Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Antiphospholipid Syndrome

  • Author: Suneel Movva, MD; Chief Editor: Herbert S Diamond, MD  more...
 
Updated: Jul 01, 2016
 

Background

Antiphospholipid syndrome (APS) is an acquired autoimmune disorder that manifests clinically as recurrent venous or arterial thrombosis and/or fetal loss.[1] Characteristic laboratory abnormalities in APS include persistently elevated levels of antibodies directed against membrane anionic phospholipids (ie, anticardiolipin [aCL] antibody, antiphosphatidylserine) or their associated plasma proteins, predominantly beta-2 glycoprotein I (apolipoprotein H); or evidence of a circulating anticoagulant.

Multiple terms for APS exist. Unfortunately, some synonyms can be confusing. Lupus anticoagulant (LA) syndrome, for example, is misleading because patients with APS may not necessarily have systemic lupus erythematosus (SLE) and LA is associated with thrombotic rather than hemorrhagic complications. In an attempt to avoid further confusion, APS is currently the preferred term for the clinical syndrome (as described below).

Some patients with APS have no evidence of any definable associated disease, while, in other patients, APS occurs in association with SLE or another rheumatic or autoimmune disorder. Traditionally, these have been referred to as primary or secondary APS, respectively. Currently, however, the preferred terminology is APS with or without associated rheumatic disease. Although antiphospholipid (aPL) antibodies are clinically linked to APS, whether they are involved in the pathogenesis or are an epiphenomenon is unclear. (Up to 5% of healthy individuals are known to have aPL antibodies.)

Next

Pathophysiology

In APS, the homeostatic regulation of blood coagulation is altered; however, the mechanisms of thrombosis are not yet defined. One hypothesis postulates a defect in cellular apoptosis, which exposes membrane phospholipids to the binding of various plasma proteins, such as beta-2 glycoprotein I. Once bound, a phospholipid-protein complex is formed and a neoepitope is uncovered, which subsequently becomes the target of autoantibodies. Recent evidence suggests that oxidized beta-2 glycoprotein I is able to bind to and activate dendritic cells in a manner similar to activation triggered by Toll-like receptor 4 (TLR-4), which could amplify the production of autoantibodies.{ref1-INVALID REFERENCE}{ref2-INVALID REFERENCE}[2]

Other proposed mechanisms for the hypercoagulable effect of aPL antibodies, which may or may not depend on beta-2 glycoprotein I, include the following:

  • Production of antibodies against coagulation factors, including prothrombin, protein C, protein S, and annexins
  • Activation of platelets to enhance endothelial adherence
  • Activation of vascular endothelium, which, in turn, facilitates the binding of platelets and monocytes
  • Reaction of antibodies to oxidized low-density lipoprotein, thus predisposing to atherosclerosis and myocardial infarction (MI)

Complement activation has been increasingly recognized as a possible significant role in the pathogenesis of APS. Emerging evidence from murine models suggests that APL-mediated complement activation may be a primary event in pregnancy loss.[2, 3]

Clinically, the series of events that leads to hypercoagulability and recurrent thrombosis can affect virtually any organ system, including the following:

  • Peripheral venous system ( deep venous thrombosis [DVT])
  • Central nervous system (stroke, sinus thrombosis, seizures, chorea, reversible cerebral vasoconstriction syndrome)
  • Peripheral nervous system (peripheral neuropathy including Guillain–Barré syndrome)
  • Hematologic (thrombocytopenia, hemolytic anemia)
  • Obstetric (pregnancy loss, eclampsia)
  • Pulmonary ( pulmonary embolism [PE], pulmonary hypertension)
  • Dermatologic (livedo reticularis, purpura, infarcts/ulceration)
  • Cardiac (Libman-Sacks valvulopathy, MI, diastolic dysfunction)
  • Ocular (amaurosis, retinal thrombosis)
  • Adrenal (infarction/hemorrhage)
  • Musculoskeletal (avascular necrosis of bone)
  • Renal (thrombotic microangiopathy)

The kidney is  a major target organ in APS. Nephropathy in APS is characterized by small-vessel vaso-occlusive lesions associated with fibrous intimal hyperplasia of interlobular arteries, recanalizing thrombi in arteries and arterioles, and focal atrophy.[4]

A “two-hit” theory has been proposed in which a second risk factor (age, hypertension, diabetes, obesity, smoking, pregnancy, surgery, other genetic hypercoagulable state) incites the thrombotic effects of aPL.[5]

Previous
Next

Epidemiology

Frequency

United States

The actual frequency of APS in the general population is unknown. One to 5% of healthy individuals have aPL antibodies. It is estimated that the incidence of APS is approximately 5 cases per 100,000 persons per year, and the prevalence is approximately 40-50 cases per 100, 000 persons.[6] aCL antibodies tend to be found more frequently in elderly persons; thus, positive titer results should be interpreted with caution in this population. aPL antibodies are found in approximately 30-40% of patients with SLE, but only about 10% have APS.[7] Approximately half of APS cases are not associated with another rheumatic disease. In a study of 100 patients with confirmed venous thrombosis and no history of SLE, aCL antibodies were found in 24% and LA in 4%.

aPL syndrome is the cause of 14% of all strokes, 11% of myocardial infarctions, 10% of deep vein thromboses, 6% of pregnancy morbidity, and 9% of pregnancy losses.[8]

International

International frequency is probably similar to US frequency.

