Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Upper Respiratory Tract Infection Medication

  • Author: Anne Meneghetti, MD; Chief Editor: Zab Mosenifar, MD, FACP, FCCP  more...
 
Updated: Jun 06, 2016
 

Medication Summary

Therapy addressing specific symptoms is the mainstay for most upper respiratory infections (URIs). Most URIs are self-limited viral infections that resolve without prescription drugs.

Recognizing viral and bacterial diseases for which specific therapy is available is important. Awareness of local trends in prevalent organisms and local resistance patterns is key. Antibacterial therapy is appropriate for patients with any of the following:

  • Group A streptococcal pharyngitis
  • Bacterial sinusitis
  • Epiglottitis
  • Pertussis
  • Diphtheria

Antibiotics used in group A streptococcal infection are as follows:

  • Penicillin VK (Penicillin V)
  • Amoxicillin (Amoxil, Moxatag, Trimox)
  • Penicillin G benzathine (Bicillin LA, Permapen)
  • Cefadroxil (Duricef)
  • Erythromycin (E.E.S., Erythrocin, E-Mycin, Eryc)
  • Amoxicillin and clavulanate (Augmentin, Augmentin XR)
  • Cefaclor (Ceclor)
  • Cefuroxime (Ceftin)
  • Ceftriaxone (Rocephin)
  • Azithromycin (Zithromax)

Antibiotics used in epiglottitis are as follows:

  • Cefuroxime (Ceftin)
  • Ceftriaxone (Rocephin)
  • Cefotaxime (Claforan)

Antibiotics used in pertussis are as follows:

  • Clarithromycin (Biaxin)
  • Erythromycin (E-Mycin, Erythrocin, Eryc, Ery-Tab, E.E.S.)
  • Azithromycin (Zithromax)

Antibiotics used in acute bacterial rhinosinusitis are as follows:

  • Amoxicillin/clavulanate
  • Doxycycline

Patients with herpes simplex virus (HSV) infection or gonococcal upper airway disease also benefit from specific treatment. In immunocompromised patients, treatment of respiratory syncytial virus (RSV) and cytomegalovirus infections may be appropriate, especially if lower airway disease is suspected.

In general, antivirals do not provide clinical benefits in persons with viral pharyngitis. However, in patients who are immunocompromised, antivirals have a role in treating illness that might progress. Acyclovir, famciclovir, and valacyclovir are recommended for patients with severe HSV pharyngitis and for immunocompromised patients. Foscarnet or ganciclovir are recommended for the treatment of cytomegalovirus infections (CMV) in immunocompromised patients.

Cough and cold medicines should be used with caution in children younger than 2 years because serious adverse reactions and fatalities have occurred with over-the-counter preparations.[51] In 2008, the Consumer Healthcare Products Association modified many over-the-counter cough and cold product labels to state "do not use" in children younger than 4 years.[52]

Next

Penicillins, Natural

Class Summary

Penicillins are highly active against gram-positive organisms. Their bactericidal activity is the result of interfering with bacterial cell wall synthesis

Penicillin VK (Penicillin V)

 

Penicillin is the antimicrobial agent of choice for treatment of group A streptococcal pharyngitis. It is indicated for the treatment of infections caused by susceptible organisms involving the respiratory tract.

Penicillin G benthazine (Bicillin LA, Permapen)

 

Penicillin is the antimicrobial agent of choice for treatment of group A streptococcal pharyngitis. It is indicated for the prophylaxis or treatment of mild to moderately severe upper respiratory tract infections caused by organisms susceptible to low concentrations of penicillin G.

Previous
Next

Penicillins, Amino

Class Summary

Penicillins inhibit bacterial cell wall synthesis by binding to penicillin-binding proteins.

Ampicillin (Ampi, Omnipen, Penglobe, Principen)

 

Ampicillin is a second-generation penicillin that is active against many strains of Escherichia coli, Proteus mirabilis, Salmonella, Shigella, and Haemophilus influenzae. It is available in oral and injection forms.

Amoxicillin (Amoxil, Moxatag, Trimox)

 

Amoxicillin is the equivalent of penicillin for bacteriologic eradication of group A streptococcal infection from the tonsillopharynx. It is also appropriate for uncomplicated bacterial rhinosinusitis. It is further indicated for the treatment of otitis media, sinusitis, and infections caused by susceptible organisms involving the upper and lower respiratory tract.

Amoxicillin/clavulanate (Augmentin, Augmentin XR, Augmentin ES-600)

 

Amoxicillin inhibits bacterial cell wall synthesis by binding to penicillin-binding proteins. The addition of clavulanate inhibits beta-lactamase producing bacteria. This combination is a good alternative for patients allergic to or intolerant of macrolide antibiotics. It is usually well tolerated and provides good coverage of most infectious agents, but it is not effective against Mycoplasma and Legionella species.

