Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Avascular Necrosis Workup

  • Author: Jeanne K Tofferi, MD, MPH, FACP; Chief Editor: Herbert S Diamond, MD  more...
 
Updated: Jun 16, 2016
 

Approach Considerations

No laboratory test findings specifically suggest or confirm the presence of avascular necrosis (AVN). Plain radiographic findings are unremarkable in early stages of AVN. Nevertheless, the American College of Radiology (ACR) considers x-ray of the pelvis and hips the most appropriate initial imaging study in patients at risk for AVN who present with hip pain.[16] If radiographs are normal or show femoral head lucencies suspicious for osteonecrosis, magnetic resonance imaging (MRI) of the hips without contrast is most appropriate.[16]

The ACR advises that MRI is the most sensitive and specific imaging modality for diagnosis and provides optimal evaluation of the likelihood of articular collapse. Involvement of greater than 30-50% of the femoral head, often in the sagittal plane, indicates significantly increased risk of articular collapse.[16]

Additional ACR recommendations include the following[16] :

  • Contrast-enhanced MRI may be needed to detect early osteonecrosis of the hip in pediatric patients, which is indicated by hypoperfusion
  • In patients with a contraindication for MRI, alternative imaging modalities are computed tomography (CT) or bone scintigraphy with single-photon emission CT (SPECT)

Histology is the criterion standard for diagnosis of AVN. However, bone biopsy is not routinely performed because of the availability of sensitive noninvasive tests such as MRI.

Next

Histologic Findings

Histology is the criterion standard for diagnosis of AVN, although it is usually unnecessary. The histologic specimen is usually obtained during surgery, although it is occasionally obtained during diagnostic bone biopsy. Histologic changes are observed in both cortical bone and bone marrow.

Necrosis of cortical bone is followed by a regenerative process in surrounding tissues. Increased osteoclastic activity occurs and removes necrotic bone and increased osteoblastic activity as a reparative process.

Bone marrow lesions are usually large. Edema, hemorrhage, fibrilloreticulosis, and hypocellularity are present. Adipocytes in marrow are replaced by eosinophilic debris.

Previous
Next

Staging

Several different staging systems have been developed and continue to be used. Ficat initially developed an AVN staging system based on radiologic findings. This staging system was revised after the widespread use of MRI in the workup of AVN. The staging system presented in the below table is based on the consensus of the Subcommittee of Nomenclature of the International Association on Bone Circulation and Bone Necrosis (ARCO: Association of Research Circulation Osseous). The most important consideration is collapse of the femoral head cortex. Repair and complete recovery may be possible prior to collapse. Afterward, the collapse is irreversible.

Table. Staging of Avascular Necrosis (Open Table in a new window)

StageClinical and Laboratory Findings
Stage 0
  • Patient is asymptomatic.
  • Radiography findings are normal.
  • Histology findings demonstrate osteonecrosis.
Stage I
  • Patient may or may not be symptomatic.
  • Radiography and CT scan findings are unremarkable.
  • AVN is considered likely based on MRI and bone scan results (may be subclassified by extent of involvement [see below]).
  • Histology findings are abnormal.
Stage II
  • Patient is symptomatic.
  • Plain radiography findings are abnormal and include osteopenia, osteosclerosis, or cysts.
  • Subchondral radiolucency is absent.
  • MRI findings are diagnostic.
Stage III
  • Patient is symptomatic.
  • Radiographic findings include subchondral lucency (crescent sign) and subchondral collapse.
  • Shape of the femoral head is generally preserved on radiographs and CT scans.
  • Subclassification depends on the extent of crescent, as follows:
    • Stage IIIa: Crescent is less than 15% of the articular surface.
    • Stage IIIb: Crescent is 15-30% of the articular surface.
    • Stage IIIc: Crescent is more than 30% of the articular surface.
Stage IV
  • Flattening or collapse of femoral head is present.
  • Joint space may be irregular.
  • CT scanning is more sensitive than radiography.
  • Subclassification depends on the extent of collapsed surface, as follows:
    • Stage IVa: Less than 15% of surface is collapsed.
    • Stage IVb: Approximately 15-30% of surface is collapsed.
    • Stage IVc: More than 30% of surface is collapsed.
Stage V
  • Radiography findings include narrowing of the joint space, osteoarthritis with sclerosis of acetabulum, and marginal osteophytes.
Stage VI
  • Findings include extensive destruction of the femoral head and joint.

