Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Idiopathic Pulmonary Fibrosis Follow-up

  • Author: Amanda M K Godfrey, MD; Chief Editor: Ryland P Byrd, Jr, MD  more...
 
Updated: Aug 11, 2015
 

Further Outpatient Care

The rate of decline and progression to death in patients with idiopathic pulmonary fibrosis may take several clinical forms, including slow physiologic deterioration with worsening severity of dyspnea, rapid deterioration and progression to death, or periods of relative stability interposed with periods of acute respiratory decline sometimes manifested by hospitalizations for respiratory failure.[13] Therefore, all patients with idiopathic pulmonary fibrosis should be seen by a pulmonologist on a regular basis for a complete history and physical examination. Patients must undergo disease-specific monitoring with serial assessments of lung physiology, gas exchange, exercise performance, and HRCT to further refine prognosis and management decisions. Patients must be asked about adverse medication effects.

Any patient with idiopathic pulmonary fibrosis who is a current smoker should be encouraged to quit and offered pharmacologic therapy if needed.

Vaccination against influenza and pneumococcal infection should be encouraged in all patients with idiopathic pulmonary fibrosis.

Patients with idiopathic pulmonary fibrosis should be evaluated for pulmonary rehabilitation and should be encouraged to participate in regular exercise to maintain a maximal degree of musculoskeletal conditioning.

Next

Further Inpatient Care

The clinical course of patients with idiopathic pulmonary fibrosis is generally marked by a decline in pulmonary function over time. Increasingly, patients have been recognized as having an acute, and often fatal, clinical deterioration, termed an acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF).

The following are diagnostic criteria for an AE-IPF:[58]

  • Previous or concurrent diagnosis of idiopathic pulmonary fibrosis
  • Unexplained worsening or development of dyspnea within 30 days
  • High-resolution computed tomography (HRCT) scan with new bilateral ground-glass abnormality and/or consolidation superimposed on a background reticular or honeycomb pattern consistent with a usual interstitial pneumonia pattern
  • Worsening hypoxemia from a known baseline arterial blood gas measurement
  • No evidence of pulmonary infection by endotracheal aspiration or bronchoalveolar lavage (BAL)
  • Exclusion of alternative causes, including left-sided heart failure, pulmonary embolism, and an identifiable cause of acute lung injury

Patients with idiopathic pulmonary fibrosis who develop an acute clinical deterioration often require hospitalization. These patients should undergo HRCT imaging of the chest to document the interval development of significant ground-glass opacities, which are suggestive of an AE-IPF. Additionally, a BAL should be completed to examine the possibility of infectious etiologies. Support with supplemental oxygen should be given to alleviate hypoxemia.[58]

Once infection has been acceptably ruled out and other alternative causes of the acute deterioration have been excluded, treatment with intravenous methylprednisolone (Solu-Medrol) at 2 mg/kg/d for 2 weeks followed by a prolonged taper can be given.[58] However, no randomized controlled trials support a particular therapy for an AE-IPF. If a patient with an AE-IPF develops respiratory failure and requires invasive mechanical ventilation, plateau pressures should be maintained at less than 30 cm water.[58] Patients with idiopathic pulmonary fibrosis who require mechanical ventilation have a poor prognosis.

In a retrospective review, of 461 patients with idiopathic pulmonary fibrosis, 20.8% of all subjects experienced an AE-IPF during the median follow-up period of 22.9 months. Approximately 50% of patients hospitalized for an AE-IPF died during the hospitalization. The 1-year and 5-year survival rates from the initial diagnosis of an AE-IPF were 56.2% and 18.4%, respectively.[59] Therefore, an acute exacerbation of idiopathic pulmonary fibrosis has a serious impact on the overall survival of patients with idiopathic pulmonary fibrosis.

Previous
Next

Transfer

Lung transplantation for idiopathic pulmonary fibrosis has been shown to confer a survival benefit over medical therapy. Any patient diagnosed with idiopathic pulmonary fibrosis or probable idiopathic pulmonary fibrosis should be referred to a lung transplantation center for lung transplant evaluation, regardless of the vital capacity unless contraindications for transplantation exist.[11]

Patients with idiopathic pulmonary fibrosis should be referred to institutions where they can be counseled regarding enrollment in a trial of an investigational agent for the treatment of idiopathic pulmonary fibrosis.

