Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Meniscal Injury Medication

  • Author: Sarjoo M Bhagia, MD; Chief Editor: Consuelo T Lorenzo, MD  more...
 
Updated: Feb 11, 2016
 

Medication Summary

The goals of pharmacotherapy are to reduce morbidity and prevent complications.

Next

Analgesics

Class Summary

Pain control is essential to quality patient care. Analgesics ensure patient comfort and have sedating properties, which are beneficial for patients who have sustained injuries.

Acetaminophen (Tylenol, Feverall, Tempra, Aspirin-Free Anacin)

 

DOC for pain in patients with documented hypersensitivity to aspirin or NSAIDs, with upper GI disease, or who are taking oral anticoagulants.

Previous
Next

Nonsteroidal anti-inflammatory drugs

Class Summary

Have analgesic, anti-inflammatory, and antipyretic activities. Their mechanism of action is not known, but they may inhibit cyclooxygenase (COX) activity and prostaglandin synthesis. Other mechanisms may exist as well, such as inhibition of leukotriene synthesis, lysosomal enzyme release, lipoxygenase activity, neutrophil aggregation, and various cell membrane functions.

Ibuprofen (Motrin, Ibuprin)

 

DOC for patients with mild to moderate pain. Inhibits inflammatory reactions and pain by decreasing prostaglandin synthesis.

Naproxen (Naprelan, Anaprox, Naprosyn)

 

For relief of mild to moderate pain; inhibits inflammatory reactions and pain by decreasing activity of COX, which results in a decrease of prostaglandin synthesis.

Diclofenac (Voltaren, Cataflam)

 

Designated chemically as 2-[(2,6-dichlorophenyl)amino] benzeneacetic acid, monosodium salt, with an empirical formula of C14 H10 Cl2 NO2 NA. One of a series of phenylacetic acids that has demonstrated anti-inflammatory and analgesic properties in pharmacological studies. Believed to inhibit COX, which is essential in biosynthesis of prostaglandins. Can cause hepatotoxicity; hence, monitor liver enzyme levels in first 8 wk of treatment.

Rapidly absorbed; metabolism occurs in liver by demethylation, deacetylation, and glucuronide conjugation. Delayed-release, enteric-coated form is diclofenac sodium, and immediate release form is diclofenac potassium. Has relatively low risk for bleeding GI ulcers.

Celecoxib (Celebrex)

 

Primarily inhibits COX-2. COX-2 is considered an inducible isoenzyme, induced during pain and by inflammatory stimuli. Inhibition of COX-1 may contribute to NSAID GI toxicity. At therapeutic concentrations, COX-1 isoenzyme is not inhibited, thus GI toxicity may be decreased. Seek lowest dose of celecoxib for each patient.

Previous
 
 
Contributor Information and Disclosures
Author

Sarjoo M Bhagia, MD Consulting Staff, OrthoCarolina; Voluntary Teaching Faculty, Carolinas Rehabilitation

Sarjoo M Bhagia, MD is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation, Physiatric Association of Spine, Sports and Occupational Rehabilitation, Association of Academic Physiatrists, North American Spine Society

Disclosure: Nothing to disclose.

Coauthor(s)

Selina Yingqi Xing, MD, MS Staff Physician, Department of Physical Medicine and Rehabilitation, Temple University

Selina Yingqi Xing, MD, MS is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation, Physiatric Association of Spine, Sports and Occupational Rehabilitation, American Medical Association

Disclosure: Nothing to disclose.

Michael Weinik, DO Associate Chairman, Associate Professor, Physical Medicine and Rehabilitation, Temple University Hospital

Michael Weinik, DO is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Michael T Andary, MD, MS Professor, Residency Program Director, Department of Physical Medicine and Rehabilitation, Michigan State University College of Osteopathic Medicine

Michael T Andary, MD, MS is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation, American Association of Neuromuscular and Electrodiagnostic Medicine, American Medical Association, Association of Academic Physiatrists

Disclosure: Received honoraria from Allergan for speaking and teaching.

Chief Editor

Consuelo T Lorenzo, MD Medical Director, Senior Products, Central North Region, Humana, Inc

Consuelo T Lorenzo, MD is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation

Disclosure: Nothing to disclose.

Additional Contributors

Robert E Windsor, MD, FAAPMR, FAAEM, FAAPM President and Director, Georgia Pain Physicians, PC; Clinical Associate Professor, Department of Physical Medicine and Rehabilitation, Emory University School of Medicine

Robert E Windsor, MD, FAAPMR, FAAEM, FAAPM is a member of the following medical societies: American Academy of Pain Medicine, American Academy of Physical Medicine and Rehabilitation, American College of Sports Medicine, American Medical Association, International Association for the Study of Pain, Texas Medical Association

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors wish to thank Kavita Gupta, DO, MEng, Department of Orthopedics, Center of Physical Medicine and Rehabilitation, University of Dentistry and Medicine of New Jersey, for her previous contributions to this article.

