Medscape is available in 5 Language Editions – Choose your Edition here.


Patellofemoral Syndrome Treatment & Management

  • Author: Patrick J Potter, MD, FRCSC; Chief Editor: Consuelo T Lorenzo, MD  more...
Updated: May 23, 2016

Rehabilitation Program

Physical Therapy

The basic exercise principles for management of patellofemoral syndrome (PFS) are restoring muscle balance within the quadriceps group, improving range of motion, and restricting the offending physical activity. Quadriceps strengthening traditionally is performed while the knee is flexed 0-30°. Controversy remains regarding the extent to which the individual muscle groups making up the quadriceps can selectively be strengthened. Usually, the lateral forces of the vastus lateralis need to be countered better by the vastus medialis. This goal is accomplished best by strengthening all of the quadriceps.

Stretching of the quadriceps should be of long duration (20-30 seconds) and performed with low force. This technique allows for overcoming neural and connective tissue barriers to lengthening. Exercises to stretch the iliotibial band, hip, hamstring, and calf also are important for patients with PFS. Manual stretching of the lateral retinaculum may be used as a conservative approach, partially mimicking the effect of lateral retinacular release. Physical therapists should educate patients about home exercise programs that include stretching and strengthening exercises.

Syme et al found that selective and general physical therapy are valuable for the rehabilitation of patients with patellofemoral syndrome (PFS).[10] In a prospective, single-blind, randomized, controlled trial, 8 weeks of physical therapy—which in one group of patients selectively emphasized retraining of the vastus medialis, and in another group, emphasized general strengthening of the quadriceps—proved superior to the provision of no treatment, for pain reduction and improvement in subjective function and quality of life. The investigators suggested that selective physical therapy may be appropriate early in rehabilitation.

Further evidence for the effectiveness of quadriceps strengthening in PFS therapy was found in a systematic literature review by Kooiker et al. The investigators reported that an analysis of seven studies strongly supported the superiority of physical therapist–guided quadriceps-strengthening exercises over placebo or advice/information alone in treating pain and increasing function in PFS.[11]

In a prospective, independent, group comparison by Chiu et al, 15 participants with and without PFS were given an MRI evaluation for knee strength, patellofemoral joint contact area, and patellar tilt angle. All the participants performed lower-limb weight training 3 times a week for 8 weeks. The outcomes were evaluated both before and after training. The study concluded that the weight-training exercises increased knee muscle strength and the patellofemoral joint contact area. This may reduce mechanical stress in the joint, which would lessen pain and improve function for those with PFS.[12]

A literature review by Alba-Martín et al indicated that the most effective therapeutic exercise programs for patellofemoral syndrome with regard to pain relief and functional improvement include “proprioceptive neuromuscular facilitation stretching and strengthening exercises for the hip external rotator and abductor muscles and knee extensor muscles.”[13]

A systematic literature review by Peters and Tyson indicated that proximal exercises are more effective than knee exercises in the treatment of PFS. In an analysis of eight studies, the investigators found that proximal exercise programs consistently reduced pain and improved function, with patients demonstrating short- and long-term improvement, while the results from knee exercise programs were more variable.[14]

In contrast to the above studies, a literature review by van der Heijden et al stated that while consistent evidence for the benefits of exercise therapy in reducing pain and improving function in PFS exists, the data is of very low quality. The investigators also stated that the evidence is too weak to indicate which type of exercise therapy is most effective.[15]

Ice packs frequently are used to decrease pain and inflammation associated with PFS, especially after completing the exercises. Other modalities that may be useful and commonly are incorporated into physical therapy include electrical stimulation and biofeedback.

Patellar taping techniques are used in patients with PFS to reduce the friction on the patella. Many physical therapists are trained in the McConnell method of taping of the knee. Some patients report reduction of pain when wearing the tape. Some individuals report that the taping allows them to complete more functional quadriceps-strengthening activities without anterior knee pain. If successful, the physician or physical therapist can teach the patient self-taping techniques to use at home.

