Medscape is available in 5 Language Editions – Choose your Edition here.



  • Author: Chirag Dave, MD; Chief Editor: Bradley Fields Schwartz, DO, FACS  more...
Updated: May 17, 2016

Practice Essentials

Nephrolithiasis specifically refers to calculi in the kidneys, but renal calculi and ureteral calculi (ureterolithiasis) are often discussed in conjunction. The majority of renal calculi contain calcium. The pain generated by renal colic is primarily caused by dilation, stretching, and spasm because of the acute ureteral obstruction.

Signs and symptoms

The classic presentation for a patient with acute renal colic is the sudden onset of severe pain originating in the flank and radiating inferiorly and anteriorly; at least 50% of patients will also have nausea and vomiting. Patients with urinary calculi may report pain, infection, or hematuria. Patients with small, nonobstructing stones or those with staghorn calculi may be asymptomatic or experience moderate and easily controlled symptoms.

The location and characteristics of pain in nephrolithiasis include the following:

  • Stones obstructing ureteropelvic junction: Mild to severe deep flank pain without radiation to the groin; irritative voiding symptoms (eg, frequency, dysuria); suprapubic pain, urinary frequency/urgency, dysuria, stranguria, bowel symptoms
  • Stones within ureter: Abrupt, severe, colicky pain in the flank and ipsilateral lower abdomen; radiation to testicles or vulvar area; intense nausea with or without vomiting
  • Upper ureteral stones: Radiate to flank or lumbar areas
  • Midureteral calculi: Radiate anteriorly and caudally
  • Distal ureteral stones: Radiate into groin or testicle (men) or labia majora (women)
  • Stones passed into bladder: Mostly asymptomatic; rarely, positional urinary retention

See Clinical Presentation for more detail.


The diagnosis of nephrolithiasis is often made on the basis of clinical symptoms alone, although confirmatory tests are usually performed.

Examination in patients with nephrolithiasis includes the following findings:

  • Dramatic costovertebral angle tenderness; pain can move to upper/lower abdominal quadrant with migration of ureteral stone
  • Generally unremarkable abdominal evaluation: Possibly hypoactive bowel sounds; usually absence of peritoneal signs; possibly painful testicles but normal-appearing
  • Constant body positional movements (eg, writhing, pacing)
  • Tachycardia
  • Hypertension
  • Microscopic hematuria


The European Association of Urology recommends the following laboratory tests in all patients with an acute stone episode[1] :

  • Urinary sediment/dipstick test: To demonstrate blood cells, with a test for bacteriuria (nitrite) and urine culture in case of a positive reaction
  • Serum creatinine level: To measure renal function

Other laboratory tests that may be helpful include the following:

  • CBC with differential in febrile patients
  • Serum electrolyte assessment in vomiting patients (eg, sodium, potassium, calcium, PTH, phosphorus)
  • Serum and urinary pH level: May provide insight regarding patient’s renal function and type of calculus (eg, calcium oxalate, uric acid, cystine), respectively
  • Microscopic urinalysis
  • 24-Hour urine profile

Imaging studies

The following imaging studies are used in the evaluation of nephrolithiasis:

  • Noncontrast abdominopelvic CT scan: The imaging modality of choice for assessment of urinary tract disease, especially acute renal colic
  • Renal ultrasonography: To determine presence of a renal stone and the presence of hydronephrosis or ureteral dilation; used alone or in combination with plain abdominal radiography
  • Plain abdominal radiograph (flat plate or KUB): To assess total stone burden, as well as size, shape, composition, location of urinary calculi; often used in conjunction with renal ultrasonography or CT scanning
  • IVP (urography) (historically, the criterion standard): For clear visualization of entire urinary system, identification of specific problematic stone among many pelvic calcifications, demonstration of affected and contralateral kidney function
  • Plain renal tomography: For monitoring a difficult-to-observe stone after therapy, clarifying stones not clearly detected or identified with other studies, finding small renal calculi, and determining number of renal calculi present before instituting a stone-prevention program
  • Retrograde pyelography: Most precise imaging method for determining the anatomy of the ureter and renal pelvis; for making definitive diagnosis of any ureteral calculus
  • Nuclear renal scanning: To objectively measure differential renal function, especially in a dilated system for which the degree of obstruction is in question; reasonable study in pregnant patients, in whom radiation exposure must be limited

See Workup for more detail.


Supportive care and pharmacotherapy

Medical treatment of nephrolithiasis involves supportive care and administration of agents, such as the following:

  • IV hydration
  • Nonnarcotic analgesics (eg, APAP)
  • PO/IV narcotic analgesics (eg, codeine, butorphanol, morphine sulfate, oxycodone/APAP, hydrocodone/APAP, meperidine, nalbuphine)
  • NSAIDS (eg, ketorolac, ketorolac intranasal, ibuprofen)
  • Uricosuric agents (eg, allopurinol)
  • Antiemetics (eg, metoclopramide)
  • Antidiuretics (eg, DDAVP)
  • Antibiotics (eg, ampicillin, gentamicin, ticarcillin/clavulanic acid, ciprofloxacin, levofloxacin, ofloxacin)
  • Alkalinizing agents (eg, potassium citrate, sodium bicarbonate): For uric acid and cysteine calculi
  • Corticosteroids (eg, prednisone, prednisolone)
  • Calcium channel blockers (eg, nifedipine)
  • Alpha blockers (eg, tamsulosin, terazosin)

Surgical option

Stones that are 7 mm and larger are unlikely to pass spontaneously and require some type of surgical procedure, such as the following:

  • Stent placement
  • Percutaneous nephrostomy
  • Extracorporeal shockwave lithotripsy (ESWL)
  • Ureteroscopy
  • Percutaneous nephrostolithotomy
  • Open nephrostomy
  • Anatrophic nephrolithotomy

See Treatment and Medication for more detail.



Nephrolithiasis is a common disease that affects 1 in 11 people in the United States.[2] It is estimated to produce medical costs of $2.1 billion per year in the United States.[3] Nephrolithiasis specifically refers to calculi in the kidneys, but this article discusses both renal calculi (see the first image below) and ureteral calculi (ureterolithiasis; see the second image below). Ureteral calculi almost always originate in the kidneys, although they may continue to grow once they lodge in the ureter.

Small renal calculus that would likely respond to Small renal calculus that would likely respond to extracorporeal shockwave lithotripsy.
Distal ureteral stone observed through a small, ri Distal ureteral stone observed through a small, rigid ureteroscope prior to ballistic lithotripsy and extraction. The small caliber and excellent optics of today's endoscopes greatly facilitate minimally invasive treatment of urinary stones.

Urinary tract stone disease has been a part of the human condition for millennia; in fact, bladder and kidney stones have even been found in Egyptian mummies. Some of the earliest recorded medical texts and figures depict the treatment of urinary tract stone disease.