Previous
Next

Complications

The following are complications that can be seen in patients with idiopathic pulmonary fibrosis:

  • Pulmonary hypertension
  • Acute exacerbation of pulmonary fibrosis
  • Respiratory infection
  • Acute coronary syndrome
  • Thromboembolic disease
  • Adverse medication effects
  • Lung cancer
Previous
Next

Prognosis

A worse prognosis can be expected based on various clinical parameters, physiologic factors, radiographic findings, histopathologic findings, laboratory findings, and bronchoalveolar lavage findings. du Bois et al evaluated a scoring system to predict individual risk of mortality. They used a Cox proportional hazards model and data from two clinical trials (n = 1,099) to identify independent predictors of 1-year mortality among patients with IPF. The findings demonstrated that 4 readily ascertainable predictors (age, history of respiratory hospitalization within the previous 24 weeks, percent predicted FVC, and 24-week change in FVC) could be used in a scoring system to estimate 1-year mortality. However, this scoring system needs to be validated in other populations of patients with IPF.[60]

Ley et al used competing risks regression modeling to retrospectively screen potential predictors of mortality in a derivation cohort of patients with IPF (n = 228). They identified a model consisting of 4 predictors (sex, age, % predicted FVC, and % predicted DLCO). Based on these 4 predictors, they developed a simple point-score model and staging system that was retrospectively validated in a separate cohort of patients with IPF (n = 330).[61]

Table 1. Scoring for mortality risk in IPF. (Open Table in a new window)

  Predictor Points
Sex Female 0
Male 1
Age (years) ≥60 0
61-65 1
>65 2
FVC (% predicted) >75 0
50-75 1
< 50 2
DLCO (% predicted) >55 0
36-55 1
≤35 2
Cannot perform 3

 

Table 2. Staging and mortality risk for IPF. (Open Table in a new window)

Stage I II III
Points 0-3 4-5 6-8
Mortality      
1-year 5.6 16.2 39.2
2-year 10.9 29.9 62.1
3-year 16.3 42.1 76.8

 

The authors believe that the index and staging system provide clinicians with a framework for discussing prognosis, policy-makers with a tool for investigating stage-specific management options, and researchers with the ability to identify at-risk study populations that maximize the efficiency and power of clinical trials.[61]

Patients with idiopathic pulmonary fibrosis who have concomitant pulmonary hypertension have more dyspnea, greater impairment of their exercise capacity, and increased 1-year mortality compared with their counterparts without pulmonary hypertension.[5] Additionally, a multicenter prospective cohort study of 126 lung transplant procedures performed for idiopathic pulmonary fibrosis revealed elevated pulmonary artery pressure as a risk factor for primary graft dysfunction (PGD) following lung transplantation.[62] The mean pulmonary artery pressure (mPAP) for patients with PGD following lung transplantation was 38.5 ± 16.3 mm Hg compared with a mPAP of 29.6 ± 11.5 mm Hg in patients without PGD following lung transplantation.

Patients with IPF pattern on HRCT imaging have a worse prognosis compared with patients with biopsy-proven usual interstitial pneumonia and atypical changes of idiopathic pulmonary fibrosis on HRCT imaging.[30, 13]

Patients who have a greater than 10% decline in forced vital capacity (FVC) (percent predicted) over 6 months have a 2.4-fold increased risk of death. Additionally, in patients who do not desaturate to less than 88% during a 6-minute walk test (6MWT), the only strong predictor of mortality is a progressive decline in FVC (>10% after 6 mo).[31]

A baseline diffusion capacity of carbon monoxide (DLCO) below 35% is correlated with increased mortality. Additionally, a decline in DLCO greater than 15% over 1 year is also associated with increased mortality.[31]

Desaturation below the threshold of 88% during the 6MWT has been associated with an increased mortality.[31] Additionally, in patients with idiopathic pulmonary fibrosis who desaturate to less than 88% during a 6MWT, a progressive decline in DLCO (>15% after 6 mo) is a strong predictor of mortality.[9]

BAL fluid neutrophilia has been demonstrated to predict early mortality. One study demonstrated a linear relationship between increasing neutrophil percentage and the risk of mortality. Each doubling in baseline BAL fluid neutrophil percentage was associated with a 30% increased risk of death or transplantation in the first year after presentation.[36]

Serum surfactant protein A (SP-A) is a member of the collectin family. SP-A is secreted by type II pneumocytes, and the level of SP-A appears to be increased early after breakdown in the alveolar epithelium. SP-A has been shown to be present in abnormal amounts in the BAL fluid of patients with idiopathic pulmonary fibrosis.[63] In a cohort study, after controlling for known clinical predictors of mortality, each increase of 49 ng/mL in baseline serum SP-A level was associated with a 3.3-fold increased risk of mortality in the first year after presentation.[63] Therefore, serum SP-A is independently and strongly associated with death or lung transplantation 1 year after presentation.[63]

Previous
Next

Patient Education

Patients should be presented information regarding the full range of options available for treating idiopathic pulmonary fibrosis. The pros, cons, risks, benefits, and alternatives should be discussed in a balanced and comprehensive fashion. For patient education resources, see the Lung and Airway Center.