Proper footwear also is important for individuals with PFS. The physical therapist can evaluate the patient's biomechanics and recommend proper shoes and orthoses, which in turn can lessen knee pain.

Foot orthoses are often of benefit in returning the subtalar joint to a nearly neutral position; this reduces foot pronation, thereby decreasing rotational forces in the tibia that affect tracking of the patella during locomotion.[16] Improvement in quality of life measures has been demonstrated following provision of custom orthoses to individuals with PFS and excessive foot pronation.

One study compared the effectiveness of off-the-shelf foot orthoses in the treatment of PFS pain with that of either flat inserts or physical therapy; the report also investigated whether the combined use of orthoses and physical therapy is more effective than the employment of physical therapy alone.[16] The prospective, single-blind, randomized trial utilized 179 patients (including 100 women) between ages 18 and 40 years.

By 6 weeks, patients using orthoses had experienced greater improvement than had persons using flat inserts, but the orthotic group had experienced no significant difference in improvement over patients treated with physical therapy or with a combination of orthoses and physical therapy. By 52 weeks, a significant improvement in patellofemoral pain had occurred in all of the patient groups.

Another study focused on identifying individuals with PFS who would most likely benefit from foot orthoses. The determination was that patients who had 3 of the following clinical predictors were most likely to benefit: footwear motion control properties score of less than 5 (indicating less supportive footwear), lower levels of pain (< 22 mm), ankle dorsiflexion range of motion (< 41°), and reduced single-leg squat pain when wearing the orthoses.[17]

Soft knee braces may also be of benefit to patients with PFS. Bracing involves control of the tracking position of the patella and restriction of full knee flexion. Braces vary in the manner in which the patella is restricted (eg, patellar window, patellar bar, patellar horseshoe), but they accomplish the same theoretical result. Braces that are tightly applied directly over the patella should be avoided, because they actually increase patellofemoral pressures and may exacerbate the condition.

Occupational Therapy

Recommend a change in activity level or the ergonomics of the offending activity until the symptoms of patellofemoral syndrome are under control. Activities that require repetitive squatting are a good example. The task or sport may need to be modified to reduce the frequency of squatting, or the patient may need to choose an alternate occupation or recreational activity. Occupational therapists can be of assistance when reviewing the ergonomics of the environment in which symptoms occur with individual patients.

Recreational Therapy

Introducing alternative recreational pursuits and means of fitness may be of benefit in alleviating symptoms of patellofemoral syndrome when conservative measures are not effective. Modifications in recreational pursuits may need to be only temporary measures if other conservative measures are effective.


Medical Issues/Complications

Most symptoms of patellofemoral syndrome resolve with simple measures. As with many exercise routines, patients often fail to adhere to the exercise prescription, producing treatment results that appear to be refractory but which are actually caused by the fact that the therapeutic approach has not been given a fair trial. Follow-up studies suggest that more than 95% of persons who are compliant with treatment have results that are acceptable or better.


Surgical Intervention

Surgical intervention for patellofemoral syndrome usually is in the form of arthroscopic evaluation followed by release of the lateral attachments of the patella. Most authors agree that surgical treatment rarely is indicated. Arthroscopy has been cited as assisting the physician with clinical diagnoses; however, the visualization procedure, in and of itself, does not significantly help the symptoms of patellofemoral pain.[18]

  • Surgical procedures performed for patellofemoral arthritis include lateral facetectomy and patellar resurfacing.
  • Follow-up evaluations long after anterior advancement of the tibial tuberosity suggest limited results with this procedure.
  • Research on cartilage transplantation is being performed. Additional surgical options may be added in the future.
  • Arthroscopic drilling of osteochondral defects allows healing of the defect with fibrocartilage. This procedure routinely is performed. This form of cartilage is not of the normal type but provides for an improved surface compared to an osteochondral defect.