Acute renal colic is probably the most excruciatingly painful event a person can endure. Striking without warning, the pain is often described as being worse than childbirth, broken bones, gunshot wounds, burns, or surgery. Renal colic affects approximately 1.2 million people each year and accounts for approximately 1% of all hospital admissions.

Most active emergency departments (EDs) manage patients with acute renal colic every day, depending on the hospital’s patient population. Initial management consists of proper diagnosis, prompt initial treatment, and appropriate consultations, but concurrently efforts should be directed towards patient education, including initial preventive therapy measures.

Although nephrolithiasis is not a common cause of renal failure, certain problems, such as preexisting azotemia and solitary functional kidneys, clearly present a higher risk of additional renal damage. Other high-risk factors include diabetes, struvite and/or staghorn calculi, and various hereditary diseases such as primary hyperoxaluria, Dent disease, cystinuria, and polycystic kidney disease. Spinal cord injuries and similar functional or anatomical urological anomalies also predispose patients with kidney stones to an increased risk of renal failure.

Recurrent obstruction, especially when associated with infection and tubular epithelial or renal interstitial cell damage from microcrystals, may activate the fibrogenic cascade, which is mainly responsible for the actual loss of functional renal parenchyma.

For other discussions on urolithiasis and nephrolithiasis, see Pediatric Urolithiasis, as well as Imaging Urinary Calculi, Hypercalciuria, Hyperoxaluria, and Hypocitraturia.



The basic anatomy of the ureter is as follows (see the image below).

Nephrolithiasis: acute renal colic. Anatomy of the Nephrolithiasis: acute renal colic. Anatomy of the ureter.

Most of the pain receptors of the upper urinary tract responsible for the perception of renal colic are located submucosally in the renal pelvis, calices, renal capsule, and upper ureter. Acute distention seems to be more important in the development of the pain of acute renal colic than spasm, local irritation, or ureteral hyperperistalsis.

Stimulation of the peripelvic renal capsule causes flank pain, while stimulation of the renal pelvis and calices causes typical renal colic (see the image below). Mucosal irritation can be sensed in the renal pelvis to some degree by chemoreceptors, but this irritation is thought to play only a minor role in the perception of renal or ureteral colic.

Nephrolithiasis: acute renal colic. Renal colic an Nephrolithiasis: acute renal colic. Renal colic and flank pain.

Renal pain fibers are primarily preganglionic sympathetic nerves that reach spinal cord levels T-11 to L-2 through the dorsal nerve roots (see the images below). Aortorenal, celiac, and inferior mesenteric ganglia are also involved. Spinal transmission of renal pain signals occurs primarily through the ascending spinothalamic tracts.

Nephrolithiasis: acute renal colic. Nerve supply o Nephrolithiasis: acute renal colic. Nerve supply of the kidney.
Nephrolithiasis: acute renal colic. Nerve supply o Nephrolithiasis: acute renal colic. Nerve supply of the kidney.

In the lower ureter, pain signals are also distributed through the genitofemoral and ilioinguinal nerves (see the image below). The nervi erigentes, which innervate the intramural ureter and bladder, are responsible for some of the bladder symptoms that often accompany an intramural ureteral calculus.

Nephrolithiasis: acute renal colic. Distribution o Nephrolithiasis: acute renal colic. Distribution of nerves in the flank.


Formation of stones

Urinary tract stone disease is likely caused by two basic phenomena. The first phenomenon is supersaturation of the urine by stone-forming constituents, including calcium, oxalate, and uric acid. Crystals or foreign bodies can act as nidi, upon which ions from the supersaturated urine form microscopic crystalline structures. The resulting calculi give rise to symptoms when they become impacted within the ureter as they pass toward the urinary bladder.

The overwhelming majority of renal calculi contain calcium. Uric acid calculi and crystals of uric acid, with or without other contaminating ions, comprise the bulk of the remaining minority. Other, less frequent stone types include cystine, ammonium acid urate, xanthine, dihydroxyadenine, and various rare stones related to precipitation of medications in the urinary tract. Supersaturation of the urine is likely the underlying cause of uric and cystine stones, but calcium-based stones (especially calcium oxalate stones) may have a more complex etiology.

The second phenomenon, which is most likely responsible for calcium oxalate stones, is deposition of stone material on a renal papillary calcium phosphate nidus, typically a Randall plaque (which always consists of calcium phosphate). Evan et al proposed this model based on evidence accumulating from several laboratories.[4]

Calcium phosphate precipitates in the basement membrane of the thin loops of Henle, erodes into the interstitium, and then accumulates in the subepithelial space of the renal papilla. The subepithelial deposits, which have long been known as Randall plaques, eventually erode through the papillary urothelium. Stone matrix, calcium phosphate, and calcium oxalate gradually deposit on the substrate to create a urinary calculus.

Development of renal colic pain and renal damage

The colicky-type pain known as renal colic usually begins in the upper lateral midback over the costovertebral angle and occasionally subcostally. It radiates inferiorly and anteriorly toward the groin. The pain generated by renal colic is primarily caused by the dilation, stretching, and spasm caused by the acute ureteral obstruction. (When a severe but chronic obstruction develops, as in some types of cancer, it is usually painless.)

In the ureter, an increase in proximal peristalsis through activation of intrinsic ureteral pacemakers may contribute to the perception of pain. Muscle spasm, increased proximal peristalsis, local inflammation, irritation, and edema at the site of obstruction may contribute to the development of pain through chemoreceptor activation and stretching of submucosal free nerve endings.

The term "renal colic" is actually a misnomer, because this pain tends to remain constant, whereas intestinal or biliary colic is usually somewhat intermittent and often comes in waves. The pattern of the pain depends on the individual’s pain threshold and perception and on the speed and degree of the changes in hydrostatic pressure within the proximal ureter and renal pelvis. Ureteral peristalsis, stone migration, and tilting or twisting of the stone with subsequent intermittent obstructions may cause exacerbation or renewal of the renal colic pain.

The severity of the pain depends on the degree and site of the obstruction, not on the size of the stone. A patient can often point to the site of maximum tenderness, which is likely to be the site of the ureteral obstruction (see the image below).

Nephrolithiasis: acute renal colic. Distribution o Nephrolithiasis: acute renal colic. Distribution of renal and ureteral pain.

A stone moving down the ureter and causing only intermittent obstruction actually may be more painful than a stone that is motionless. A constant obstruction, even if high grade, allows for various autoregulatory mechanisms and reflexes, interstitial renal edema, and pyelolymphatic and pyelovenous backflow to help diminish the renal pelvic hydrostatic pressure, which gradually helps reduce the pain.

The interstitial renal edema produced stretches the renal capsule, enlarges the kidney (ie, nephromegaly), and increases renal lymphatic drainage. (Increased capillary permeability facilitates this edema.) It may also reduce the radiographic density of the affected kidney’s parenchyma when viewed on a noncontrast CT scan.

Distention of the renal pelvis initially stimulates ureteral hyperperistalsis, but this diminishes after 24 hours, as does renal blood flow. Peak hydrostatic renal pelvis pressure is attained within 2-5 hours after a complete obstruction.