Previous
 
Contributor Information and Disclosures
Author

Amanda M K Godfrey, MD Associate Staff, Department of Internal Medicine, IHA Pulmonary, Critical Care, and Sleep Consultants; Associate Staff, Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, St Joseph Mercy Ann Arbor

Amanda M K Godfrey, MD is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Medical Association, American Thoracic Society, Michigan State Medical Society

Disclosure: Nothing to disclose.

Coauthor(s)

Daniel R Ouellette, MD, FCCP Associate Professor of Medicine, Wayne State University School of Medicine; Chair of the Clinical Competency Committee, Pulmonary and Critical Care Fellowship Program, Senior Staff and Attending Physician, Division of Pulmonary and Critical Care Medicine, Henry Ford Health System; Chair, Guideline Oversight Committee, American College of Chest Physicians

Daniel R Ouellette, MD, FCCP is a member of the following medical societies: American College of Chest Physicians, Society of Critical Care Medicine, American Thoracic Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Daniel R Ouellette, MD, FCCP Associate Professor of Medicine, Wayne State University School of Medicine; Chair of the Clinical Competency Committee, Pulmonary and Critical Care Fellowship Program, Senior Staff and Attending Physician, Division of Pulmonary and Critical Care Medicine, Henry Ford Health System; Chair, Guideline Oversight Committee, American College of Chest Physicians

Daniel R Ouellette, MD, FCCP is a member of the following medical societies: American College of Chest Physicians, Society of Critical Care Medicine, American Thoracic Society

Disclosure: Nothing to disclose.

Chief Editor

Ryland P Byrd, Jr, MD Professor of Medicine, Division of Pulmonary Disease and Critical Care Medicine, James H Quillen College of Medicine, East Tennessee State University

Ryland P Byrd, Jr, MD is a member of the following medical societies: American College of Chest Physicians, American Thoracic Society

Disclosure: Nothing to disclose.

Additional Contributors

Stephen P Peters, MD, PhD, FACP, FAAAAI, FCCP, FCPP Thomas H Davis Chair in Pulmonary Medicine, Chief, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Professor of Internal Medicine, Pediatrics, and Translational Science, Associate Director, Center for Genomics and Personalized Medicine Research, Wake Forest University School of Medicine; Executive Director of the Respiratory Service Line, Wake Forest Baptist Medical Center

Stephen P Peters, MD, PhD, FACP, FAAAAI, FCCP, FCPP is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association of Immunologists, American College of Chest Physicians, American College of Physicians, American Federation for Medical Research, American Thoracic Society, Sigma Xi

Disclosure: Serve(d) as a speaker or a member of a speakers bureau for: Integrity CE, Merck<br/>Received income in an amount equal to or greater than $250 from: – Array Biopharma, AstraZeneca, Aerocrine, Airsonett AB, Boehringer-Ingelheim, Experts in Asthma, Gilead, GlaxoSmithKline, Merck, Novartis, Ono Pharmaceuticals, Pfizer, PPD Development, Quintiles, Sunovion, Saatchi & Saatichi, Targacept, TEVA, Theron.

Acknowledgements

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous authors, Rajesh G. Patel, MD, and Javier I. Diaz, MD, to the development and writing of this article.

References
  1. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management. Am J Respir Crit Care Med. 2011 Mar 15. 183(6):788-824. [Medline].

  2. Hand L. FDA Approves Ofev and Esbriet for Idiopathic Pulmonary Fibrosis. Medscape Medical News. Available at http://www.medscape.com/viewarticle/833307. Accessed: October 15, 2014.

  3. FDA approves Ofev to treat idiopathic pulmonary fibrosis. U.S. Food and Drug Administration. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm418994.htm. Accessed: October 15, 2014.

  4. FDA approves Esbriet to treat idiopathic pulmonary fibrosis. U.S. Food and Drug Administration. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm418991.htm. Accessed: October 15, 2014.