The half-life of oral amoxicillin/clavulanate is 1-1.3 hours. Amoxicillin has good tissue penetration but does not enter the cerebrospinal fluid.

For children over 3 months, base dosing on the amoxicillin content. Due to different amoxicillin/clavulanic acid ratios in 250-mg tablets (250/125) vs 250-mg chewable tablets (250/62.5), do not use the 250-mg tablet until the child weighs over 40 kg.

Previous
Next

Cephalosporins, First Generation

Class Summary

First-generation cephalosporins are active mainly against gram-positive bacteria. They inhibit bacterial cell wall synthesis by binding to penicillin-binding proteins and eventually cause the bacteria to lyse.

Cefadroxil (Duricef, Ultracef)

 

Cefadroxil is indicated for the treatment of susceptible bacterial infections, including those caused by group A beta-hemolytic Streptococcus.

Previous
Next

Cephalosporins, Second Generation

Class Summary

The second-generation cephalosporins are less active against gram-positive bacteria than the first-generation agents are and are more active against certain gram-negative bacteria. Cephalosporins bind to penicillin-binding proteins and inhibit the final transpeptidation step of peptidoglycan synthesis, resulting in bacterial cell wall death.

Cefaclor (Ceclor)

 

Cefaclor is a second-generation cephalosporin that binds to 1 or more of the penicillin-binding proteins, which, in turn, inhibits cell wall synthesis and results in bactericidal activity. It has the gram-positive activity that first-generation cephalosporins have and adds activity against P mirabilis, H influenzae, E coli, Klebsiella pneumoniae, and Moraxella catarrhalis.

This agent is indicated for management of infections caused by susceptible mixed aerobic-anaerobic microorganisms. Determine the proper dosage and route based on the condition of the patient, the severity of the infection, and the susceptibility of the causative organism.

Cefuroxime (Ceftin)

 

Cefuroxime is a second-generation cephalosporin that maintains the gram-positive activity of first-generation cephalosporins and adds activity against P mirabilis, H influenzae, E coli, K pneumoniae, and M catarrhalis.

This agent binds to penicillin-binding proteins and inhibits the final transpeptidation step of peptidoglycan synthesis, resulting in bacterial cell wall death. The condition of the patient, the severity of the infection, and the susceptibility of the microorganism determine the proper dose and route of administration. Cefuroxime resists degradation by beta lactamase.

Previous
Next

Cephalosporins, Third Generation

Class Summary

Third-generation cephalosporins are less active against gram-positive organisms compared with first-generation cephalosporins. They are highly active against Enterobacteriaceae, Neisseria, and H influenzae.

Cefotaxime (Claforan)

 

Cefotaxime is a third-generation cephalosporin with a broad gram-negative spectrum, lower efficacy against gram-positive organisms, and higher efficacy against resistant organisms. It arrests bacterial cell wall synthesis by binding to 1 or more penicillin-binding proteins, which, in turn, inhibits bacterial growth. Its safety profile is more favorable than that of aminoglycosides.

Previous
Next

Macrolides

Class Summary

Macrolides are appropriate for the treatment of group A streptococcal infection in patients with penicillin sensitivity. They are also used for some cases of rhinosinusitis, pertussis, and diphtheria. Macrolides block transpeptidation by binding to the 50S ribosome. They also inhibit RNA-dependent protein synthesis.

Erythromycin (E.E.S., Erythrocin, E-Mycin, Eryc)

 

Erythromycin covers most potential etiologic agents in rhinosinusitis, including Mycoplasma species; however, it is less active against H influenzae. It inhibits bacterial growth, possibly by blocking dissociation of peptidyl transfer ribonucleic acid (tRNA) from ribosomes, causing RNA-dependent protein synthesis to arrest. It is indicated for treatment of staphylococcal and streptococcal infections. This agent has the added advantage of being a good anti-inflammatory agent by inhibiting migration of polymorphonuclear leukocytes.

In children, the patient's age and weight and the severity of the infection determine proper dosage. When twice-daily dosing is desired, half the total daily dose may be taken every 12 hours. For more severe infections, double the dose. The recommended dosing schedule of erythromycin may result in gastrointestinal upset. Patients may require an alternative macrolide or a change to 3-times-daily dosing. Although the standard course of treatment seems to be 10 days, treating until the patient has been afebrile for 3-5 days seems more rational.

Azithromycin (Zithromax)

 

Azithromycin acts by binding to the 50S ribosomal subunit of susceptible microorganisms and blocks dissociation of peptidyl tRNA from ribosomes, causing RNA-dependent protein synthesis to arrest. Nucleic acid synthesis is not affected.