Mortality/Morbidity

APS may contribute to an increased frequency of stroke or MI, especially in younger individuals. Strokes may develop secondary to in situ thrombosis or embolization that originates from the valvular lesions of Libman-Sacks (sterile) endocarditis, which may be seen in patients with APS. Cardiac valvular disease may be severe enough to require valve replacement. Recurrent pulmonary emboli or thrombosis can lead to life-threatening pulmonary hypertension.

Catastrophic APS (CAPS) is a rare, serious, and often fatal manifestation (mortality rate of approximately 50%) characterized by multiorgan infarctions over a period of days to weeks.

Late spontaneous fetal loss (second or third trimester) is common; however, it can occur at any time during pregnancy. Recurrent early fetal loss (< 10 weeks’ gestation) is also possible.

Previous
Next

Race-, Sex-, and Age-related Demographics

No defined racial predominance for primary APS has been documented, although SLE is more common in African American and Hispanic populations.

A female predominance has been documented, particularly for secondary APS. This parallels the association of APS with SLE and other connective-tissue diseases, which also have a female predominance.

APS is more common in young to middle-aged adults; however, it also manifests in children and elderly people. Disease onset has been reported in children as young as 8 months. In an international registry of pediatric APS cases, patients without associated rheumatic disease were younger and had a higher frequency of arterial thrombotic events, whereas patients with associated rheumatic disease were older and had a higher frequency of venous thrombotic events associated with hematologic and skin manifestations.[9]

Previous
 
 
Contributor Information and Disclosures
Author

Suneel Movva, MD Fellow in Rheumatology, Division of Rheumatology, Allergy and Immunology, Winthrop University Hospital

Disclosure: Nothing to disclose.

Coauthor(s)

Steven Carsons, MD Chief, Division of Rheumatology, Allergy and Immunology, Winthrop University Hospital; Professor of Medicine, Stony Brook University School of Medicine

Steven Carsons, MD is a member of the following medical societies: American College of Rheumatology, New York Academy of Sciences, Society for Experimental Biology and Medicine

Disclosure: Nothing to disclose.

Elise Belilos, MD Section Head of Rheumatology, Division of Rheumatology, Allergy and Immunology, Winthrop University Hospital; Assistant Professor of Clinical Medicine, Department of Internal Medicine, Stony Brook University School of Medicine

Elise Belilos, MD is a member of the following medical societies: American College of Rheumatology, Arthritis Foundation

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Lawrence H Brent, MD Associate Professor of Medicine, Jefferson Medical College of Thomas Jefferson University; Chair, Program Director, Department of Medicine, Division of Rheumatology, Albert Einstein Medical Center

Lawrence H Brent, MD is a member of the following medical societies: American Association for the Advancement of Science, American Association of Immunologists, American College of Physicians, American College of Rheumatology

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Janssen<br/>Serve(d) as a speaker or a member of a speakers bureau for: Abbvie; Genentech; Pfizer; Questcor.

Chief Editor

Herbert S Diamond, MD Visiting Professor of Medicine, Division of Rheumatology, State University of New York Downstate Medical Center; Chairman Emeritus, Department of Internal Medicine, Western Pennsylvania Hospital

Herbert S Diamond, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American College of Rheumatology, American Medical Association, Phi Beta Kappa

Disclosure: Nothing to disclose.

Additional Contributors

Carlos J Lozada, MD Director of Rheumatology Fellowship Training Program, Professor of Clinical Medicine, Department of Medicine, Division of Rheumatology and Immunology, University of Miami, Leonard M Miller School of Medicine

Carlos J Lozada, MD is a member of the following medical societies: American College of Physicians, American College of Rheumatology

Disclosure: Received honoraria from Pfizer for consulting; Received grant/research funds from AbbVie for other; Received honoraria from Heel for consulting.

Acknowledgements

The authors gratefully acknowledge the contributions of Amiel Tokayer, MD.

References
  1. Negrini S, Pappalardo F, Murdaca G, Indiveri F, Puppo F. The antiphospholipid syndrome: from pathophysiology to treatment. Clin Exp Med. 2016 Jun 22. [Medline].

  2. Giannokopolous B, Krilis S. The Pathogenesis of the Antiphospholipid Sydrome. N Engl J Med. 03/13. 368:1033-1044.

  3. Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med. 2004 Nov. 10(11):1222-6. [Medline].

  4. Marcantoni C, Emmanuele C, Scolari F. Renal involvement in primary antiphospholipid syndrome. J Nephrol. 2016 May 19. [Medline].

  5. Nalli C, Andreoli L, Casu C, Tincani A. Management of recurrent thrombosis in antiphospholipid syndrome. Curr Rheumatol Rep. 2014 Mar. 16(3):405. [Medline].