  5. Frankel SK, Schwarz MI. Update in idiopathic pulmonary fibrosis. Curr Opin Pulm Med. 2009 Sep. 15(5):463-9. [Medline].

  6. Patel NM, Lederer DJ, Borczuk AC, Kawut SM. Pulmonary hypertension in idiopathic pulmonary fibrosis. Chest. 2007 Sep. 132(3):998-1006. [Medline].

  7. Fishman A, Elias J, Fishman J, Grippi M, Senior R, Pack A. Idiopathic Pulmonary Fibrosis. Fishman AP. Fishman's Pulmonary Diseases and Disorders. 4th ed. The McGraw-Hill Companies, Inc.; 2008. Vol 1: 1143-60.

  8. Martinez FJ, Flaherty K. Pulmonary function testing in idiopathic interstitial pneumonias. Proc Am Thorac Soc. 2006 Jun. 3(4):315-21. [Medline]. [Full Text].

  9. Flaherty KR, Andrei AC, Murray S, et al. Idiopathic pulmonary fibrosis: prognostic value of changes in physiology and six-minute-walk test. Am J Respir Crit Care Med. 2006 Oct 1. 174(7):803-9. [Medline]. [Full Text].

  10. Misumi S, Lynch DA. Idiopathic pulmonary fibrosis/usual interstitial pneumonia: imaging diagnosis, spectrum of abnormalities, and temporal progression. Proc Am Thorac Soc. 2006 Jun. 3(4):307-14. [Medline].

  11. Orens JB, Estenne M, Arcasoy S, et al. International guidelines for the selection of lung transplant candidates: 2006 update--a consensus report from the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2006 Jul. 25(7):745-55. [Medline].

  12. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med. 2002 Jan 15. 165(2):277-304. [Medline].

  13. Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011 Feb 15. 183(4):431-40. [Medline].

  14. Kim DS, Collard HR, King TE Jr. Classification and natural history of the idiopathic interstitial pneumonias. Proc Am Thorac Soc. 2006 Jun. 3(4):285-92. [Medline]. [Full Text].

  15. Visscher DW, Myers JL. Histologic spectrum of idiopathic interstitial pneumonias. Proc Am Thorac Soc. 2006 Jun. 3(4):322-9. [Medline].

  16. Verma S, Slutsky AS. Idiopathic pulmonary fibrosis--new insights. N Engl J Med. 2007 Mar 29. 356(13):1370-2. [Medline].

  17. Harari S, Caminati A. IPF: new insight on pathogenesis and treatment. Allergy. 2010 May. 65(5):537-53. [Medline].

  18. Thannickal VJ, Horowitz JC. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc. 2006 Jun. 3(4):350-6. [Medline]. [Full Text].

  19. Maher TM, Evans IC, Bottoms SE, Mercer PF, Thorley AJ, Nicholson AG. Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010 Jul 1. 182(1):73-82. [Medline].

  20. Armanios MY, Chen JJ, Cogan JD, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007 Mar 29. 356(13):1317-26. [Medline].

  21. Seibold MA, Wise AL, Speer MC, Steele MP, Brown KK, Loyd JE. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. 2011 Apr 21. 364(16):1503-12. [Medline].

  22. Wang XM, Zhang Y, Kim HP, et al. Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med. 2006 Dec 25. 203(13):2895-906. [Medline]. [Full Text].

  23. Fernandez Perez ER, Daniels CE, Schroeder DR, et al. Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: a population-based study. Chest. 2010 Jan. 137(1):129-37. [Medline]. [Full Text].

  24. Olson AL, Swigris JJ, Lezotte DC, Norris JM, Wilson CG, Brown KK. Mortality from pulmonary fibrosis increased in the United States from 1992 to 2003. Am J Respir Crit Care Med. 2007 Aug 1. 176(3):277-84. [Medline].

  25. Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2006 Oct 1. 174(7):810-6. [Medline].

  26. Antoniou KM, Hansell DM, Rubens MB, et al. Idiopathic pulmonary fibrosis: outcome in relation to smoking status. Am J Respir Crit Care Med. 2008 Jan 15. 177(2):190-4. [Medline].

  27. Lancaster LH, Mason WR, Parnell JA, et al. Obstructive sleep apnea is common in idiopathic pulmonary fibrosis. Chest. 2009 Sep. 136(3):772-8. [Medline]. [Full Text].

  28. Lawson WE, Loyd JE. The genetic approach in pulmonary fibrosis: can it provide clues to this complex disease?. Proc Am Thorac Soc. 2006 Jun. 3(4):345-9. [Medline]. [Full Text].