This agent concentrates in phagocytes and fibroblasts, as demonstrated by in vitro incubation techniques. In vivo studies suggest that the concentration in phagocytes may contribute to drug distribution to inflamed tissues.

Azithromycin is used for the treatment of mild to moderate microbial infections, including group A streptococcal infection and pertussis. Plasma concentrations are very low, but tissue concentrations are much higher, giving it value in treating intracellular organisms. It has a long tissue half-life.

The US Food and Drug Administration (FDA) has warned that azithromycin may lead to QT interval prolongation and torsades de pointes. The FDA notes that "health care professionals should consider the risk of fatal heart rhythms with azithromycin when considering treatment options for patients who are already at risk for cardiovascular events." These include patients with known QT interval prolongation, torsades de pointes, congenital long QT syndrome, bradyarrhythmias, or uncompensated heart failure.[72]

Clarithromycin (Biaxin)

 

Clarithromycin is a semisynthetic macrolide antibiotic that reversibly binds to the P site of the 50S ribosomal subunit of susceptible organisms and may inhibit RNA-dependent protein synthesis by stimulating dissociation of peptidyl t-RNA from ribosomes, causing bacterial growth inhibition.

Previous
Next

Analgesics, Other

Class Summary

These agents reduce pain and fever.

Acetaminophen (Tylenol, Feverall, Tempra)

 

Acetaminophen is the drug of choice for pain relief in patients with documented hypersensitivity to aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs), who have upper gastrointestinal disease, or who are taking oral anticoagulants. It reduces fever by directly acting on hypothalamic heat-regulating centers, increasing dissipation of body heat by means of vasodilation and sweating.

Previous
Next

NSAIDs

Class Summary

Nonsteroidal anti-inflammatory drugs (NSAIDs) are reversible inhibitors of cyclo-oxygenase–1 (COX-1) and COX-2 enzymes, which results in decreased formation of prostaglandin precursors. NSAIDs have antipyretic, analgesic, and anti-inflammatory properties.

NSAIDs typically contain a black-box warning about an increased risk of adverse cardiovascular thrombotic events, including myocardial infarction and stroke. Another black-box warning related to NSAIDs comments on the increased risk of gastrointestinal irritation, inflammation, ulceration, bleeding, and perforation with the use of these drugs.

Naproxen (Aleve, Naprosyn, Naproxen SR, Anaprox)

 

Naproxen is indicated for mild to moderate pain. Other indications include ankylosing spondylitis, osteoarthritis, and rheumatoid disorders. Onset of action for relieving pain is typically 1 hour.

Ibuprofen (Motrin, NeoProfen, Caldolor, Advil)

 

Ibuprofen is indicated for mild to moderate pain. Other indications include inflammatory diseases and rheumatoid disorders. It is available in oral forms, as well as in an injection form. Onset of action for relieving pain is typically 30 to 60 minutes.

Previous
Next

Anticholinergics, Respiratory

Class Summary

Parasympatholytic inhalers inhibit vagally mediated reflexes by antagonizing the action of acetylcholine released by the vagus nerve. This action prevents the increase in intracellular concentration of cyclic guanosine monophosphate (cGMP) caused by the interaction of acetylcholine and muscarinic receptors on bronchial smooth muscle.

These agents help to reduce mucus in the lungs and relax the smooth muscles of large and medium bronchi. They may be used with short-acting beta2 -adrenergic bronchodilators.

Ipratropium (Atrovent, Atrovent HFA)

 

Ipratropium, which is chemically related to atropine, has antisecretory properties. When applied locally, it inhibits secretions from serous and seromucous glands lining the nasal mucosa.

Previous
Next

Antihistamines, First Generation

Class Summary

These agents act by competitively inhibiting histamine at the H1 receptor. This effect mediates bronchial constriction, mucus secretion, smooth muscle contraction, and edema.

Diphenhydramine (Benadryl, Benylin)

 

Diphenhydramine is a first-generation antihistamine with anticholinergic effects.

Chlorpheniramine (Chlor-Trimeton)

 

Chlorpheniramine is a first-generation agent that competes with histamine or H1-receptor sites on effector cells in blood vessels and the respiratory tract. It is one of the safest antihistamines to use during pregnancy.

Brompheniramine (Bromphen)

 

This oral H1 blocker is used for allergic conjunctivitis and rhinitis, angioedema, pruritus, and urticaria. It does not tend to cause drowsiness and is suitable to use on a day-to-day basis.

Previous
Next

Antitussives, Non-Narcotic Combos

Class Summary

Several agents (eg, codeine, guaifenesin, dextromethorphan) are intended for the symptomatic relief of cough. However, evidence is mixed regarding the effectiveness of these agents. Cough and cold medicines should be used with caution in children younger than 2 years because serious adverse reactions and fatalities have occurred with over-the-counter preparations. Many over-the-counter cough and cold preparation labels state that the product should not be used in children younger than 4 years.

