside Echo Could Facilitate ER Diagnosis of Pulmonary Embolism. Medscape Medical News. Available at http://www.medscape.com/viewarticle/812942. Accessed: October 28, 2013.

  80. Dresden S, Mitchell P, Rahimi L, Leo M, Rubin-Smith J, Bibi S, et al. Right Ventricular Dilatation on Bedside Echocardiography Performed by Emergency Physicians Aids in the Diagnosis of Pulmonary Embolism. Ann Emerg Med. 2013 Sep 23. [Medline].

  81. Stein PD, Matta F. Thrombolytic therapy in unstable patients with acute pulmonary embolism: saves lives but underused. Am J Med. 2012 May. 125(5):465-70. [Medline].

  82. Stein PD, Matta F, Keyes DC, Willyerd GL. Impact of Vena Cava Filters on In-hospital Case Fatality Rate from Pulmonary Embolism. Am J Med. 2012 May. 125(5):478-84. [Medline].

  83. Chatterjee S, Chakraborty A, Weinberg I, Kadakia M, Wilensky RL, Sardar P, et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. JAMA. 2014 Jun 18. 311(23):2414-21. [Medline].

  84. Meyer G, Vicaut E, Danays T, Agnelli G, Becattini C, Beyer-Westendorf J, et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med. 2014 Apr 10. 370(15):1402-11. [Medline].

  85. Elliott CG. Fibrinolysis of pulmonary emboli--steer closer to Scylla. N Engl J Med. 2014 Apr 10. 370(15):1457-8. [Medline].

  86. Barclay L. Fibrinolysis for Pulmonary Embolism Effective but Risky. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/823427. Accessed: April 19, 2014.

  87. Aujesky D, Roy PM, Verschuren F, et al. Outpatient versus inpatient treatment for patients with acute pulmonary embolism: an international, open-label, randomised, non-inferiority trial. Lancet. 2011 Jul 2. 378(9785):41-8. [Medline].

  88. Büller HR, Prins MH, Lensin AW, Decousus H, Jacobson BF, Minar E, et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N Engl J Med. 2012 Apr 5. 366(14):1287-97. [Medline].

  89. Bauersachs R, Berkowitz SD, Brenner B, Buller HR, Decousus H, Gallus AS, et al. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2010 Dec 23. 363(26):2499-510. [Medline]. [Full Text].

  90. Cohen AT, Dobromirski M. The use of rivaroxaban for short- and long-term treatment of venous thromboembolism. Thromb Haemost. 2012 Jun. 107(6):1035-43. [Medline].

  91. Romualdi E, Donadini MP, Ageno W. Oral rivaroxaban after symptomatic venous thromboembolism: the continued treatment study (EINSTEIN-extension study). Expert Rev Cardiovasc Ther. 2011 Jul. 9(7):841-4. [Medline].

  92. Hughes S. Rivaroxaban Stands up to standard anticoagulation for VTE treatment. Medscape Medical News. December 13, 2012. [Full Text].

  93. Buller HR, on behalf of the EINSTEIN Investigators. Oral rivaroxaban for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN DVT and EINSTEIN PE studies [abstract 20]. Presented at: 54th Annual Meeting and Exposition of the American Society of Hematology; December 8, 2012; Atlanta, Ga. [Full Text].

  94. Agnelli G, Buller HR, Cohen A, Curto M, Gallus AS, Johnson M, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013 Aug 29. 369(9):799-808. [Medline]. [Full Text].

  95. Agnelli G, Buller HR, Cohen A, Curto M, Gallus AS, Johnson M, et al. Apixaban for extended treatment of venous thromboembolism. N Engl J Med. 2013 Feb 21. 368(8):699-708. [Medline]. [Full Text].

  96. Schulman S, Kearon C, Kakkar AK, Mismetti P, Schellong S, Eriksson H, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009 Dec 10. 361(24):2342-52. [Medline]. [Full Text].

  97. Schulman S, Kakkar AK, Goldhaber SZ, Schellong S, Eriksson H, Mismetti P, et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation. 2014 Feb 18. 129(7):764-72. [Medline].