References
  1. Mordecai SC, Al-Hadithy N, Ware HE, Gupte CM. Treatment of meniscal tears: An evidence based approach. World J Orthop. 2014 Jul 18. 5 (3):233-41. [Medline]. [Full Text].

  2. Jackson JP. Degenerative changes in the knee after meniscectomy. Br Med J. 1968 Jun 1. 2(5604):525-7. [Medline]. [Full Text].

  3. Shrive NG, O'Connor JJ, Goodfellow JW. Load-bearing in the knee joint. Clin Orthop Relat Res. 1978 Mar-Apr. 279-87. [Medline].

  4. Renstrom P, Johnson RJ. Anatomy and biomechanics of the menisci. Clin Sports Med. 1990 Jul. 9(3):523-38. [Medline].

  5. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982 Mar-Apr. 10(2):90-5. [Medline].

  6. Yeh PC, Starkey C, Lombardo S, Vitti G, Kharrazi FD. Epidemiology of Isolated Meniscal Injury and Its Effect on Performance in Athletes From the National Basketball Association. Am J Sports Med. 2011 Nov 30. [Medline].

  7. Iobst CA, Stanitski CL. Acute knee injuries. Clin Sports Med. 2000 Oct. 19(4):621-35, vi. [Medline].

  8. Goldstein J, Zuckerman JD. Selected orthopedic problems in the elderly. Rheum Dis Clin North Am. 2000 Aug. 26(3):593-616. [Medline].

  9. Stanitski CL, Harvell JC, Fu F. Observations on acute knee hemarthrosis in children and adolescents. J Pediatr Orthop. 1993 Jul-Aug. 13(4):506-10. [Medline].

  10. Yoo JC, Ahn JH, Lee SH, et al. Increasing incidence of medial meniscal tears in nonoperatively treated anterior cruciate ligament insufficiency patients documented by serial magnetic resonance imaging studies. Am J Sports Med. 2009 Apr 9. [Medline].

  11. Konan S, Rayan F, Haddad FS. Do physical diagnostic tests accurately detect meniscal tears?. Knee Surg Sports Traumatol Arthrosc. 2009 Apr 28. [Medline].

  12. Rinonapoli G, Carraro A, Delcogliano A. The clinical diagnosis of meniscal tear is not easy. Reliability of two clinical meniscal tests and magnetic resonance imaging. Int J Immunopathol Pharmacol. 2011 Jan-Mar. 24(1 Suppl 2):39-44. [Medline].

  13. Rytter S, Kirkeskov Jensen L, Bonde JP, et al. Occupational kneeling and meniscal tears: a magnetic resonance imaging study in floor layers. J Rheumatol. 2009 May 1. [Medline].

  14. Wareluk P, Szopinski KT. Value of modern sonography in the assessment of meniscal lesions. Eur J Radiol. 2011 Oct 5. [Medline].

  15. Vance K, Meredick R, Schweitzer ME, et al. Magnetic resonance imaging of the postoperative meniscus. Arthroscopy. 2009 May. 25(5):522-30. [Medline].

  16. El Ghazaly SA, Rahman AA, Yusry AH, Fathalla MM. Arthroscopic partial meniscectomy is superior to physical rehabilitation in the management of symptomatic unstable meniscal tears. Int Orthop. 2015 Apr. 39 (4):769-75. [Medline].

  17. Stensrud S, Risberg MA, Roos EM. Effect of exercise therapy compared with arthroscopic surgery on knee muscle strength and functional performance in middle-aged patients with degenerative meniscus tears: a 3-mo follow-up of a randomized controlled trial. Am J Phys Med Rehabil. 2015 Jun. 94 (6):460-73. [Medline].

  18. Gauffin H, Tagesson S, Meunier A, et al. Knee arthroscopic surgery is beneficial to middle-aged patients with meniscal symptoms: a prospective, randomised, single-blinded study. Osteoarthritis Cartilage. 2014 Jul 30. [Medline].

  19. Englund M, Guermazi A, Roemer FW, et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: The Multicenter Osteoarthritis Study. Arthritis Rheum. 2009 Mar. 60(3):831-9. [Medline].

  20. Church S, Keating JF. Reconstruction of the anterior cruciate ligament: timing of surgery and the incidence of meniscal tears and degenerative change. J Bone Joint Surg Br. 2005 Dec. 87(12):1639-42.

 
Previous
Next
 
Magnetic resonance imaging scan showing a normal meniscus.
Magnetic resonance imaging scan showing a torn medial meniscus.
Arthroscopic probing of a posterior horn complex meniscal tear with multiple flaps.
Arthroscopic view of medial meniscus after excision of flap tear.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.