 

Previous
Next

Radiography

Plain radiographic findings are unremarkable in early stages of AVN. Nevertheless, the American College of Radiology considers x-ray of the pelvis the most appropriate initial imaging study in patients at risk for AVN who present with hip pain.Both an anteroposterior view of the pelvis and a frog-leg lateral view of the hip are necessary, as articular collapse or cortical depression may be seen on only one of those projections.[16]

In children, the earliest radiographic findings of AVN include the following[16] :

  • Smaller ossific nucleus
  • Increased radiodensity
  • Subchondral fracture
  • Metaphyseal radiolucencies.

Subsequentl findings in pediatric patients include fragmentation, resorption, reossification, and remodeling of the femoral head and neck.[16]

In mild-to-moderate AVN, radiographs demonstrate sclerosis and changes in bone density. In advanced disease, bone deformities, such as flattening, subchondral radiolucent lines (crescent sign), and collapse of the femoral head, are evident (see images below).

Avascular necrosis in the femoral head resulting fAvascular necrosis in the femoral head resulting from corticosteroid therapy.
Avascular necrosis of the shoulder showing subchonAvascular necrosis of the shoulder showing subchondral radiolucent lines (crescent sign).
Previous
Next

Magnetic Resonance Imaging

MRI is the most sensitive and specific imaging procedure for AVN, of the hip with an overall sensitivity that exceeds 90%. The specificity of MRI is also very high. The use of gadolinium is particularly useful in early detection.

MRI findings of AVN include decreased signal intensity in the subchondral region on both T1- and T2-weighted images, suggesting edema (water signal) in early disease. This relatively nonspecific finding is often localized in the medial aspect of the femoral head. This abnormality is observed in 96% of cases.

The next stage is characterized by a reparative process (reactive zone) and shows low signal intensity on T1-weighted scans and high signal intensity on T2-weighted scans. This finding is diagnostic for AVN (see images below).

Avascular necrosis of both femoral heads. This T1-Avascular necrosis of both femoral heads. This T1-weighted image shows decreased signal intensity in both femoral heads.
MRI of the distal femur and proximal tibia. This TMRI of the distal femur and proximal tibia. This T2-weighted image shows increased signal intensity in the marrow.

Advanced AVN is characterized by deformity of the articular surface and by calcification, which are also easily detected with radiography and CT scanning.

Previous
Next

Radionuclide Bone Scan

In early AVN, osteoblastic activity and blood flow are increased; thus, the sensitivity of radionuclide bone scan is better than that of plain films at this stage.

The central area of decreased uptake is surrounded by an area of increased uptake. This phenomenon is known as the doughnut sign and indicates the reactive zone surrounding the necrotic area.

Limitations of bone scan include the following:

  • In early AVN, bone scan is less sensitive than MRI
  • Findings are nonspecific
  • Results are difficult to interpret if disease is bilateral; in unilateral disease, the healthy side can be used for comparison
Previous
Next

Computed Tomography

Computed tomography (CT) is not commonly used for assessment of osteonecrosis in pediatric patients. In adults, CT is used principally to provide information for surgical planning, by determining the severity and location of articular collapse and providing evidence of early secondary degenerative joint disease.[16]

CT scans show sclerosis in the central part of femoral head as an asterisk sign. Changes in the anterior part of the femoral head are easily observed