Guaifenesin and dextromethorphan (Robitussin DM, Mucinex DM, Duratuss DM, Robafen DM, Guaifenex DM)

 

This compound treats minor cough resulting from bronchial and throat irritation.

Previous
Next

Antitussives, Opioid Analgesics

Class Summary

Opioid analgesics bind to opioid receptors in the central nervous system, thus inhibiting pain pathways. In addition, these agents cause cough suppression by direct central action in the medulla.

Codeine

 

Codeine is a centrally acting antitussive that also helps to manage the pain of intercostal muscle strain associated with cough.

Previous
Next

Alpha/Beta-Adrenergic Agonists

Class Summary

Alpha stimulation causes mucosal vasoconstriction, decreasing edema of the subglottic region of the larynx. Although inhaled epinephrine is sometimes given in epiglottitis, its benefit is unproven.

Epinephrine (Adrenalin, EpiPen, Twinject)

 

Epinephrine is used for severe bronchoconstriction, especially with underlying reactive airway disease. Its alpha-agonist effects include increased peripheral vascular resistance, reversed peripheral vasodilatation, systemic hypotension, and vascular permeability. Beta2-agonist effects include bronchodilatation, chronotropic cardiac activity, and positive inotropy.

Previous
Next

Corticosteroids

Class Summary

Steroids are used to decrease edema by suppressing local inflammation. They are frequently used to manage croup, and they may reduce the need for racemic epinephrine inhalation.

Dexamethasone (Decadron, Dexasone)

 

Dexamethasone decreases inflammation by suppressing migration of polymorphonuclear leukocytes and reducing capillary permeability. Prednisone in equivalent doses may be substituted if administered over the course of 5 days.

Previous
Next

Decongestants, Systemic

Class Summary

These drugs are typically used to relieve nasal symptoms. Decongestants and antihistamines should be used with caution in children younger than 2 years because serious adverse reactions and fatalities have occurred with over-the-counter cough and cold preparations. In 2008, the Consumer Healthcare Products Association modified many over-the-counter cough and cold product labels to state "do not use" in children younger than 4 years.

Pseudoephedrine (Sudafed)

 

This agent causes vasoconstriction by directly stimulating alpha-adrenergic receptors in the respiratory mucosa. It is used for symptomatic relief of nasal congestion due to common cold, upper respiratory tract allergies, and sinusitis. It promotes nasal or sinus drainage.

Oxymetazoline (Allerest, Afrin, Dristan, Chlorphed)

 

Stimulates alpha-adrenergic receptors and causes vasoconstriction when applied directly to mucous membranes. Decongestion occurs without drastic changes in blood pressure, vascular redistribution, or cardiac stimulation.

Previous
Next

Decongestants, Intranasal

Class Summary

These agents are typically used to relieve nasal symptoms.

Phenylephrine nasal (NeoSynephrine Nasal)

 

This agent is a strong postsynaptic alpha-receptor stimulant with little beta-adrenergic activity that produces vasoconstriction of arterioles in the body.

Oxymetazoline (Afrin, Dristan 12 Hr Vicks Sinex 12 Hour)

 

Oxymetazoline stimulates alpha-adrenergic receptors and causes vasoconstriction when applied directly to mucous membranes. Decongestion occurs without drastic changes in blood pressure, vascular redistribution, or cardiac stimulation.

Previous
 
Contributor Information and Disclosures
Author

Anne Meneghetti, MD Assistant Professor of Medicine, Tufts University School of Medicine; Medical Broadcaster, MyWell-Being.com

Anne Meneghetti, MD is a member of the following medical societies: National Ayurvedic Medical Association

Disclosure: Nothing to disclose.

Chief Editor

Zab Mosenifar, MD, FACP, FCCP Geri and Richard Brawerman Chair in Pulmonary and Critical Care Medicine, Professor and Executive Vice Chairman, Department of Medicine, Medical Director, Women's Guild Lung Institute, Cedars Sinai Medical Center, University of California, Los Angeles, David Geffen School of Medicine

Zab Mosenifar, MD, FACP, FCCP is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, American Federation for Medical Research, American Thoracic Society

Disclosure: Nothing to disclose.

Acknowledgements

Gregory William Rutecki, MD Professor of Medicine, Fellow of The Center for Bioethics and Human Dignity, University of South Alabama College of Medicine

Gregory William Rutecki, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American Society of Nephrology, National Kidney Foundation, and Society of General Internal Medicine

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. [Guideline] Bisno AL, Gerber MA, Gwaltney JM Jr, Kaplan EL, Schwartz RH. Diagnosis and management of group A streptococcal pharyngitis: a practice guideline. Infectious Diseases Society of America. Clin Infect Dis. 1997 Sep. 25(3):574-83. [Medline].