  98. Büller HR, Décousus H, Grosso MA, Mercuri M, Middeldorp S, Prins MH, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013 Oct 10. 369(15):1406-15. [Medline]. [Full Text].

  99. Garcia D, Ageno W, Libby E. Update on the diagnosis and management of pulmonary embolism. Br J Haematol. 2005 Nov. 131(3):301-12. [Medline].

  100. Campbell IA, Bentley DP, Prescott RJ, Routledge PA, Shetty HG, Williamson IJ. Anticoagulation for three versus six months in patients with deep vein thrombosis or pulmonary embolism, or both: randomised trial. BMJ. 2007 Mar 31. 334(7595):674. [Medline]. [Full Text].

  101. Pinede L, Ninet J, Duhaut P, Chabaud S, Demolombe-Rague S, Durieu I, et al. Comparison of 3 and 6 months of oral anticoagulant therapy after a first episode of proximal deep vein thrombosis or pulmonary embolism and comparison of 6 and 12 weeks of therapy after isolated calf deep vein thrombosis. Circulation. 2001 May 22. 103(20):2453-60. [Medline].

  102. Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, et al. Management of Massive and Submassive Pulmonary Embolism, Iliofemoral Deep Vein Thrombosis, and Chronic Thromboembolic Pulmonary Hypertension: A Scientific Statement From the American Heart Association. Circulation. 2011 Apr 26. 123(16):1788-1830. [Medline]. [Full Text].

  103. Ballew KA, Philbrick JT, Becker DM. Vena cava filter devices. Clin Chest Med. 1995 Jun. 16(2):295-305. [Medline].

  104. Dempfle CE, Elmas E, Link A, et al. Endogenous plasma activated protein C levels and the effect of enoxaparin and drotrecogin alfa (activated) on markers of coagulation activation and fibrinolysis in pulmonary embolism. Crit Care. 2011 Jan 17. 15(1):R23. [Medline].

  105. Hippisley-Cox J, Coupland C. Development and validation of risk prediction algorithm (QThrombosis) to estimate future risk of venous thromboembolism: prospective cohort study. BMJ. 2011 Aug 16. 343:d4656. [Medline]. [Full Text].

  106. Boutitie F, Pinede L, Schulman S, Agnelli G, Raskob G, Julian J, et al. Influence of preceding length of anticoagulant treatment and initial presentation of venous thromboembolism on risk of recurrence after stopping treatment: analysis of individual participants' data from seven trials. BMJ. 2011 May 24. 342:d3036. [Medline]. [Full Text].

  107. [Guideline] Raja AS, Greenberg JO, Qaseem A, Denberg TD, Fitterman N, Schuur JD, et al. Evaluation of Patients With Suspected Acute Pulmonary Embolism: Best Practice Advice From the Clinical Guidelines Committee of the American College of Physicians. Ann Intern Med. 2015 Nov 3. 163 (9):701-11. [Medline].

  108. [Guideline] Fesmire FM, Brown MD, Espinosa JA, Shih RD, Silvers SM, Wolf SJ, et al. Critical issues in the evaluation and management of adult patients presenting to the emergency department with suspected pulmonary embolism. Ann Emerg Med. 2011 Jun. 57 (6):628-652.e75. [Medline].

  109. [Guideline] Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest. 2016 Feb. 149 (2):315-52. [Medline].

  110. [Guideline] James A, Committee on Practice Bulletins—Obstetrics. Practice bulletin no. 123: thromboembolism in pregnancy. Obstet Gynecol. 2011 Sep. 118 (3):718-29. [Medline].

  111. Wood S. FDA Approves Apixaban (Eliquis) for DVT/PE Treatment, Recurrences. Medscape. Aug 21 2014. [Full Text].

  112. Geerts WH, Bergqvist D, Pineo GF, Heit JA, Samama CM, Lassen MR, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008 Jun. 133(6 Suppl):381S-453S. [Medline].