Previous
 
 
Contributor Information and Disclosures
Author

Jeanne K Tofferi, MD, MPH, FACP Assistant Chief, Department of Rheumatology, Walter Reed Army Medical Center

Jeanne K Tofferi, MD, MPH, FACP is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Lawrence H Brent, MD Associate Professor of Medicine, Jefferson Medical College of Thomas Jefferson University; Chair, Program Director, Department of Medicine, Division of Rheumatology, Albert Einstein Medical Center

Lawrence H Brent, MD is a member of the following medical societies: American Association for the Advancement of Science, American Association of Immunologists, American College of Physicians, American College of Rheumatology

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Janssen<br/>Serve(d) as a speaker or a member of a speakers bureau for: Abbvie; Genentech; Pfizer; Questcor.

Chief Editor

Herbert S Diamond, MD Visiting Professor of Medicine, Division of Rheumatology, State University of New York Downstate Medical Center; Chairman Emeritus, Department of Internal Medicine, Western Pennsylvania Hospital

Herbert S Diamond, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American College of Rheumatology, American Medical Association, Phi Beta Kappa

Disclosure: Nothing to disclose.

Additional Contributors

Bryan L Martin, DO Associate Dean for Graduate Medical Education, Designated Institutional Official, Associate Medical Director, Director, Allergy Immunology Program, Professor of Medicine and Pediatrics, Ohio State University College of Medicine

Bryan L Martin, DO is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American College of Allergy, Asthma and Immunology, American College of Osteopathic Internists, American College of Physicians, American Medical Association, American Osteopathic Association

Disclosure: Nothing to disclose.

Acknowledgements

William Gilliland, MD, MPHE, FACP, FACR Staff Rheumatologist, Walter Reed Army Medical Center; Professor of Medicine, Assistant Dean of Curriculum, Uniformed Services University of the Health Sciences

Disclosure: Nothing to disclose.

References
  1. Bose VC, Baruah BD. Resurfacing arthroplasty of the hip for avascular necrosis of the femoral head: a minimum follow-up of four years. J Bone Joint Surg Br. 2010 Jul. 92(7):922-8. [Medline].

  2. Steffen RT, Athanasou NA, Gill HS, Murray DW. Avascular necrosis associated with fracture of the femoral neck after hip resurfacing: histological assessment of femoral bone from retrieval specimens. J Bone Joint Surg Br. 2010 Jun. 92(6):787-93. [Medline].

  3. Woo SB, Hellstein JW, Kalmar JR. Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med. 2006 May 16. 144(10):753-61. [Medline].

  4. Qi WX, Tang LN, He AN, Yao Y, Shen Z. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int J Clin Oncol. 2014 Apr. 19(2):403-10. [Medline].

  5. Kawai K, Tamaki A, Hirohata K. Steroid-induced accumulation of lipid in the osteocytes of the rabbit femoral head. A histochemical and electron microscopic study. J Bone Joint Surg Am. 1985 Jun. 67(5):755-63. [Medline].

  6. Wang GJ, Sweet DE, Reger SI, et al. Fat-cell changes as a mechanism of avascular necrosis of the femoral head in cortisone-treated rabbits. J Bone Joint Surg Am. 1977 Sep. 59(6):729-35. [Medline].

  7. Bagan JV, Murillo J, Jimenez Y, et al. Avascular jaw osteonecrosis in association with cancer chemotherapy: series of 10 cases. J Oral Pathol Med. 2005 Feb. 34(2):120-3. [Medline].

  8. Khan AA, Sándor GK, Dore E, Morrison AD, Alsahli M, Amin F, et al. Bisphosphonate associated osteonecrosis of the jaw. J Rheumatol. 2009 Mar. 36(3):478-90. [Medline].

  9. Ninomiya S. An epidemiological survey of idiopathic avascular necrosis of the femoral head in Japan. Annual Report of Japanese Investigation Committee for Intractable Disease. 1989.