Management of patellofemoral syndrome overlaps many specialties. When necessary, consider consultation to answer specific questions regarding refractory response to treatment or optimization of treatment approaches.


Other Treatment

Knee pain secondary to defined degenerative changes may be relieved by injecting the joint with steroid or synthetic hyaluronic acid. Such management of patellofemoral syndrome is rare. Injection may be used when many symptoms result from disruption of the joint surface and when all other reasonable measures have failed.

Contributor Information and Disclosures

Patrick J Potter, MD, FRCSC Associate Professor, Department of Physical Medicine and Rehabilitation, University of Western Ontario School of Medicine; Consulting Staff, Department of Physical Medicine and Rehabilitation, St Joseph's Health Care Centre

Patrick J Potter, MD, FRCSC is a member of the following medical societies: Academy of Spinal Cord Injury Professionals, College of Physicians and Surgeons of Ontario, Canadian Association of Physical Medicine and Rehabilitation, Canadian Medical Association, Ontario Medical Association, Royal College of Physicians and Surgeons of Canada

Disclosure: Nothing to disclose.


Keith Aj Sequeira, MD, FRCPC Associate Professor, Director of Education, Department of Physical Medicine and Rehabilitation, Parkwood Hospistal, University of Western Ontario

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Patrick M Foye, MD Director of Coccyx Pain Center, Professor and Interim Chair of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School; Co-Director of Musculoskeletal Fellowship, Co-Director of Back Pain Clinic, University Hospital

Patrick M Foye, MD is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation, International Spine Intervention Society, American Association of Neuromuscular and Electrodiagnostic Medicine, Association of Academic Physiatrists

Disclosure: Nothing to disclose.

Chief Editor

Consuelo T Lorenzo, MD Medical Director, Senior Products, Central North Region, Humana, Inc

Consuelo T Lorenzo, MD is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation

Disclosure: Nothing to disclose.

Additional Contributors

Robert E Windsor, MD, FAAPMR, FAAEM, FAAPM President and Director, Georgia Pain Physicians, PC; Clinical Associate Professor, Department of Physical Medicine and Rehabilitation, Emory University School of Medicine

Robert E Windsor, MD, FAAPMR, FAAEM, FAAPM is a member of the following medical societies: American Academy of Pain Medicine, American Academy of Physical Medicine and Rehabilitation, American College of Sports Medicine, American Medical Association, International Association for the Study of Pain, Texas Medical Association

Disclosure: Nothing to disclose.

  1. Petersen W, Ellermann A, Gosele-Koppenburg A, et al. Patellofemoral pain syndrome. Knee Surg Sports Traumatol Arthrosc. 2014 Oct. 22 (10):2264-74. [Medline]. [Full Text].

  2. Piva SR, Fitzgerald GK, Irrgang JJ, et al. Associates of physical function and pain in patients with patellofemoral pain syndrome. Arch Phys Med Rehabil. 2009 Feb. 90(2):285-95. [Medline].

  3. Price JL. Patellofemoral syndrome: how to perform a basic knee evaluation. JAAPA. 2008 Dec. 21(12):39-43. [Medline].

  4. Finnoff JT, Hall MM, Kyle K, Krause DA, Lai J, Smith J. Hip strength and knee pain in high school runners: a prospective study. PM R. 2011 Sep. 3(9):792-801. [Medline].

  5. Kettunen JA, Visuri T, Harilainen A, et al. Primary cartilage lesions and outcome among subjects with patellofemoral pain syndrome. Knee Surg Sports Traumatol Arthrosc. 2005 Mar. 13(2):131-4. [Medline].

  6. Näslund JE, Odenbring S, Näslund UB, Lundeberg T. Diffusely increased bone scintigraphic uptake in patellofemoral pain syndrome. Br J Sports Med. 2005 Mar. 39(3):162-5. [Medline]. [Full Text].