  2. [Guideline] Shulman ST, Bisno AL, Clegg HW, Gerber MA, Kaplan EL, Lee G, et al. Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America. Clin Infect Dis. 2012 Nov 15. 55(10):1279-82. [Medline]. [Full Text].

  3. [Guideline] Wald ER, Applegate KE, Bordley C, Darrow DH, Glode MP, Marcy SM, et al. Clinical practice guideline for the diagnosis and management of acute bacterial sinusitis in children aged 1 to 18 years. Pediatrics. 2013 Jul. 132(1):e262-80. [Medline].

  4. Utah Department of Health, Bureau of Epidemiology. Whooping Cough Sound Files. Utah Department of Health, Bureau of Epidemiology. Available at http://health.utah.gov/epi/diseases/pertussis/pertussis_sounds.htm. Accessed: November 29, 2012.

  5. Centers for Disease Control and Prevention. Pertussis (Whooping Cough): Clinical Features. Available at http://www.cdc.gov/pertussis/clinical/features.html. Accessed: October 27, 2013.

  6. Ahovuo-Saloranta A, Borisenko OV, Kovanen N, Varonen H, Rautakorpi UM, Williams JW Jr, et al. Antibiotics for acute maxillary sinusitis. Cochrane Database Syst Rev. 2008 Apr 16. CD000243. [Medline].

  7. [Guideline] Chow AW, Benninger MS, Brook I, Brozek JL, Goldstein EJ, Hicks LA, et al. IDSA clinical practice guideline for acute bacterial rhinosinusitis in children and adults. Clin Infect Dis. 2012 Apr. 54(8):e72-e112. [Medline]. [Full Text].

  8. Chung LP, Waterer GW. Genetic predisposition to respiratory infection and sepsis. Crit Rev Clin Lab Sci. 2011 Sep-Dec. 48(5-6):250-68. [Medline].

  9. Horby P, Nguyen NY, Dunstan SJ, Baillie JK. The role of host genetics in susceptibility to influenza: a systematic review. PLoS One. 2012. 7(3):e33180. [Medline]. [Full Text].

  10. Juno J, Fowke KR, Keynan Y. Immunogenetic factors associated with severe respiratory illness caused by zoonotic H1N1 and H5N1 influenza viruses. Clin Dev Immunol. 2012. 2012:797180. [Medline]. [Full Text].

  11. Meriluoto M, Hedman L, Tanner L, Simell V, Mäkinen M, Simell S, et al. Association of human bocavirus 1 infection with respiratory disease in childhood follow-up study, Finland. Emerg Infect Dis. 2012 Feb. 18(2):264-71. [Medline]. [Full Text].

  12. National Center for Infectious Diseases. Division of Bacterial and Mycotic Diseases. Haemophilus influenzae serotype b (Hib) disease. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/hi-disease/clinicians.html. Accessed: November 29, 2012.

  13. National Center for Infectious Diseases. Respiratory and Enteric Viruses Branch. Human parainfluenza viruses (HPIVs). Centers for Disease Control and Prevention. Available at http://www.cdc.gov/ncidod/dvrd/revb/respiratory/hpivfeat.htm. Accessed: April 30, 2009.

  14. [Guideline] Schwartz SR, Cohen SM, Dailey SH, et al. Clinical practice guideline: hoarseness (dysphonia). Otolaryngol Head Neck Surg. 2009 Sep. 141(3 Suppl 2):S1-S31. [Full Text].

  15. Cherry DK, Hing E, Woodwell DA, Rechtsteiner EA. National Ambulatory Medical Care Survey: 2006 Summary. 2008. Available at http://www.cdc.gov/nchs/data/nhsr/nhsr003.pdf.

  16. Fagnan LJ. Acute sinusitis: a cost-effective approach to diagnosis and treatment. Am Fam Physician. 1998 Nov 15. 58(8):1795-802, 805-6. [Medline].

  17. Centers for Disease Control and Prevention. Accessed April 30, 2009. Nonspecific upper respiratory tract infection. Available at http://www.cdc.gov/drugresistance/community/hcp-info-sheets/adult-nurti.pdf.

  18. Isakson M, Hugosson S. Acute epiglottitis: epidemiology and Streptococcus pneumoniae serotype distribution in adults. J Laryngol Otol. 2011 Apr. 125(4):390-3. [Medline].

  19. Centers for Disease Control and Prevention. Pertussis (Whooping Cough) Surveillance & Reporting. Available at http://www.cdc.gov/pertussis/surv-reporting.html. Accessed: June 12, 2012.

  20. Bettiol S, Wang K, Thompson MJ, Roberts NW, Perera R, Heneghan CJ, et al. Symptomatic treatment of the cough in whooping cough. Cochrane Database Syst Rev. 2012 May 16. 5:CD003257. [Medline].