 
Previous
Next
 
A large pulmonary artery thrombus in a hospitalized patient who died suddenly.
Pulmonary embolism was identified as the cause of death in a patient who developed shortness of breath while hospitalized for hip joint surgery. This is a close-up view.
Lung infarction secondary to pulmonary embolism occurs rarely.
Posteroanterior and lateral chest radiograph findings are normal, which is the usual finding in patients with pulmonary embolism.
High-probability perfusion lung scan shows segmental perfusion defects in the right upper lobe and subsegmental perfusion defects in right lower lobe, left upper lobe, and left lower lobe.
A normal ventilation scan will make the noted defects in the previous image a mismatch and, hence, a high-probability ventilation-perfusion scan.
Anterior views of perfusion and ventilation scans are shown here. A perfusion defect is present in the left lower lobe, but perfusion to this lobe is intact, making this a high-probability scan.
A segmental ventilation perfusion mismatch is evident in a left anterior oblique projection.
A pulmonary angiogram shows the abrupt termination of the ascending branch of the right upper-lobe artery, confirming the diagnosis of pulmonary embolism.
A chest radiograph with normal findings in a 64-year-old woman who presented with worsening breathlessness.
This perfusion scan shows bilateral perfusion defects. The ventilation scan findings were normal; therefore, these are mismatches, and this is a high-probability scan.
This ultrasonogram shows a thrombus in the distal superficial saphenous vein, which is under the artery.
A posteroanterior chest radiograph showing a peripheral wedge-shaped infiltrate caused by pulmonary infarction secondary to pulmonary embolism. Hampton hump is a rare and nonspecific finding. Courtesy of Justin Wong, MD.
Computed tomography angiogram in a 53-year-old man with acute pulmonary embolism. This image shows an intraluminal filling defect that occludes the anterior basal segmental artery of the right lower lobe. Also present is an infarction of the corresponding lung, which is indicated by a triangular, pleura-based consolidation (Hampton hump).
Computed tomography angiography in a young man who experienced acute chest pain and shortness of breath after a transcontinental flight. This image demonstrates a clot in the anterior segmental artery in the left upper lung (LA2) and a clot in the anterior segmental artery in the right upper lung (RA2).
Computed tomography angiogram in a 55-year-old man with possible pulmonary embolism. This image was obtained at the level of the lower lobes and shows perivascular segmental enlarged lymph nodes as well as prominent extraluminal soft tissue interposed between the artery and the bronchus.
Computed tomography venograms in a 65-year-old man with possible pulmonary embolism. This image shows acute deep venous thrombosis with intraluminal filling defects in the bilateral superficial femoral veins.
The pathophysiology of pulmonary embolism. Although pulmonary embolism can arise from anywhere in the body, most commonly it arises from the calf veins. The venous thrombi predominately originate in venous valve pockets (inset) and at other sites of presumed venous stasis. To reach the lungs, thromboemboli travel through the right side of the heart. RA, right atrium; RV, right ventricle; LA, left atrium; LV, left ventricle.
A spiral CT scan shows thrombus in bilateral main pulmonary arteries.
CT scan of the same chest depicted in Image 18. Courtesy of Justin Wong, MD.
Longitudinal ultrasound image of partially recanalized thrombus in the femoral vein at mid thigh.
Sequential images demonstrate treatment of iliofemoral deep venous thrombosis due to May-Thurner (Cockett) syndrome. Far left, view of the entire pelvis demonstrates iliac occlusion. Middle left, after 12 hours of catheter-directed thrombolysis, an obstruction at the left common iliac vein is evident. Middle right, after 24 hours of thrombolysis, a bandlike obstruction is seen; this is the impression made by the overlying right common iliac artery. Far left, after stent placement, image shows wide patency and rapid flow through the previously obstructed region. Note that the patient is in the prone position in all views. (Right and left are reversed.)
Lower-extremity venogram shows outlining of an acute deep venous thrombosis in the popliteal vein with contrast enhancement.
Lower-extremity venogram shows a nonocclusive chronic thrombus. The superficial femoral vein (lateral vein) has the appearance of 2 parallel veins, when in fact, it is 1 lumen containing a chronic linear thrombus. Although the chronic clot is not obstructive after it recanalizes, it effectively causes the venous valves to adhere in an open position, predisposing the patient to reflux in the involved segment.
Pulmonary embolus.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.