  10. Aaron RK, Voisinet A, Racine J, Ali Y, Feller ER. Corticosteroid-associated avascular necrosis: dose relationships and early diagnosis. Ann N Y Acad Sci. 2011 Dec. 1240(1):38-46. [Medline].

  11. Lawson-Ayayi S, Bonnet F, Bernardin E, et al. Avascular necrosis in HIV-infected patients: a case-control study from the Aquitaine Cohort, 1997-2002, France. Clin Infect Dis. 2005 Apr 15. 40(8):1188-93. [Medline].

  12. Mehta P, Nelson M, Brand A, Boag F. Avascular necrosis in HIV. Rheumatol Int. 2013 Jan. 33(1):235-8. [Medline].

  13. Enright H, Haake R, Weisdorf D. Avascular necrosis of bone: a common serious complication of allogeneic bone marrow transplantation. Am J Med. 1990 Dec. 89(6):733-8. [Medline].

  14. Fink JC, Leisenring WM, Sullivan KM, et al. Avascular necrosis following bone marrow transplantation: a case-control study. Bone. 1998 Jan. 22(1):67-71. [Medline].

  15. Diz P, López-Cedrún JL, Arenaz J, Scully C. Denosumab-related osteonecrosis of the jaw. J Am Dent Assoc. 2012 Sep. 143(9):981-4. [Medline].

  16. [Guideline] Murphey MD, Roberts CC, Bencardino JT, Appel M, Arnold E, Chang EY, et al. ACR Appropriateness Criteria Osteonecrosis of the Hip. J Am Coll Radiol. 2016 Feb. 13 (2):147-55. [Medline].

  17. Luo RB, Lin T, Zhong HM, Yan SG, Wang JA. Evidence for using alendronate to treat adult avascular necrosis of the femoral head: a systematic review. Med Sci Monit. 2014 Nov 26. 20:2439-47. [Medline].

  18. Pritchett JW. Statin therapy decreases the risk of osteonecrosis in patients receiving steroids. Clin Orthop. 2001 May. (386):173-8. [Medline].

  19. Wang CJ, Cheng JH, Huang CC, Yip HK, Russo S. Extracorporeal shockwave therapy for avascular necrosis of femoral head. Int J Surg. 2015 Dec. 24 (Pt B):184-7. [Medline].

  20. Gao F, Sun W, Li Z, Guo W, Wang W, Cheng L, et al. High-Energy Extracorporeal Shock Wave for Early Stage Osteonecrosis of the Femoral Head: A Single-Center Case Series. Evid Based Complement Alternat Med. 2015. 2015:468090. [Medline].

  21. Van Laere C, Mulier M, Simon JP, et al. Core decompression for avascular necrosis of the femoral head. Acta Orthop Belg. 1998 Sep. 64(3):269-72. [Medline].

  22. Aldridge JM 3rd, Urbaniak JR. Avascular necrosis of the femoral head: role of vascularized bone grafts. Orthop Clin North Am. 2007 Jan. 38(1):13-22, v. [Medline].

  23. Hasegawa Y, Iwata H, Torii S, et al. Vascularized pedicle bone-grafting for nontraumatic avascular necrosis of the femoral head. A 5- to 11-year follow-up. Arch Orthop Trauma Surg. 1997. 116(5):251-8. [Medline].

  24. Urbaniak JR, Coogan PG, Gunneson EB, et al. Treatment of osteonecrosis of the femoral head with free vascularized fibular grafting. A long-term follow-up study of one hundred and three hips. J Bone Joint Surg Am. 1995 May. 77(5):681-94. [Medline].

  25. Zuo W, Sun W, Zhao D, Gao F, Su Y, Li Z. Investigating Clinical Failure of Bone Grafting through a Window at the Femoral Head Neck Junction Surgery for the Treatment of Osteonecrosis of the Femoral Head. PLoS One. 2016. 11 (6):e0156903. [Medline]. [Full Text].