Within the first 90 minutes of a complete ureteral obstruction, afferent preglomerular arteriolar vasodilation occurs, which temporarily increases renal blood flow. Between 90 minutes and 5 hours after the obstruction, renal blood flow starts to decrease while intraureteral pressure continues to rise. By 5 hours after a complete obstruction, both renal blood flow and intraluminal ureteral pressure decrease on the affected side.

Renal blood flow decreases to approximately 50% of normal baseline levels after 72 hours, to 30% after 1 week, to 20% after 2 weeks, and to 12% after 8 weeks. By this point, intraureteral pressures have returned to normal, but the proximal ureteral dilation remains and ureteral peristalsis is minimal.

Interstitial edema of the affected kidney actually enhances fluid reabsorption, which helps to increase the renal lymphatic drainage to establish a new, relatively stable, equilibrium. At the same time, renal blood flow increases in the contralateral kidney as renal function decreases in the obstructed unit.

In summary, by 24 hours after a complete ureteral obstruction, the renal pelvic hydrostatic pressure has dropped because of (1) a reduction in ureteral peristalsis; (2) decreased renal arterial vascular flow, which causes a corresponding drop in urine production on the affected side; and (3) interstitial renal edema, which leads to a marked increase in renal lymphatic drainage.

Additionally, as the ureter proximal to the stone distends, some urine can sometimes flow around the obstruction, relieving the proximal hydrostatic pressure and establishing a stable, relatively painless equilibrium. These factors explain why severe renal colic pain typically lasts less than 24 hours in the absence of any infection or stone movement.

Whether calyceal stones cause pain continues to be controversial. In general, in the absence of infection, how a renal stone causes pain remains unclear, unless the stone also causes obstruction. Arguably, proving that a calyceal stone is causing an obstruction can be difficult. However, a stone trapped in a calyx plausibly could block the outflow tract from that calyx, causing an obstruction and subsequent pain.

Experimental studies in animals have suggested that renal damage may begin within 24 hours of a complete obstruction and that permanent kidney deterioration starts within 5-14 days. Whereas some practitioners wait several months for a stone to pass in an asymptomatic patient, others argue that permanent damage is occurring as long as intervention is delayed.

Based on personal experience and anecdotal cases, the author recommends waiting no longer than 4 weeks for a stone to pass spontaneously before considering intervention. Convincing asymptomatic patients of the need for surgical intervention may be difficult in the absence of a clear consensus in the urological community about the length of time to wait before surgical stone removal, fragmentation, or bypass.

If only a partial obstruction is present, the same changes occur, but to a lesser degree and over a longer period. Proximal ureteric and renal pelvic hydrostatic pressures tend to remain elevated longer, and ureteral peristalsis does not diminish as quickly. If the increased pressure is sufficient to establish a reasonable flow beyond the obstructing stone, glomerular filtration and renal blood flow approximates reference range baseline levels, although pain may be ongoing.



A low fluid intake, with a subsequent low volume of urine production, produces high concentrations of stone-forming solutes in the urine. This is an important, if not the most important, environmental factor in kidney stone formation. The exact nature of the tubular damage or dysfunction that leads to stone formation has not been characterized.

Most research on the etiology and prevention of urinary tract stone disease has been directed toward the role of elevated urinary levels of calcium, oxalate, and uric acid in stone formation, as well as reduced urinary citrate levels.

Hypercalciuria is the most common metabolic abnormality. Some cases of hypercalciuria are related to increased intestinal absorption of calcium (associated with excess dietary calcium and/or overactive calcium absorption mechanisms), some are related to excess resorption of calcium from bone (ie, hyperparathyroidism), and some are related to an inability of the renal tubules to properly reclaim calcium in the glomerular filtrate (renal-leak hypercalciuria).

Magnesium and especially citrate are important inhibitors of stone formation in the urinary tract. Decreased levels of these in the urine predispose to stone formation.

The following are the four main chemical types of renal calculi, which together are associated with more than 20 underlying etiologies:

  • Calcium stones
  • Struvite (magnesium ammonium phosphate) stones
  • Uric acid stones
  • Cystine stones

Stone analysis, together with serum and 24-hour urine metabolic evaluation, can identify an etiology in more than 95% of patients. Specific therapy can result in a remission rate of more than 80% and can decrease the individual recurrence rate by 90%. Therefore, emergency physicians should stress the importance of urologic follow-up, especially in patients with recurrent stones, solitary kidneys, or previous kidney or stone surgery and in all children.[5]

Calcium stones

Calcium stones account for 75% of renal calculi. Recent data suggest that a low-protein, low-salt diet may be preferable to a low-calcium diet in hypercalciuric stone formers for preventing stone recurrences.[6] Epidemiological studies have shown that the incidence of stone disease is inversely related to the magnitude of dietary calcium intake in first-time stone formers.

There is a trend in the urology community not to restrict dietary intake of calcium in recurrent stone formers. This is especially important for postmenopausal women in whom there is an increased concern for the development of osteoporosis. Calcium oxalate, calcium phosphate, and calcium urate are associated with the following disorders:

  • Hyperparathyroidism - Treated surgically or with orthophosphates if the patient is not a surgical candidate
  • Increased gut absorption of calcium - The most common identifiable cause of hypercalciuria, treated with calcium binders or thiazides plus potassium citrate
  • Renal calcium leak - Treated with thiazide diuretics
  • Renal phosphate leak - Treated with oral phosphate supplements
  • Hyperuricosuria - Treated with allopurinol, low purine diet, or alkalinizing agents such as potassium citrate
  • Hyperoxaluria - Treated with dietary oxalate restriction, oxalate binders, vitamin B-6, or orthophosphates
  • Hypocitraturia - Treated with potassium citrate
  • Hypomagnesuria - Treated with magnesium supplements

Struvite (magnesium ammonium phosphate) stones

Struvite stones account for 15% of renal calculi. They are associated with chronic urinary tract infection (UTI) with gram-negative, urease-positive organisms that split urea into ammonia, which then combines with phosphate and magnesium to crystalize into a calculus. Usual organisms include Proteus, Pseudomonas, and Klebsiella species. Escherichia coli is not capable of splitting urea and, therefore, is not associated with struvite stones. Because ammonia, a base, is produced during the catalytic process, the urine pH is typically greater than 7.

Underlying anatomical abnormalities that predispose patients to recurrent kidney infections should be sought and corrected. UTI does not resolve until stone is removed entirely.

Uric acid stones

Uric acid stones account for 6% of renal calculi. These are associated with urine pH less than 5.5, high purine intake (eg, organ meats, legumes, fish, meat extracts, gravies), or malignancy (ie, rapid cell turnover). Approximately 25% of patients with uric acid stone have gout.

Serum and 24-hour urine sample should be sent for creatinine and uric acid determination. If serum or urinary uric acid is elevated, the patient may be treated with allopurinol 300 mg daily. Patients with normal serum or urinary uric acid are best managed by alkali therapy alone.