  21. Centers for Disease Control and Prevention. Outbreaks of respiratory illness mistakenly attributed to pertussis--New Hampshire, Massachusetts, and Tennessee, 2004-2006. MMWR Morb Mortal Wkly Rep. 2007 Aug 24. 56(33):837-42. [Medline]. [Full Text].

  22. CDC Centers for Disease Control and Prevention. Seasonal Influenza (Flu). Centers for Disease Control and Prevention. Available at http://www.cdc.gov/flu/about/disease/index.htm. Accessed: June 12, 2012.

  23. National Center for Infectious Diseases. Division of Bacterial and Mycotic Diseases. Epstein-Barr virus and infectious mononucleosis. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/ncidod/diseases/ebv.htm. Accessed: April 30, 2009.

  24. Centers for Disease Control and Prevention. CDC. Diphtheria. Centers for Disease Control and Prevention. CDC.gov. Available at http://www.cdc.gov/ncidod/dbmd/diseaseinfo/diptheria_t.htm. Accessed: June 12, 2012.

  25. National Institute of Allergy and Infectious Diseases. Common Cold. National Institute of Allergy and Infectious Diseases. Available at http://www.niaid.nih.gov/topics/commoncold/Pages/default.aspx. Accessed: June 12, 2012.

  26. Wald ER, Guerra N, Byers C. Upper respiratory tract infections in young children: duration of and frequency of complications. Pediatrics. 1991 Feb. 87(2):129-33. [Medline].

  27. CDC. Centers for Disease Control and Prevention. Seasonal Influenza (Flu): Seasonal Influenza-Associated Hospitalizations in the United States. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/flu/about/qa/hospital.htm. Accessed: November 29, 2012.

  28. CDC. Centers for Disease Control and Prevention. Pertussis (Whooping Cough): Clinical Complications. Available at http://www.cdc.gov/pertussis/clinical/complications.html. Accessed: June 12, 2012.

  29. Arola M, Ruuskanen O, Ziegler T, Mertsola J, Näntö-Salonen K, Putto-Laurila A, et al. Clinical role of respiratory virus infection in acute otitis media. Pediatrics. 1990 Dec. 86(6):848-55. [Medline].

  30. Shulman ST. Pediatric autoimmune neuropsychiatric disorders associated with streptococci (PANDAS): update. Curr Opin Pediatr. 2009 Feb. 21(1):127-30. [Medline].

  31. National Institute of Allergy and Infectious Diseases. Common Cold: Symptoms. Available at http://www.niaid.nih.gov/topics/commonCold/Pages/symptoms.aspx. Accessed: October 17, 2013.

  32. [Guideline] Division of STD Prevention, CDC. Gonococcal Infections. Sexually Transmitted Diseases Treatment Guidelines, 2010. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/std/treatment/2010/gonococcal-infections.htm. Accessed: November 29, 2012.

  33. Vincent MT, Celestin N, Hussain AN. Pharyngitis. Am Fam Physician. 2004 Mar 15. 69(6):1465-70. [Medline].

  34. CDC. Centers for Disease Control and Prevention. Pertussis (Whooping Cough): Specimen Collection. Full text: http://cid.oxfordjournals.org/content/early/2012/09/06/cid.cis629.full. Available at http://www.cdc.gov/pertussis/clinical/diagnostic-testing/specimen-collection.html. Accessed: October 17, 2013.

  35. Chow AW. Acute sinusitis: current status of etiologies, diagnosis, and treatment. Curr Clin Top Infect Dis. 2001. 21:31-63. [Medline].

  36. [Guideline] Workowski KA, Berman SM. Sexually transmitted diseases treatment guidelines, 2006. MMWR Recomm Rep. 2006 Aug 4. 55:1-94. [Medline]. [Full Text].

  37. CDC. Centers for Disease Control and Prevention. Pertussis (Whooping Cough): Diagnostic Testing. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/pertussis/clinical/diagnostic-testing/index.html. Accessed: November 29, 2012.

  38. Adult epiglottitis: best practice of medicine [Internet database]. April, 2000;

  39. Ragosta KG, Orr R, Detweiler MJ. Revisiting epiglottitis: a protocol--the value of lateral neck radiographs. J Am Osteopath Assoc. 1997 Apr. 97(4):227-9. [Medline].

  40. MacReady N. AAP Releases New Principles for URI Antibiotics. Medscape Medical News. Available at http://www.medscape.com/viewarticle/814533. Accessed: November 26, 2013.

  41. Hersh AL, Jackson MA, Hicks LA. Principles of Judicious Antibiotic Prescribing for Bacterial Upper Respiratory Tract Infections in Pediatrics. Pediatrics. 2013 Nov 18. [Medline].