  7. Schutzer SF, Ramsby GR, Fulkerson JP. Computed tomographic classification of patellofemoral pain patients. Orthop Clin North Am. 1986 Apr. 17(2):235-48. [Medline].

  8. Bolgla LA, Malone TR, Umberger BR, et al. Reliability of electromyographic methods used for assessing hip and knee neuromuscular activity in females diagnosed with patellofemoral pain syndrome. J Electromyogr Kinesiol. 2009 Jan 2. [Medline].

  9. Ferrari D, Kuriki HU, Silva CR, et al. Diagnostic accuracy of the electromyography parameters associated with anterior knee pain in the diagnosis of patellofemoral pain syndrome. Arch Phys Med Rehabil. 2014 Apr 15. [Medline].

  10. Syme G, Rowe P, Martin D, et al. Disability in patients with chronic patellofemoral pain syndrome: a randomised controlled trial of VMO selective training versus general quadriceps strengthening. Man Ther. 2009 Jun. 14(3):252-63. [Medline].

  11. Kooiker L, Van De Port IG, Weir A, et al. Effects of physical therapist-guided quadriceps-strengthening exercises for the treatment of patellofemoral pain syndrome: a systematic review. J Orthop Sports Phys Ther. 2014 Jun. 44(6):391-B1. [Medline].

  12. Chiu JK, Wong YM, Yung PS, Ng GY. The effects of quadriceps strengthening on pain, function, and patellofemoral joint contact area in persons with patellofemoral pain. Am J Phys Med Rehabil. 2012 Feb. 91(2):98-106. [Medline].

  13. Alba-Martin P, Gallego-Izquierdo T, Plaza-Manzano G, Romero-Franco N, Nunez-Nagy S, Pecos-Martin D. Effectiveness of therapeutic physical exercise in the treatment of patellofemoral pain syndrome: a systematic review. J Phys Ther Sci. 2015 Jul. 27 (7):2387-90. [Medline]. [Full Text].

  14. Peters JS, Tyson NL. Proximal exercises are effective in treating patellofemoral pain syndrome: a systematic review. Int J Sports Phys Ther. 2013 Oct. 8(5):689-700. [Medline]. [Full Text].

  15. van der Heijden RA, Lankhorst NE, van Linschoten R, et al. Exercise for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2015 Jan 20. 1:CD010387. [Medline].

  16. Collins N, Crossley K, Beller E, Darnell R, McPoil T, Vicenzino B. Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: randomised clinical trial. BMJ. 2008 Oct 24. 337:a1735. [Medline]. [Full Text].

  17. Barton CJ, Menz HB, Crossley KM. Clinical Predictors of Foot Orthoses Efficacy in Individuals with Patellofemoral Pain. Med Sci Sports Exerc. 2011 Feb 8. [Medline].

  18. Teitge RA. Patellofemoral syndrome a paradigm for current surgical strategies. Orthop Clin North Am. 2008 Jul. 39(3):287-311, v. [Medline].

  19. Lankhorst NE, van Middelkoop M, van Trier YD, et al. Can We Predict Which Subjects With Patellofemoral Pain Syndrome Are More Likely to Benefit From Exercise Therapy: A Secondary Explorative Analysis of a Randomized Controlled Trial. J Orthop Sports Phys Ther. 2015 Jan 27. 1-24. [Medline].

  20. Devan MR, Pescatello LS, Faghri P, Anderson J. A Prospective Study of Overuse Knee Injuries Among Female Athletes With Muscle Imbalances and Structural Abnormalities. J Athl Train. 2004 Sep. 39(3):263-267. [Medline]. [Full Text].

  21. Johnston LB, Gross MT. Effects of foot orthoses on quality of life for individuals with patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2004 Aug. 34(8):440-8. [Medline].

  22. Karlsson J, Thomee R, Sward L. Eleven year follow-up of patello-femoral pain syndrome. Clin J Sport Med. 1996 Jan. 6(1):22-6. [Medline].

All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.