Cystine stones

Cystine stones account for 2% of renal calculi. They arise because of an intrinsic metabolic defect resulting in failure of renal tubular reabsorption of cystine, ornithine, lysine, and arginine. Urine becomes supersaturated with cystine, with resultant crystal deposition.

Cystine stones are treated with a low-methionine diet (unpleasant), binders such as penicillamine or a-mercaptopropionylglycine, large urinary volumes, or alkalinizing agents. A 24-hour quantitative urinary cystine determination helps to titrate the dose of drug therapy to achieve a urinary cystine concentration of less than 300 mg/L.

Drug-induced stone disease

A number of medications or their metabolites can precipitate in urine causing stone formation. These include the following[7, 8, 9] :

  • Indinavir;
  • Atazanavir
  • Guaifenesin
  • Triamterene
  • Silicate (overuse of antacids containing magnesium silicate)
  • Sulfa drugs, including sulfasalazine, sulfadiazine, acetylsulfamethoxazole, acetylsulfasoxazole, and acetylsulfaguanidine


United States statistics

The lifetime prevalence of nephrolithiasis is approximately 12% for men and 7% for women in the United States, and it is rising. Having a family member with a history of stones doubles these rates. Approximately 30 million people are at risk in the United States. Roughly 2 million patients present on an outpatient basis with stone disease each year in the United States, which is a 40% increase from 1994.[3]

The likelihood that a white US male will develop stone disease by age 70 years is 1 in 8. Stones of the upper urinary tract are more common in the United States than in the rest of the world. Recurrence rates after the first stone episode are 14%, 35%, and 52% at 1, 5, and 10 years, respectively.

The increasing incidence of kidney stone disease in the United States seems to be related to the socioeconomic status of the patient population. The lower the economic status, the lower the likelihood of renal stones. Other parts of the world with lower standards of living tend to have lower incidences of kidney stones but have higher rates of bladder calculi.

Black people have a lower incidence of stones than white people, and people living in the South and Southwest have higher incidences of stones than people living in other parts of the United States. The increased incidence noted in the southeastern United States has prompted the use of the term “stone belt” for this region of the country.[10]

International statistics

Nephrolithiasis occurs in all parts of the world. The incidence of urinary tract stone disease in developed countries is similar to that in the United States; the annual incidence of urinary tract stones in the industrialized world is estimated to be 0.2%. Stone disease is rare in only a few areas, such as Greenland and the coastal areas of Japan. A lifetime risk of 2-5% has been noted for Asia, 8-15% for the West, and 20% for Saudi Arabia.

In developing countries, bladder calculi are more common than upper urinary tract calculi; the opposite is true in developed countries. These differences are believed to be diet-related.

Age distribution for nephrolithiasis

Most urinary calculi develop in persons aged 20-49 years. Peak incidence occurs in people aged 35-45 years, but the disease can affect anyone at any age. Patients in whom multiple recurrent stones form usually develop their first stones while in their second or third decade of life.

An initial stone attack after age 50 years is relatively uncommon. Nephrolithiasis in children is rare; approximately 5-10 children aged 10 months to 16 years are seen annually for the condition at a typical US pediatric referral center.

Sex distribution for nephrolithiasis

In general, urolithiasis is more common in males (male-to-female ratio of 3:1). Stones due to discrete metabolic/hormonal defects (eg, cystinuria, hyperparathyroidism) and stone disease in children are equally prevalent between the sexes. Stones due to infection (struvite calculi) are more common in women than in men. Female patients have a higher incidence of infected hydronephrosis.

Racial differences in incidence

Urinary tract calculi are far more common in Asians and whites than in Native Americans, Africans, African Americans, and some natives of the Mediterranean region. White males are affected 3-4 times more often than African American males, though African Americans have a higher incidence of infected ureteral calculi than whites. With uric acid stones, however, non-whites have a higher frequency of stone formation than whites. Some groups, such as the Hmong, have frequencies up to 50%.{ref80)

Although some differences may be attributable to geography (stones are more common in hot and dry areas) and diet, heredity also appears to be a factor. This is suggested by the finding that, in regions with both white and nonwhite populations, stone disease is much more common in whites.



Approximately 80-85% of stones pass spontaneously. Approximately 20% of patients require hospital admission because of unrelenting pain, inability to retain enteral fluids, proximal UTI, or inability to pass the stone.

The most morbid and potentially dangerous aspect of stone disease is the combination of urinary tract obstruction and upper urinary tract infection. Pyelonephritis, pyonephrosis, and urosepsis can ensue. Early recognition and immediate surgical drainage are necessary in these situations.

Because the minimally invasive modalities for stone removal are generally successful in removing calculi, the primary consideration in managing stones is not whether the stone can be removed but whether it can be removed in an uncomplicated manner with minimum morbidity.

The usually quoted recurrence rate for urinary calculi is 50% within 5 years and 70% or higher within 10 years, although a large, prospective study published in 1999 suggested that the recurrence rate may be somewhat lower at 25-30% over a 7.5-year period. Recurrence rates after an initial episode of ureterolithiasis have also been reported to be 14%, 35%, and 52% at 1, 5, and 10 years, respectively.

Metabolic evaluation and treatment are indicated for patients at greater risk for recurrence, including those who present with multiple stones, who have a personal or family history of previous stone formation, who present with stones at a younger age, or who have residual stones after treatment.

Medical therapy is generally effective at delaying (but perhaps not completely stopping) the tendency for stone formation. The most important aspect of medical therapy is maintaining a high fluid intake and subsequent high urinary volume. Without an adequate urinary volume, no amount of medical or dietary therapy is likely to be successful in preventing stone formation.

According to estimates, merely increasing fluid intake and regularly visiting a physician who advises increased fluids and dietary moderation can cut the stone recurrence rate by 60%. This phenomenon is known as the “stone clinic” effect. In contrast, optimal use of metabolic testing with proper evaluation and compliance with therapy can completely eliminate new stones in many patients and significantly reduces new stone formation in most patients.


Patient Education

A patient who tends to develop stones should be counseled to seek immediate medical attention if he or she experiences flank or abdominal pain or notes visible blood in the urine.

Although discovering the underlying cause of a patient’s stones and starting preventive therapy is not the primary responsibility of the physician treating a patient with acute renal colic (such measures are best addressed once the immediate problem has been addressed), this physician should, at the very least, educate the patient and family members about the availability of preventive testing and treatment. When properly performed and evaluated, preventive treatment plans can improve the situation in most patients with stones.

Note that failure to offer stone-prevention advice could actually be a source of medicolegal liability. Numerous patients have claimed they have not been told about stone-prevention options.

One anecdotal example from the practice of one of the editors is that of a 65-year-old man with a 5-year history of more than 60 stones. Although he underwent two open surgeries for stone removal, his stones were not evaluated for chemical composition. Eventually, the stones were analyzed and found to be pure uric acid. Although his uric acid excretion rate was normal, he had highly acidic urine, which led to the uric acid calculi formation. After starting oral therapy of allopurinol and potassium citrate, he remained free of stones for 10 years.