  42. Little P, Moore M, Kelly J, et al. Delayed antibiotic prescribing strategies for respiratory tract infections in primary care: pragmatic, factorial, randomised controlled trial. BMJ. 2014 Mar 6. 348:g1606. [Medline]. [Full Text].

  43. Kissoon N, Mitchell I. Adverse effects of racemic epinephrine in epiglottitis. Pediatr Emerg Care. 1985 Sep. 1(3):143-4. [Medline].

  44. Weber JE, Chudnofsky CR, Younger JG, Larkin GL, Boczar M, Wilkerson MD, et al. A randomized comparison of helium-oxygen mixture (Heliox) and racemic epinephrine for the treatment of moderate to severe croup. Pediatrics. 2001 Jun. 107(6):E96. [Medline].

  45. [Guideline] Irwin RS, Baumann MH, Bolser DC, Boulet LP, Braman SS, Brightling CE, et al. Diagnosis and management of cough executive summary: ACCP evidence-based clinical practice guidelines. Chest. 2006 Jan. 129(1 Suppl):1S-23S. [Medline].

  46. Update: influenza activity - United States, September 28, 2008--January 31, 2009. MMWR Morb Mortal Wkly Rep. 2009 Feb 13. 58(5):115-9. [Medline]. [Full Text].

  47. van den Aardweg MT, Boonacker CW, Rovers MM, Hoes AW, Schilder AG. Effectiveness of adenoidectomy in children with recurrent upper respiratory tract infections: open randomised controlled trial. BMJ. 2011 Sep 6. 343:d5154. [Medline]. [Full Text].

  48. Harvey R, Hannan SA, Badia L, Scadding G. Nasal irrigation with saline (salt water) for the symptoms of chronic rhinosinusitis. Cochrane Database Syst Rev. January 24, 2007. Issue 3:[Medline]. [Full Text].

  49. Rabago D, Zgierska A, Mundt M, Barrett B, Bobula J, Maberry R. Efficacy of daily hypertonic saline nasal irrigation among patients with sinusitis: a randomized controlled trial. J Fam Pract. 2002 Dec. 51(12):1049-55. [Medline]. [Full Text].

  50. Paul IM, Beiler J, McMonagle A, Shaffer ML, Duda L, Berlin CM Jr. Effect of honey, dextromethorphan, and no treatment on nocturnal cough and sleep quality for coughing children and their parents. Arch Pediatr Adolesc Med. 2007 Dec. 161(12):1140-6. [Medline]. [Full Text].

  51. Sharfstein JM, North M, Serwint JR. Over the counter but no longer under the radar--pediatric cough and cold medications. N Engl J Med. 2007 Dec 6. 357(23):2321-4. [Medline].

  52. Food and Drug Administration. FDA Statement Following CHPA's Announcement on Nonprescription Over-the-Counter Cough and Cold Medicines in Children. FDA: U.S. Food and Drug Administration. Available at http://www.fda.gov/bbs/topics/NEWS/2008/NEW01899.html. Accessed: May 10, 2009.

  53. Wiklund L, Stierna P, Berglund R, Westrin KM, Tonnesson M. The efficacy of oxymetazoline administered with a nasal bellows container and combined with oral phenoxymethyl-penicillin in the treatment of acute maxillary sinusitis. Acta Otolaryngol Suppl. 1994. 515:57-64. [Medline].

  54. Hayden FG, Diamond L, Wood PB, Korts DC, Wecker MT. Effectiveness and safety of intranasal ipratropium bromide in common colds. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1996 Jul 15. 125(2):89-97. [Medline].

  55. Turner RB, Sperber SJ, Sorrentino JV, O'Connor RR, Rogers J, Batouli AR, et al. Effectiveness of clemastine fumarate for treatment of rhinorrhea and sneezing associated with the common cold. Clin Infect Dis. 1997 Oct. 25(4):824-30. [Medline].

  56. [Guideline] American Academy of Pediatrics. Clinical practice guideline: management of sinusitis. Pediatrics. 2001 Sep. 108(3):798-808. [Medline].

  57. Zalmanovici A, Yaphe J. Steroids for acute sinusitis. Cochrane Database Syst Rev. 2007 Apr 18. CD005149. [Medline].

  58. American Academy of Pediatrics. Use of codeine- and dextromethorphan-containing cough remedies in children. American Academy of Pediatrics. Committee on Drugs. Pediatrics. 1997 Jun. 99(6):918-20. [Medline].

  59. Wing A, Villa-Roel C, Yeh B, Eskin B, Buckingham J, Rowe BH. Effectiveness of corticosteroid treatment in acute pharyngitis: a systematic review of the literature. Acad Emerg Med. 2010 May. 17(5):476-83. [Medline].