  26. Sugano N, Takaoka K, Ohzono K, et al. Rotational osteotomy for non-traumatic avascular necrosis of the femoral head. J Bone Joint Surg Br. 1992 Sep. 74(5):734-9. [Medline].

  27. Cheung KW, Chiu KH, Chung KY. Long-term result of cementless femoral stem in avascular necrosis of the hip. Hip Int. 2014 Sep 1. [Medline].

  28. Gangji V, Hauzeur JP. Cellular-based therapy for osteonecrosis. Orthop Clin North Am. 2009 Apr. 40(2):213-21. [Medline].

  29. Lau RL, Perruccio AV, Evans HM, Mahomed SR, Mahomed NN, Gandhi R. Stem cell therapy for the treatment of early stage avascular necrosis of the femoral head: a systematic review. BMC Musculoskelet Disord. 2014 May 16. 15:156. [Medline]. [Full Text].

  30. Hernigou P, Trousselier M, Roubineau F, Bouthors C, Chevallier N, Rouard H, et al. Stem Cell Therapy for the Treatment of Hip Osteonecrosis: A 30-Year Review of Progress. Clin Orthop Surg. 2016 Mar. 8 (1):1-8. [Medline]. [Full Text].

  31. Goker B, Block JA. Risk of contralateral avascular necrosis (AVN) after total hip arthroplasty (THA) for non-traumatic AVN. Rheumatol Int. 2006 Jan. 26(3):215-9. [Medline].

  32. Agarwala S, Jain D, Joshi VR, et al. Efficacy of alendronate, a bisphosphonate, in the treatment of AVN of the hip. A prospective open-label study. Rheumatology (Oxford). 2005 Mar. 44(3):352-9. [Medline].

  33. Lai KA, Shen WJ, Yang CY, et al. The use of alendronate to prevent early collapse of the femoral head in patients with nontraumatic osteonecrosis. A randomized clinical study. J Bone Joint Surg Am. 2005 Oct. 87(10):2155-9. [Medline].

  34. [Guideline] Aldridge JM 3rd, Urbaniak JR. Avascular necrosis of the femoral head: etiology, pathophysiology, classification, and current treatment guidelines. Am J Orthop. 2004 Jul. 33(7):327-32. [Medline].

  35. Allen MR, Burr DB. The pathogenesis of bisphosphonate-related osteonecrosis of the jaw: so many hypotheses, so few data. J Oral Maxillofac Surg. 2009 May. 67(5 Suppl):61-70. [Medline].

  36. Arce K, Assael LA, Weissman JL, Markiewicz MR. Imaging findings in bisphosphonate-related osteonecrosis of jaws. J Oral Maxillofac Surg. 2009 May. 67(5 Suppl):75-84. [Medline].

  37. Assouline-Dayan Y, Chang C, Greenspan A, et al. Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum. 2002 Oct. 32(2):94-124. [Medline].

  38. Bachiller FG, Caballer AP, Portal LF. Avascular necrosis of the femoral head after femoral neck fracture. Clin Orthop Relat Res. 2002 Jun. 87-109. [Medline].

  39. Bernasek TL, Stahl JL, Pupello D. Pyrolytic carbon endoprosthetic replacement for osteonecrosis and femoral fracture of the hip: a pilot study. Clin Orthop Relat Res. 2009 Jul. 467(7):1826-32. [Medline]. [Full Text].

  40. Dodson TB. Intravenous bisphosphonate therapy and bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg. 2009 May. 67(5 Suppl):44-52. [Medline].

  41. Dudkiewicz I, Covo A, Salai M, et al. Total hip arthroplasty after avascular necrosis of the femoral head: does etiology affect the results?. Arch Orthop Trauma Surg. 2004 Mar. 124(2):82-5. [Medline].