  29. Wootton SC, Kim DS, Kondoh Y, et al. Viral infection in acute exacerbation of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011 Jun 15. 183(12):1698-702. [Medline]. [Full Text].

  30. Flaherty KR, Thwaite EL, Kazerooni EA, et al. Radiological versus histological diagnosis in UIP and NSIP: survival implications. Thorax. 2003 Feb. 58(2):143-8. [Medline]. [Full Text].

  31. Tzilas V, Koti A, Papandrinopoulou D, Tsoukalas G. Prognostic factors in idiopathic pulmonary fibrosis. Am J Med Sci. 2009 Dec. 338(6):481-5. [Medline].

  32. du Bois RM, Weycker D, Albera C, Bradford WZ, Costabel U, Kartashov A, et al. Forced vital capacity in patients with idiopathic pulmonary fibrosis: test properties and minimal clinically important difference. Am J Respir Crit Care Med. 2011 Dec 15. 184(12):1382-9. [Medline].

  33. Swigris JJ, Swick J, Wamboldt FS, et al. Heart rate recovery after 6-min walk test predicts survival in patients with idiopathic pulmonary fibrosis. Chest. 2009 Sep. 136(3):841-8. [Medline]. [Full Text].

  34. Bois RM, Weycker D, Albera C, et al. Six-minute-walk test in idiopathic pulmonary fibrosis: test validation and minimal clinically important difference. Am J Respir Crit Care Med. 2011 May 1. 183(9):1231-7. [Medline].

  35. Ohshimo S, Bonella F, Cui A, et al. Significance of bronchoalveolar lavage for the diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009 Jun 1. 179(11):1043-7. [Medline].

  36. Kinder BW, Brown KK, Schwarz MI, Ix JH, Kervitsky A, King TE Jr. Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. Chest. 2008 Jan. 133(1):226-32. [Medline].

  37. Lee JS, Ryu JH, Elicker BM, Lydell CP, Jones KD, Wolters PJ, et al. Gastroesophageal reflux therapy is associated with longer survival in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011 Dec 15. 184(12):1390-4. [Medline].

  38. [Guideline] Pullen LC. Idiopathic pulmonary fibrosis: new guidelines released. Medscape Medical News. WebMD Inc. Available at http://www.medscape.com/viewarticle/848220. July 17,2015;

  39. Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med. 2015 Jul 15. 192 (2):e3-e19. [Medline].

  40. Kozower BD, Meyers BF, Smith MA, et al. The impact of the lung allocation score on short-term transplantation outcomes: a multicenter study. J Thorac Cardiovasc Surg. 2008 Jan. 135(1):166-71. [Medline].

  41. Weiss ES, Allen JG, Merlo CA, Conte JV, Shah AS. Survival after single versus bilateral lung transplantation for high-risk patients with pulmonary fibrosis. Ann Thorac Surg. 2009 Nov. 88(5):1616-25; discussion 1625-6. [Medline].

  42. Behr J, Kolb M, Cox G. Treating IPF--all or nothing? A PRO-CON debate. Respirology. 2009 Nov. 14(8):1072-81. [Medline].

  43. Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005 Nov 24. 353(21):2229-42. [Medline].

  44. Prednisone, Azathioprine, and N-Acetylcysteine for Pulmonary Fibrosis. N Engl J Med. 2012 May 20. [Medline].

  45. National Heart, Lung, and Blood Institute. Clinical Alert: Commonly Used Three-Drug Regimen for Pulmonary Fibrosis Found Harmful. NIH Stops One Treatment Arm of Trial; Other Two Treatments to Continue. National Institutes of Health. October 21, 2011. Available at http://www.nlm.nih.gov/databases/alerts/2011_nhlbi_ifp.html.

  46. Raghu G, Brown KK, Bradford WZ, et al. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2004 Jan 8. 350(2):125-33. [Medline].

  47. Raghu G, Brown KK, Costabel U, et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med. 2008 Nov 1. 178(9):948-55. [Medline].

  48. King TE Jr, Albera C, Bradford WZ, et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet. 2009 Jul 18. 374(9685):222-8. [Medline].

  49. King TE Jr, Behr J, Brown KK, et al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2008 Jan 1. 177(1):75-81. [Medline].

  50. The Idiopathic Pulmonary Fibrosis Clinical Research Network, Zisman DA, Schwarz M, Anstrom KJ, Collard HR, Flaherty KR. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010 Aug 12. 363(7):620-8. [Medline].

  51. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014 May 29. 370(22):2071-82. [Medline].