  60. Hirt M, Nobel S, Barron E. Zinc nasal gel for the treatment of common cold symptoms: a double-blind, placebo-controlled trial. Ear Nose Throat J. 2000 Oct. 79(10):778-80, 782. [Medline].

  61. United States Food and Drug Administration. Accessed June 16, 2009. Zicam cold remedy nasal products (Cold Remedy Nasal Gel, Cold Remedy Nasal Swabs, and Cold Remedy Saws, Kids Size). MedWatch Public Health Advisory. Available at http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm166996.htm.

  62. Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev. 2011 Feb 16. 2:CD001364. [Medline].

  63. Taylor JA, Weber W, Standish L, Quinn H, Goesling J, McGann M, et al. Efficacy and safety of echinacea in treating upper respiratory tract infections in children: a randomized controlled trial. JAMA. 2003 Dec 3. 290(21):2824-30. [Medline].

  64. Barrett B, Brown R, Rakel D, Mundt M, Bone K, Barlow S, et al. Echinacea for treating the common cold: a randomized trial. Ann Intern Med. 2010 Dec 21. 153(12):769-77. [Medline].

  65. Brinckmann J, Sigwart H, van Houten Taylor L. Safety and efficacy of a traditional herbal medicine (Throat Coat) in symptomatic temporary relief of pain in patients with acute pharyngitis: a multicenter, prospective, randomized, double-blinded, placebo-controlled study. J Altern Complement Med. 2003 Apr. 9(2):285-98. [Medline].

  66. D'Souza AL, Rajkumar C, Cooke J, Bulpitt CJ. Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ. 2002 Jun 8. 324(7350):1361. [Medline].

  67. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, et al. Position statement. Part one: Immune function and exercise. Exerc Immunol Rev. 2011. 17:6-63. [Full Text].

  68. Kretsinger K, Broder KR, Cortese MM, Joyce MP, Ortega-Sanchez I, Lee GM, et al. Preventing tetanus, diphtheria, and pertussis among adults: use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine recommendations of the Advisory Committee on Immunization Practices (ACIP) and recommendation of ACIP, supported by the Healthcare Infection Control Practices Advisory Committee (HICPAC), for use of Tdap among health-care personnel. MMWR Recomm Rep. 2006 Dec 15. 55:1-37. [Medline]. [Full Text].

  69. [Guideline] Workowski KA, Levine WC. Sexually transmitted diseases treatment guidelines: 2002 [Centers for Disease Control and Prevention Web site]. MMWR. 2002. 51(RR06):1-80. [Full Text].

  70. American Academy of Pediatrics. Prevention of pertussis among adolescents: recommendations for use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine. Pediatrics. 2006 Mar. 117(3):965-78. [Medline].

  71. [Guideline] Safer Healthier PeopleCenters for Disease Control and Prevention. Pertussis: Summary of Vaccine Recommendations. Safer Healthier People. Available at http://www.cdc.gov/vaccines/vpd-vac/pertussis/recs-summary.htm. Accessed: 02/10/2011.

 
Previous
Next
 
Seasonal variation of selected upper respiratory tract infection pathogens. PIV is parainfluenza virus, RSV is respiratory syncytial virus, MPV is metapneumovirus, and Group A Strept is group A streptococcal disease.
CT scan of the sinuses demonstrates maxillary sinusitis. The left maxillary sinus is completely opacified (asterisk), and the right has mucosal thickening (arrow). Courtesy of Omar Lababede, MD, Cleveland Clinic Foundation.
Lateral neck radiograph demonstrates epiglottitis. Courtesy of Marilyn Goske, MD, Cleveland Clinic Foundation.
Gonococcal pharyngitis. Image credit: CDC Public Health Image Library (Flumara NJ, Hart G).
Strep throat with petechiae. CDC Public Health Image Library (Eichenwald HF).
Table. Symptoms of Allergies, URIs, and Influenza
Symptom Allergy URI Influenza
Itchy, watery eyes Common Rare; conjunctivitis may occur with adenovirus Soreness behind eyes, sometimes conjunctivitis
Nasal discharge Common Common Common
Nasal congestion Common Common Sometimes
Sneezing Very common Very common Sometimes
Sore throat Sometimes (postnasal drip); itchy throat Very common Sometimes
Cough Sometimes Common, mild to moderate, hacking cough Common, dry cough, can be severe
Headache Sometimes, facial pain Rare Common
Fever Never Rare in adults, possible in children Very common, 100-102°F or higher (in young children), lasting 3-4 days; may have chills
Malaise Sometimes Sometimes Very common
Fatigue, weakness Sometimes Sometimes Very common, can last for weeks, extreme exhaustion early in course
Myalgias Never Slight Very common, often severe
Duration Weeks 3-14 days 7 days, followed by additional days of cough and fatigue
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.