  42. Freiberger JJ. Utility of hyperbaric oxygen in treatment of bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg. 2009 May. 67(5 Suppl):96-106. [Medline].

  43. Gliklich R, Wilson J. Epidemiology of bisphosphonate-related osteonecrosis of the jaws: the utility of a national registry. J Oral Maxillofac Surg. 2009 May. 67(5 Suppl):71-4. [Medline].

  44. Hasse B, Ledergerber B, Egger M, Flepp M, Bachmann S, Bernasconi E, et al. Antiretroviral treatment and osteonecrosis in patients of the Swiss HIV Cohort Study: a nested case-control study. AIDS Res Hum Retroviruses. 2004 Sep. 20(9):909-15. [Medline].

  45. Jones LC, Hungerford MW, Khanuja HS, Hungerford DS. Outcome measures for evaluation of treatments for osteonecrosis. Orthop Clin North Am. 2009 Apr. 40(2):179-91. [Medline].

  46. Kunchur R, Need A, Hughes T, Goss A. Clinical investigation of C-terminal cross-linking telopeptide test in prevention and management of bisphosphonate-associated osteonecrosis of the jaws. J Oral Maxillofac Surg. 2009 Jun. 67(6):1167-73. [Medline].

  47. Martí-Carvajal AJ, Solà I, Agreda-Pérez LH. Treatment for avascular necrosis of bone in people with sickle cell disease. Cochrane Database Syst Rev. 2014 Jul 10. 7:CD004344. [Medline].

  48. Roposch A, Stöhr KK, Dobson M. The effect of the femoral head ossific nucleus in the treatment of developmental dysplasia of the hip. A meta-analysis. J Bone Joint Surg Am. 2009 Apr. 91(4):911-8. [Medline].

Previous
Next
 
Avascular necrosis in the femoral head resulting from corticosteroid therapy.
Avascular necrosis of the shoulder showing subchondral radiolucent lines (crescent sign).
Avascular necrosis of both femoral heads. This T1-weighted image shows decreased signal intensity in both femoral heads.
MRI of the distal femur and proximal tibia. This T2-weighted image shows increased signal intensity in the marrow.
Table. Staging of Avascular Necrosis
StageClinical and Laboratory Findings
Stage 0
  • Patient is asymptomatic.
  • Radiography findings are normal.
  • Histology findings demonstrate osteonecrosis.
Stage I
  • Patient may or may not be symptomatic.
  • Radiography and CT scan findings are unremarkable.
  • AVN is considered likely based on MRI and bone scan results (may be subclassified by extent of involvement [see below]).
  • Histology findings are abnormal.
Stage II
  • Patient is symptomatic.
  • Plain radiography findings are abnormal and include osteopenia, osteosclerosis, or cysts.
  • Subchondral radiolucency is absent.
  • MRI findings are diagnostic.
Stage III
  • Patient is symptomatic.
  • Radiographic findings include subchondral lucency (crescent sign) and subchondral collapse.
  • Shape of the femoral head is generally preserved on radiographs and CT scans.
  • Subclassification depends on the extent of crescent, as follows:
    • Stage IIIa: Crescent is less than 15% of the articular surface.
    • Stage IIIb: Crescent is 15-30% of the articular surface.
    • Stage IIIc: Crescent is more than 30% of the articular surface.
Stage IV
  • Flattening or collapse of femoral head is present.
  • Joint space may be irregular.
  • CT scanning is more sensitive than radiography.
  • Subclassification depends on the extent of collapsed surface, as follows:
    • Stage IVa: Less than 15% of surface is collapsed.
    • Stage IVb: Approximately 15-30% of surface is collapsed.
    • Stage IVc: More than 30% of surface is collapsed.
Stage V
  • Radiography findings include narrowing of the joint space, osteoarthritis with sclerosis of acetabulum, and marginal osteophytes.
Stage VI
  • Findings include extensive destruction of the femoral head and joint.
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.