  6. Gómez-Puerta JA, Cervera R. Diagnosis and classification of the antiphospholipid syndrome. J Autoimmun. 2014 Feb-Mar. 48-49:20-5. [Medline].

  7. Lockshin MD. Update on antiphospholipid syndrome. Bull NYU Hosp Jt Dis. 2008. 66(3):195-7. [Medline].

  8. Barbhaiya M, Erkan D. Top 10 clinical research developments in antiphospholipid syndrome. Curr Rheumatol Rep. 2013 Oct. 15(10):367. [Medline].

  9. Avcin T, Cimaz R, Silverman ED, Cervera R, Gattorno M, Garay S, et al. Pediatric antiphospholipid syndrome: clinical and immunologic features of 121 patients in an international registry. Pediatrics. 2008 Nov. 122(5):e1100-7. [Medline].

  10. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006 Feb. 4(2):295-306. [Medline].

  11. Cohen D, Berger SP, Steup-Beekman GM, Bloemenkamp KW, Bajema IM. Diagnosis and management of the antiphospholipid syndrome. BMJ. 2010 May 14. 340:c2541. [Medline].

  12. Galli M, Luciani D, Bertolini G. Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: a systematic review of the literature. Blood. 2003. 101(5):1827-1832. [Medline].

  13. Lambert M, Ferrard-Sasson G, Dubucquoi S, Hachulla E, Prin L, Hatron PY, et al. Diluted Russell viper-venom time improves identification of antiphospholipid syndrome in a lupus anticoagulant-positive patient population. Thromb Haemost. 2009 Mar. 101(3):577-81. [Medline].

  14. Nayfe R, Uthman I, Aoun J, Saad Aldin E, Merashli M, Khamashta MA. Seronegative antiphospholipid syndrome. Rheumatology (Oxford). 2013 Aug. 52(8):1358-67. [Medline].

  15. Chighizola CB, Gerosa M, Meroni PL. New tests to detect antiphospholipid antibodies: anti-domain I beta-2-glycoprotein-I antibodies. Curr Rheumatol Rep. 2014 Feb. 16(2):402. [Medline].

  16. Erkan D, Aguiar CL, Andrade D, Cohen H, Cuadrado MJ, Danowski A. 14th International Congress on Antiphospholipid Antibodies: task force report on antiphospholipid syndrome treatment trends. Autoimmun Rev. 2014 Jun. 13(6):685-96. [Medline].

  17. Committee on Practice Bulletins—Obstetrics, American College of Obstetricians and Gynecologists. Practice Bulletin No. 132: Antiphospholipid syndrome. Obstet Gynecol. 2012 Dec. 120 (6):1514-21. [Medline].

  18. Kazzaz NM, McCune WJ, Knight JS. Treatment of catastrophic antiphospholipid syndrome. Curr Opin Rheumatol. 2016 May. 28 (3):218-27. [Medline].

  19. Klack K, de Carvalho JF. Dietetic issues in antiphospholipid syndrome. Rheumatol Int. 2011 Dec 23. [Medline].

  20. Laskin CA, Spitzer KA, Clark CA, Crowther MR, Ginsberg JS, Hawker GA, et al. Low molecular weight heparin and aspirin for recurrent pregnancy loss: results from the randomized, controlled HepASA Trial. J Rheumatol. 2009 Feb. 36(2):279-87. [Medline].

  21. Heilmann L, Schorch M, Hahn T, Adasz G, Schilberz K, Adiguzel C, et al. Pregnancy outcome in women with antiphospholipid antibodies: report on a retrospective study. Semin Thromb Hemost. 2008 Nov. 34(8):794-802. [Medline].

  22. Lonze BE, Zachary AA, Magro CM, Desai NM, Orandi BJ, Dagher NN. Eculizumab prevents recurrent antiphospholipid antibody syndrome and enables successful renal transplantation. Am J Transplant. 2014 Feb. 14(2):459-65. [Medline].

  23. D'Cruz D. Renal manifestations of the antiphospholipid syndrome. Curr Rheumatol Rep. 2009 Feb. 11(1):52-60. [Medline].

  24. Cervera R, Serrano R, Pons-Estel GJ, Ceberio-Hualde L, Shoenfeld Y, de Ramón E. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis. 2014 Jan 24. [Medline].

  25. Ruffatti A, Del Ross T, Ciprian M, Nuzzo M, Rampudda M, Bertero MT, et al. Risk factors for a first thrombotic event in antiphospholipid antibody carriers. A multicentre, retrospective follow-up study. Ann Rheum Dis. 2009 Mar. 68(3):397-9. [Medline].

  26. Ernest JM, Marshburn PB, Kutteh WH. Obstetric antiphospholipid syndrome: an update on pathophysiology and management. Semin Reprod Med. 2011 Nov. 29(6):522-39. [Medline].

 
Previous
Next
 
Antiphospholipid syndrome. Livedo reticularis.
Antiphospholipid syndrome. Arterial thrombosis resulting in ischemia and necrosis of the foot.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.