Even patients who develop single stones may be strongly motivated to follow a program for maximum kidney stone prophylaxis. Discussing the pros and cons of a comprehensive stone-prevention program with all patients who have documented kidney stone disease—not with just those who are obviously at high risk—may be prudent.

For patient education information, see the Kidneys and Urinary System Center, as well as Kidney Stones, Blood in the Urine, and Intravenous Pyelogram. In addition, numerous Internet sites offer kidney stone information, including the National Institutes of Health (NIH) and the Urology Care Foundation.

Contributor Information and Disclosures

Chirag Dave, MD Resident Physician, Department of Surgery (Urology), William Beaumont Health System

Chirag Dave, MD is a member of the following medical societies: American Academy of Family Physicians, American College of Physicians, American Urological Association

Disclosure: Nothing to disclose.


Sugandh Shetty, MD, FRCS Associate Professor of Urology, Oakland University William Beaumont School of Medicine; Attending Physician, Department of Urology, William Beaumont Hospital

Sugandh Shetty, MD, FRCS is a member of the following medical societies: American Urological Association

Disclosure: Nothing to disclose.

Kassem Faraj Oakland University William Beaumont School of Medicine

Kassem Faraj is a member of the following medical societies: American Medical Association, American Medical Student Association/Foundation, American Urological Association, Michigan State Medical Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Robert E O'Connor, MD, MPH Professor and Chair, Department of Emergency Medicine, University of Virginia Health System

Robert E O'Connor, MD, MPH is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, American Association for Physician Leadership, American Heart Association, Medical Society of Delaware, Society for Academic Emergency Medicine, Wilderness Medical Society, American Medical Association, National Association of EMS Physicians

Disclosure: Nothing to disclose.

Chief Editor

Bradley Fields Schwartz, DO, FACS Professor of Urology, Director, Center for Laparoscopy and Endourology, Department of Surgery, Southern Illinois University School of Medicine

Bradley Fields Schwartz, DO, FACS is a member of the following medical societies: American College of Surgeons, Society of Laparoendoscopic Surgeons, Society of University Urologists, Association of Military Osteopathic Physicians and Surgeons, American Urological Association, Endourological Society

Disclosure: Nothing to disclose.

Additional Contributors

David S Howes, MD Professor of Medicine and Pediatrics, Residency Program Director Emeritus, Section of Emergency Medicine, University of Chicago, University of Chicago, The Pritzker School of Medicine

David S Howes, MD is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Richard H Sinert, DO Professor of Emergency Medicine, Clinical Assistant Professor of Medicine, Research Director, State University of New York College of Medicine; Consulting Staff, Vice-Chair in Charge of Research, Department of Emergency Medicine, Kings County Hospital Center

Richard H Sinert, DO is a member of the following medical societies: American College of Physicians, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Sandy Craig, MD Residency Program Director, Carolinas Medical Center; Associate Professor, Department of Emergency Medicine, University of North Carolina at Chapel Hill School of Medicine

Sandy Craig, MD is a member of the following medical societies: Alpha Omega Alpha, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Stephen W Leslie, MD, FACS Founder and Medical Director, Lorain Kidney Stone Research Center; Associate Professor of Surgery, Creighton University School of Medicine, Chief of Urology, Creighton University Medical Center

Stephen W Leslie, MD, FACS is a member of the following medical societies: American College of Surgeons, American Urological Association, National Kidney Foundation, Ohio State Medical Association

Disclosure: Nothing to disclose.

J Stuart Wolf, Jr, MD, FACS David A Bloom Professor of Urology, Associate Chair for Urologic Surgical Services, Director, Division of Endourology and Stone Disease, Department of Urology, University of Michigan Medical School

J Stuart Wolf, Jr, MD, FACS is a member of the following medical societies: Catholic Medical Association, Endourological Society, Engineering and Urology Society, Society of Laparoendoscopic Surgeons, Society of University Urologists, Society of Urologic Oncology, American College of Surgeons, American Urological Association

Disclosure: Nothing to disclose.

  1. [Guideline] Turk C, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, et al. Guidelines on urolithiasis. European Association of Urology. Available at 2015; Accessed: May 16, 2016.

  2. Scales CD Jr, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol. 2012 Jul. 62 (1):160-5. [Medline]. [Full Text].

  3. Pearle MS, Calhoun EA, Curhan GC. Urologic diseases in America project: urolithiasis. J Urol. 2005 Mar. 173(3):848-57. [Medline].

  4. Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, et al. Mechanism of formation of human calcium oxalate renal stones on Randall's plaque. Anat Rec (Hoboken). 2007 Oct. 290(10):1315-23. [Medline].

  5. Chandhoke PS. Evaluation of the recurrent stone former. Urol Clin North Am. 2007 Aug. 34(3):315-22. [Medline].

  6. Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F, Maggiore U, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002 Jan 10. 346(2):77-84. [Medline].

  7. Russinko PJ, Agarwal S, Choi MJ, Kelty PJ. Obstructive nephropathy secondary to sulfasalazine calculi. Urology. 2003 Oct. 62(4):748. [Medline].

  8. Thomas A, Woodard C, Rovner ES, Wein AJ. Urologic complications of nonurologic medications. Urol Clin North Am. 2003 Feb. 30(1):123-31. [Medline].

  9. Whelan C, Schwartz BF. Bilateral guaifenesin ureteral calculi. Urology. 2004 Jan. 63(1):175-6. [Medline].

  10. Worcester EM, Coe FL. Nephrolithiasis. Prim Care. 2008 Jun. 35(2):369-91, vii. [Medline]. [Full Text].

  11. Moore CL, Bomann S, Daniels B, Luty S, Molinaro A, Singh D, et al. Derivation and validation of a clinical prediction rule for uncomplicated ureteral stone--the STONE score: retrospective and prospective observational cohort studies. BMJ. 2014 Mar 26. 348:g2191. [Medline]. [Full Text].

  12. Borrero E, Queral LA. Symptomatic abdominal aortic aneurysm misdiagnosed as nephroureterolithiasis. Ann Vasc Surg. 1988 Apr. 2(2):145-9. [Medline].

  13. Lindqvist K, Hellström M, Holmberg G, Peeker R, Grenabo L. Immediate versus deferred radiological investigation after acute renal colic: a prospective randomized study. Scand J Urol Nephrol. 2006. 40(2):119-24. [Medline].

  14. Bove P, Kaplan D, Dalrymple N, Rosenfield AT, Verga M, Anderson K, et al. Reexamining the value of hematuria testing in patients with acute flank pain. J Urol. 1999 Sep. 162(3 Pt 1):685-7. [Medline].

  15. Press SM, Smith AD. Incidence of negative hematuria in patients with acute urinary lithiasis presenting to the emergency room with flank pain. Urology. 1995 May. 45(5):753-7. [Medline].