  52. Richeldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 365:1079-1087.

  53. Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011 May 21. 377(9779):1760-9. [Medline].

  54. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014 May 29. 370(22):2083-92. [Medline].

  55. Azuma A, Nukiwa T, Tsuboi E, et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2005 May 1. 171(9):1040-7. [Medline].

  56. Taniguchi H, Ebina M, Kondoh Y, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2010 Apr. 35(4):821-9. [Medline].

  57. Esbriet® (pirfenidone). InterMune. Available at http://www.intermune.com/pirfenidone. Accessed: May 3, 2014.

  58. Hyzy R, Huang S, Myers J, Flaherty K, Martinez F. Acute exacerbation of idiopathic pulmonary fibrosis. Chest. 2007 Nov. 132(5):1652-8. [Medline].

  59. Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J. 2011 Feb. 37(2):356-63. [Medline].

  60. du Bois RM, Weycker D, Albera C, Bradford WZ, Costabel U, Kartashov A, et al. Ascertainment of individual risk of mortality for patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011 Aug 15. 184(4):459-66. [Medline].

  61. Ley B, Ryerson CJ, Vittinghoff E, et al. A Multidimensional Index and Staging System for Idiopathic Pulmonary Fibrosis. Annals of Internal Medicine. 2012/05. 156:684-691.

  62. Fang A, Studer S, Kawut SM, Ahya VN, Lee J, Wille K. Elevated Pulmonary Artery Pressure Is a Risk Factor for Primary Graft Dysfunction Following Lung Transplantation for Idiopathic Pulmonary Fibrosis. Chest. 2011 Apr. 139(4):782-787. [Medline].

  63. Kinder BW, Brown KK, McCormack FX, et al. Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis. Chest. 2009 Jun. 135(6):1557-63. [Medline]. [Full Text].

  64. Daniels CE, Lasky JA, Limper AH, Mieras K, Gabor E, Schroeder DR. Imatinib treatment for idiopathic pulmonary fibrosis: Randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010 Mar 15. 181(6):604-10. [Medline].

  65. Noth I, Anstrom KJ, Calvert SB, de Andrade J, Flaherty KR, Glazer C. A Placebo-Controlled Randomized Trial of Warfarin in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2012 Jul 1. 186(1):88-95. [Medline].

  66. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med. 2000 Feb. 161(2 Pt 1):646-64. [Medline].

  67. Henderson D. High-resolution CT can identify IPF without lung biopsy. Medscape Medical News. February 19, 2014. Available at http://www.medscape.com/viewarticle/820810. Accessed: February 24, 2014.

  68. Patel AS, Siegert RJ, Brignall K, Gordon P, Steer S, Desai SR. The development and validation of the King's Brief Interstitial Lung Disease (K-BILD) health status questionnaire. Thorax. 2012 May 3. [Medline].

  69. Raghu G, Lynch D, Godwin JD, et al. Diagnosis of idiopathic pulmonary fibrosis with high-resolution CT in patients with little or no radiological evidence of honeycombing: secondary analysis of a randomised, controlled trial. Lancet Respir Med. 2014 Feb.

 
Previous
Next
 
Chest radiograph of a patient with idiopathic pulmonary fibrosis showing bilateral lower lobe reticular opacities (red circles).
Classic subpleural honeycombing (red circle) in a patient with a diagnosis of idiopathic pulmonary fibrosis.
A patient with IPF and a confirmed histologic diagnosis of usual interstitial pneumonia. Note the reticular opacities (red circle) distributed in both lung bases and the minimal ground-glass opacities (blue circle).
A patient with nonspecific interstitial pneumonia. Note the predominance of ground-glass opacities (blue circles) and a few reticular lines (red arrow).
Patchwork distribution of abnormalities in a classic example of usual interstitial pneumonia (low-magnification photomicrograph; hematoxylin and eosin stain; original magnification, X4). Courtesy of Chad Stone, MD.
Table 1. Scoring for mortality risk in IPF.
  Predictor Points
Sex Female 0
Male 1
Age (years) ≥60 0
61-65 1
>65 2
FVC (% predicted) >75 0
50-75 1
< 50 2
DLCO (% predicted) >55 0
36-55 1
≤35 2
Cannot perform 3
Table 2. Staging and mortality risk for IPF.
Stage I II III
Points 0-3 4-5 6-8
Mortality      
1-year 5.6 16.2 39.2
2-year 10.9 29.9 62.1
3-year 16.3 42.1 76.8
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.