  16. Dundee P, Bouchier-Hayes D, Haxhimolla H, Dowling R, Costello A. Renal tract calculi: comparison of stone size on plain radiography and noncontrast spiral CT scan. J Endourol. 2006 Dec. 20(12):1005-9. [Medline].

  17. Jackman SV, Potter SR, Regan F, Jarrett TW. Plain abdominal x-ray versus computerized tomography screening: sensitivity for stone localization after nonenhanced spiral computerized tomography. J Urol. 2000 Aug. 164(2):308-10. [Medline].

  18. Pais VM Jr, Payton AL, LaGrange CA. Urolithiasis in pregnancy. Urol Clin North Am. 2007 Feb. 34(1):43-52. [Medline].

  19. Jindal G, Ramchandani P. Acute flank pain secondary to urolithiasis: radiologic evaluation and alternate diagnoses. Radiol Clin North Am. 2007 May. 45(3):395-410, vii. [Medline].

  20. Middleton WD, Dodds WJ, Lawson TL, Foley WD. Renal calculi: sensitivity for detection with US. Radiology. 1988 Apr. 167(1):239-44. [Medline].

  21. Cauni V, Multescu R, Geavlete P, Geavlete B. [The importance of Doppler ultrasonographic evaluation of the ureteral jets in patients with obstructive upper urinary tract lithiasis]. Chirurgia (Bucur). 2008 Nov-Dec. 103(6):665-8. [Medline].

  22. Merten GJ, Burgess WP, Gray LV, Holleman JH, Roush TS, Kowalchuk GJ, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004 May 19. 291(19):2328-34. [Medline].

  23. Gdor Y, Faddegon S, Krambeck AE, et al. Multi-institutional assessment of ureteroscopic laser papillotomy for chronic flank pain associated with papillary calcifications. J Urol. 2011 Jan. 185(1):192-7. [Medline].

  24. Neville A, Hatem SF. Renal medullary carcinoma: unsuspected diagnosis at stone protocol CT. Emerg Radiol. 2007 Sep. 14(4):245-7. [Medline].

  25. Dusseault BN, Croce KJ, Pais VM Jr. Radiographic characteristics of sulfadiazine urolithiasis. Urology. 2009 Apr. 73(4):928.e5-6. [Medline].

  26. Kishore TA, Pedro RN, Hinck B, Monga M. Estimation of size of distal ureteral stones: noncontrast CT scan versus actual size. Urology. 2008 Oct. 72(4):761-4. [Medline].

  27. Narepalem N, Sundaram CP, Boridy IC, Yan Y, Heiken JP, Clayman RV. Comparison of helical computerized tomography and plain radiography for estimating urinary stone size. J Urol. 2002 Mar. 167(3):1235-8. [Medline].

  28. Katz DS, Lane MJ, Sommer FG. Unenhanced helical CT of ureteral stones: incidence of associated urinary tract findings. AJR Am J Roentgenol. 1996 Jun. 166(6):1319-22. [Medline].

  29. Smith RC, Verga M, Dalrymple N, McCarthy S, Rosenfield AT. Acute ureteral obstruction: value of secondary signs of helical unenhanced CT. AJR Am J Roentgenol. 1996 Nov. 167(5):1109-13. [Medline].

  30. Smergel E, Greenberg SB, Crisci KL, Salwen JK. CT urograms in pediatric patients with ureteral calculi: do adult criteria work?. Pediatr Radiol. 2001 Oct. 31(10):720-3. [Medline].

  31. Baumgarten DA, Francis IR, Casalino DD, et al; American College of Radiology. ACR Appropriateness Criteria® acute onset flank pain — suspicion of stone disease. National Guideline Clearinghouse. Available at Accessed: April 15, 2011.

  32. Sudah M, Vanninen R, Partanen K, Heino A, Vainio P, Ala-Opas M. MR urography in evaluation of acute flank pain: T2-weighted sequences and gadolinium-enhanced three-dimensional FLASH compared with urography. Fast low-angle shot. AJR Am J Roentgenol. 2001 Jan. 176(1):105-12. [Medline].

  33. [Guideline] Assimos DG, Krambeck A, Miller NL, et al. Surgical Management of Stones: American Urological Association/Endourological Society Guideline. American Urological Association. Available at 2016; Accessed: May 16, 2016.

  34. Mariappan P, Loong CW. Midstream urine culture and sensitivity test is a poor predictor of infected urine proximal to the obstructing ureteral stone or infected stones: a prospective clinical study. J Urol. 2004 Jun. 171(6 Pt 1):2142-5. [Medline].

  35. St Lezin M, Hofmann R, Stoller ML. Pyonephrosis: diagnosis and treatment. Br J Urol. 1992 Oct. 70(4):360-3. [Medline].

  36. Jeffrey RB, Laing FC, Wing VW, Hoddick W. Sensitivity of sonography in pyonephrosis: a reevaluation. AJR Am J Roentgenol. 1985 Jan. 144(1):71-3. [Medline].

  37. Schneider K, Helmig FJ, Eife R, Belohradsky BH, Kohn MM, Devens K, et al. Pyonephrosis in childhood--is ultrasound sufficient for diagnosis?. Pediatr Radiol. 1989. 19(5):302-7. [Medline].

  38. Fultz PJ, Hampton WR, Totterman SM. Computed tomography of pyonephrosis. Abdom Imaging. 1993. 18(1):82-7. [Medline].

  39. Wu TT, Lee YH, Tzeng WS, Chen WC, Yu CC, Huang JK. The role of C-reactive protein and erythrocyte sedimentation rate in the diagnosis of infected hydronephrosis and pyonephrosis. J Urol. 1994 Jul. 152(1):26-8. [Medline].

  40. Wen CC, Nakada SY. Treatment selection and outcomes: renal calculi. Urol Clin North Am. 2007 Aug. 34(3):409-19. [Medline].

  41. Labrecque M, Dostaler LP, Rousselle R, Nguyen T, Poirier S. Efficacy of nonsteroidal anti-inflammatory drugs in the treatment of acute renal colic. A meta-analysis. Arch Intern Med. 1994 Jun 27. 154(12):1381-7. [Medline].

  42. Larkin GL, Peacock WF 4th, Pearl SM, Blair GA, D'Amico F. Efficacy of ketorolac tromethamine versus meperidine in the ED treatment of acute renal colic. Am J Emerg Med. 1999 Jan. 17(1):6-10. [Medline].

  43. Cooper JT, Stack GM, Cooper TP. Intensive medical management of ureteral calculi. Urology. 2000 Oct 1. 56(4):575-8. [Medline].

  44. Dellabella M, Milanese G, Muzzonigro G. Efficacy of tamsulosin in the medical management of juxtavesical ureteral stones. J Urol. 2003 Dec. 170(6 Pt 1):2202-5. [Medline].

  45. Dellabella M, Milanese G, Muzzonigro G. Randomized trial of the efficacy of tamsulosin, nifedipine and phloroglucinol in medical expulsive therapy for distal ureteral calculi. J Urol. 2005 Jul. 174(1):167-72. [Medline].

  46. Porpiglia F, Ghignone G, Fiori C, Fontana D, Scarpa RM. Nifedipine versus tamsulosin for the management of lower ureteral stones. J Urol. 2004 Aug. 172(2):568-71. [Medline].

  47. Küpeli B, Irkilata L, Gürocak S, Tunç L, Kiraç M, Karaoglan U, et al. Does tamsulosin enhance lower ureteral stone clearance with or without shock wave lithotripsy?. Urology. 2004 Dec. 64(6):1111-5. [Medline].

  48. Porpiglia F, Destefanis P, Fiori C, Fontana D. Effectiveness of nifedipine and deflazacort in the management of distal ureter stones. Urology. 2000 Oct 1. 56(4):579-82. [Medline].

  49. Porpiglia F, Destefanis P, Fiori C, Scarpa RM, Fontana D. Role of adjunctive medical therapy with nifedipine and deflazacort after extracorporeal shock wave lithotripsy of ureteral stones. Urology. 2002 Jun. 59(6):835-8. [Medline].

  50. Yilmaz E, Batislam E, Basar MM, Tuglu D, Ferhat M, Basar H. The comparison and efficacy of 3 different alpha1-adrenergic blockers for distal ureteral stones. J Urol. 2005 Jun. 173(6):2010-2. [Medline].

  51. Hollingsworth JM, Rogers MA, Kaufman SR, Bradford TJ, Saint S, Wei JT, et al. Medical therapy to facilitate urinary stone passage: a meta-analysis. Lancet. 2006 Sep 30. 368(9542):1171-9. [Medline].

  52. Singh A, Alter HJ, Littlepage A. A systematic review of medical therapy to facilitate passage of ureteral calculi. Ann Emerg Med. 2007 Nov. 50(5):552-63. [Medline].

  53. Beach MA, Mauro LS. Pharmacologic expulsive treatment of ureteral calculi. Ann Pharmacother. 2006 Jul-Aug. 40(7-8):1361-8. [Medline].

  54. Ferre RM, Wasielewski JN, Strout TD, Perron AD. Tamsulosin for ureteral stones in the emergency department: a randomized, controlled trial. Ann Emerg Med. 2009 Sep. 54(3):432-9, 439.e1-2. [Medline].

  55. Springhart WP, Marguet CG, Sur RL, Norris RD, Delvecchio FC, Young MD, et al. Forced versus minimal intravenous hydration in the management of acute renal colic: a randomized trial. J Endourol. 2006 Oct. 20(10):713-6. [Medline].

  56. Flexible nephroscopy during PCNL a 'favorable' choice. Medscape Medical News. January 21, 2013. Available at Accessed: February 6, 2013.

  57. Gücük A, Kemahli E, Uyetürk U, Tuygun C, Yildiz M, Metin A. Routine Flexible Nephroscopy for Percutaneous Nephrolithotomy in Renal Stones with Low Density: A Prospective Randomized Study. J Urol. 2013 Jan 9. [Medline].

  58. [Guideline] Preminger GM, Assimos DG, Lingeman JE, Nakada SY, Pearle MS, Wolf JS Jr. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol. 2005 Jun. 173(6):1991-2000. [Medline].

  59. Ramakumar S, Segura JW. Renal calculi. Percutaneous management. Urol Clin North Am. 2000 Nov. 27(4):617-22. [Medline].

  60. Pareek G, Hedican SP, Lee FT Jr, Nakada SY. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology. 2005 Nov. 66(5):941-4. [Medline].

  61. Fankhauser CD, Kranzbühler B, Poyet C, Hermanns T, Sulser T, Steurer J. Long-term Adverse Effects of Extracorporeal Shock-wave Lithotripsy for Nephrolithiasis and Ureterolithiasis: A Systematic Review. Urology. 2015 May. 85 (5):991-1006. [Medline].

  62. Ault A. Extracorporeal Shockwave Lithotripsy Falling Out of Favor. Medscape Medical News. Available at June 4, 2015; Accessed: September 26, 2015.

  63. Song T, Liao B, Zheng S, Wei Q. Meta-analysis of postoperatively stenting or not in patients underwent ureteroscopic lithotripsy. Urol Res. 2012 Feb. 40(1):67-77. [Medline].

  64. Afane JS, Olweny EO, Bercowsky E, Sundaram CP, Dunn MD, Shalhav AL, et al. Flexible ureteroscopes: a single center evaluation of the durability and function of the new endoscopes smaller than 9Fr. J Urol. 2000 Oct. 164 (4):1164-8. [Medline].

  65. Ho CC, Hee TG, Hong GE, Singam P, Bahadzor B, Md Zainuddin Z. Outcomes and Safety of Retrograde Intra-Renal Surgery for Renal Stones Less Than 2 cm in Size. Nephrourol Mon. 2012 Spring. 4 (2):454-7. [Medline].

  66. Wen J, Xu G, Du C, Wang B. Minimally invasive percutaneous nephrolithotomy versus endoscopic combined intrarenal surgery with flexible ureteroscope for partial staghorn calculi: A randomised controlled trial. Int J Surg. 2016 Apr. 28:22-7. [Medline].

  67. Dede O, Sancaktutar AA, Dağguli M, Utangaç M, Baş O, Penbegul N. Ultra-mini-percutaneous nephrolithotomy in pediatric nephrolithiasis: Both low pressure and high efficiency. J Pediatr Urol. 2015 Apr 28. [Medline].

  68. Khalaf I, Salih E, El-Mallah E, Farghal S, Abdel-Raouf A. The outcome of open renal stone surgery calls for limitation of its use: A single institution experience. African Journal of Urology. Available at 2015 Feb 6; Accessed: May 17, 2016.

  69. Assimos DG. Anatrophic nephrolithotomy. Urology. 2001 Jan. 57 (1):161-5. [Medline].

  70. Ganpule AP, Prashant J, Desai MR. Laparoscopic and robot-assisted surgery in the management of urinary lithiasis. Arab J Urol. 2012 Mar. 10 (1):32-9. [Medline].

  71. Giedelman C, Arriaga J, Carmona O, de Andrade R, Banda E, Lopez R, et al. Laparoscopic anatrophic nephrolithotomy: developments of the technique in the era of minimally invasive surgery. J Endourol. 2012 May. 26 (5):444-50. [Medline].

  72. King SA, Klaassen Z, Madi R. Robot-assisted anatrophic nephrolithotomy: description of technique and early results. J Endourol. 2014 Mar. 28 (3):325-9. [Medline].

  73. Ghani KR, Rogers CG, Sood A, Kumar R, Ehlert M, Jeong W, et al. Robot-assisted anatrophic nephrolithotomy with renal hypothermia for managing staghorn calculi. J Endourol. 2013 Nov. 27 (11):1393-8. [Medline].

  74. Wang Z, Xu L, Su Z, Yao C, Chen Z. Invasive management of proximal ureteral calculi during pregnancy. Urology. 2014 Feb 6. [Medline].

  75. Kingo PS, Ryhammer AM, Fuglsig S. Clinical experience with the Swiss lithoclast master in treatment of bladder calculi. J Endourol. 2014 Oct. 28 (10):1178-82. [Medline].

  76. Chew BH, Arsovska O, Lange D, Wright JE, Beiko DT, Ghiculete D, et al. The Canadian StoneBreaker trial: a randomized, multicenter trial comparing the LMA StoneBreaker™ and the Swiss LithoClast® during percutaneous nephrolithotripsy. J Endourol. 2011 Sep. 25 (9):1415-9. [Medline].

  77. [Guideline] Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck C, Gallucci M, et al. 2007 guideline for the management of ureteral calculi. J Urol. 2007 Dec. 178 (6):2418-34. [Medline]. [Full Text].

  78. Simforoosh N, Radfar MH, Nouralizadeh A, Tabibi A, Basiri A, Mohsen Ziaee SA, et al. Laparoscopic anatrophic nephrolithotomy for management of staghorn renal calculi. J Laparoendosc Adv Surg Tech A. 2013 Apr. 23 (4):306-10. [Medline].

  79. el-Nahas AR, Eraky I, Shokeir AA, Shoma AM, el-Assmy AM, el-Tabey NA, et al. Factors affecting stone-free rate and complications of percutaneous nephrolithotomy for treatment of staghorn stone. Urology. 2012 Jun. 79 (6):1236-41. [Medline].

  80. Wang CJ, Huang SW, Chang CH. Randomized trial of NTrap for proximal ureteral stones. Urology. 2011 Mar. 77 (3):553-7. [Medline].

  81. Aboumarzouk OM, Kata SG, Keeley FX, McClinton S, Nabi G. Extracorporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi. Cochrane Database Syst Rev. 2012 May 16. 5:CD006029. [Medline].

  82. Portis AJ, Hermans K, Culhane-Pera KA, Curhan GC. Stone disease in the Hmong of Minnesota: initial description of a high-risk population. J Endourol. 2004 Nov. 18 (9):853-7. [Medline].

Small renal calculus that would likely respond to extracorporeal shockwave lithotripsy.
Complete staghorn calculus that fills the collecting system of the kidney (no intravenous contrast material in this patient). Although many staghorn calculi are struvite (related to infection with urease-splitting bacteria), the density of this stone suggests that it may be metabolic in origin and is likely composed of calcium oxalate. Percutaneous nephrostolithotomy or perhaps even open surgical nephrolithotomy is required to remove this stone.
Distal ureteral stone observed through a small, rigid ureteroscope prior to ballistic lithotripsy and extraction. The small caliber and excellent optics of today's endoscopes greatly facilitate minimally invasive treatment of urinary stones.
Two calculi in a dependent calyx of the kidney (lower pole) visualized through a flexible fiberoptic ureteroscope. In another location, these calculi might have been treated with extracorporeal shockwave lithotripsy (ESWL), but, after being counseled regarding the lower success rate of ESWL for stones in a dependent location, the patient elected ureteroscopy. Note that the image provided by fiberoptics, although still acceptable, is inferior to that provided by the rod-lens optics of the rigid ureteroscope in the previous picture.
Nephrolithiasis: acute renal colic. Anatomy of the ureter.
Nephrolithiasis: acute renal colic. Distribution of nerves in the flank.
Nephrolithiasis: acute renal colic. Nerve supply of the kidney.
Nephrolithiasis: acute renal colic. Renal colic and flank pain.
Nephrolithiasis: acute renal colic. Nerve supply of the kidney.
Nephrolithiasis: acute renal colic. Distribution of renal and ureteral pain.
Noncontrast helical CT scan of the abdomen demonstrating a stone at the right ureterovesical junction.
Intravenous pyelogram (IVP) demonstrating dilation of the right renal collecting system and right ureter consistent with right ureterovesical stone.
Table. Intravenous Pyelography Versus CT Scanning: Which Is Better?
Imaging Study (Pro/Con) Details
CT scan Pro
  • Fast
  • No IV contrast necessary, so no risk of nephrotoxicity or acute allergic reactions
  • With only rare exceptions, shows all stones clearly
  • May demonstrate other pathology
  • Can be performed in patients with significant azotemia and severe contrast allergies who cannot tolerate IV contrast studies
  • Clearly shows uric acid stones
  • Shows perinephric stranding or streaking not visible on IVP and can be used as an indirect or secondary sign of ureteral obstruction
  • No radiologist needs to be physically present
  • Preferred imaging modality for acute renal colic in most EDs
  • Without hydronephrosis, cannot reliably distinguish between distal ureteral stones and pelvic calcifications or phleboliths
  • Cannot assess renal function
  • No nephrogram effect study to help identify obstruction
  • Size and shape of stone only estimated
  • Lacks surgical orientation*
  • Unable to identify ureteral kinks, strictures, or tortuousities
  • May be hard to differentiate an extrarenal pelvis from true hydronephrosis
  • Gonadal vein sometimes can be confused with the ureter
  • Does not indicate likelihood of fluoroscopic visualization of the stone, which is essential information in planning possible surgical interventions
  • May require addition of KUB radiograph
  • Cannot be performed during pregnancy because of high dose of ionizing radiation exposure
  • Usually more costly than an IVP in most institutions
  • Higher radiation dose than IVP
  • Clear outline of complete urinary system without any gaps
  • Clearly shows all stones either directly or indirectly as an obstruction
  • Nephrogram effect film indicates obstruction and ureteral blockage in most cases, even if the stone itself might not be visible
  • Shows relative kidney function
  • Definitive diagnosis of MSK
  • Ureteral kinks, strictures, and tortuousities often visible
  • Can modify study with extra views (eg, posterior oblique positions, prone views) to better visualize questionable areas
  • Stone size, shape, surgical orientation, and relative position more clearly defined
  • Orientation similar to urologists’ surgical approach
  • Limited IVP study can be considered in selected cases during pregnancy, although plain ultrasonography is preferred initially
  • Lower cost than CT scan in most institutions
  • Includes KUB film automatically
  • Relatively slow; may need multiple delay films, which can take hours
  • Cannot be used in azotemia, pregnancy, or known significant allergy to intravenous contrast agents
  • Risk of potentially dangerous reactions to IV contrast material
  • Cannot detect perinephric stranding or streaking, which is visible only on CT scans
  • Harder to visualize radiolucent stones (eg, uric acid), although indirect signs of obstruction are apparent
  • Presence of a radiologist generally necessary, which can cause extra delay
  • Cannot be used to reliably evaluate other potential pathologies
*Many urologists find CT scans inadequate to help plan surgery, predict stone passage, or monitor patients. This causes a delay, which may be significant in some institutions, and adds additional patient radiograph exposure and cost. These include significant allergic responses and renal failure.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.