Medscape is available in 5 Language Editions – Choose your Edition here.


Bladder Cancer Workup

  • Author: Gary David Steinberg, MD, FACS; Chief Editor: Bradley Fields Schwartz, DO, FACS  more...
Updated: Jun 02, 2016

Approach Considerations

Urine studies include the following:

  • Urinalysis with microscopy
  • Urine culture to rule out infection, if suspected
  • Voided urinary cytology
  • Urinary tumor marker testing

Urinalysis is performed to detect hematuria or infection. Microscopic hematuria from bladder cancer may be intermittent; therefore, a repeat negative result on urinalysis does not exclude the diagnosis.


Urinary cytology is extremely valuable and is often the test used for diagnosis; suggestive urine cytology findings should encourage the urologist to perform a cystoscopy and possibly bladder biopsy. All patients with gross hematuria and many with significant microscopic hematuria should undergo a cystoscopy and urinary cytology (preferably barbotage urine for cytology).

Urinary cytology is most helpful in diagnosing high-grade tumors and carcinoma in situ (CIS). Low-grade, noninvasive tumors may be missed by routine cytologic analysis.

Endoscopic biopsies are used to establish the diagnosis and determine the extent of the cancer. However, a study by Cha et al found that immunocytology outperforms urine cytology and increases the accuracy of predictive models by a statistically and clinically significant margin for patients with painless hematuria.[63]

Strittmatter et al found that the quality of urinary cytology is impacted by the individual learning curve. Specificity of cytology and sensitivity for low-grade tumors significantly changed when performed by a local cytologist at the beginning of the learning period. This suggests that in the diagnosis of bladder cancer, the cytologist’s level of experience has an important impact on the clinical value of urinary cytology.[64]


Because cytology is the most reliable urine test for detecting bladder cancer, a positive cytology finding should be treated as indicating cancer until proven otherwise. If cystoscopy findings are negative in the setting of positive cytology findings, further evaluation of the urinary tract is required. The upper urinary tract should be evaluated with contrast imaging. Cystoscopy with bilateral retrograde pyelography and bilateral ureteral washings should be performed.

Most patients with CIS have coexisting papillary cancer. In general, the papillary tumor is diagnosed first, and CIS is discovered during the evaluation and treatment of the papillary tumor. Only 10% of patients with bladder cancer have a pure CIS. The combination of CIS and papillary transitional cell carcinoma (TCC) is associated with a higher risk of recurrence and progression.

In cases of pure CIS, urinary cytology may lead to the diagnosis. CIS exfoliates cells that have an unusual appearance and are easy to identify via cytologic examination, prompting further evaluation. Unfortunately, even findings from urine cytology may be normal in some patients; in these cases the diagnosis is made only when the urologist maintains a high level of suspicion for CIS and obtains random bladder biopsy specimens from patients with worrisome symptoms. However, if the urinary cytology is performed properly, this should happen rarely.


Cystoscopy is the criterion standard for detecting bladder cancer, but it is invasive and relatively expensive.[65] Moreover, visibility can be reduced by bleeding, and flat urothelial lesions such as CIS may be difficult to distinguish from normal bladder tissue. Use of adjunctive endoscopic techniques, such as blue light cystoscopy with 5-aminolevulinic acid, may improve the accuracy of cystoscopy. Cytologic analysis of voided urine is frequently used as an adjunctive test to aid in identifying occult cancers.

Virtual cystoscopy can help detect many bladder tumors, but it is more expensive than cystoscopy and has lower sensitivity and specificity. Therefore, it does not play a role in surveillance at this time.

Imaging studies

Imaging studies of the upper urinary tract are an integral part of the hematuria workup. Computed tomography (CT) scans of the abdomen and pelvis with contrast are recommended. Two commonly used alternative techniques are magnetic resonance imaging (MRI) and renal ultrasonography. Few US centers still perform intravenous pyelography (IVP) for upper tract imaging.

The bladder urothelium is not well visualized with routine imaging studies, including CT scanning and MRI. Small tumors are easily missed on images produced by these modalities. Irregular areas on images, which may appear to represent mucosal abnormalities, are often artifacts of incomplete bladder filling; delayed images following contrast administration can better visualize actual filling defects. CIS is not visible on images from any current radiographic study.

Other tests


Newer molecular and genetic markers, including detection of mutations in genes such as RAS, FGFR3,PIK3CA, and TP53, and methylation pathways in urinary sediment,[66] may help in the early detection and prediction of urothelial carcinoma. At this time, however, no urinary assay has been shown to effectively replace urine cytology and cystoscopy, with or without biopsy, for the diagnosis of bladder cancer. Nevertheless, marker assays may be useful adjuncts to urine cytology and cystoscopy.

Blood tests

No blood tests are specific for bladder cancer. In patients with CIS, however, a general evaluation is necessary prior to initiating therapy with intravesical bacillus Calmette-Guérin (BCG) vaccine.


Complete Blood Count and Chemistry Panel

On the complete blood count (CBC), the presence of anemia or an elevated white blood cell (WBC) count warrants further investigation for an explanation.

The chemistry panel should include liver function studies. One of the intravesical agents used to treat CIS is BCG vaccine, but systemic absorption of this agent can produce acute hepatitis. Performing baseline liver function tests before initiating therapy and repeating these tests during the course of therapy help to prevent serious adverse events and to determine when therapy should be stopped. Liver function tests, as well as measurement of the bony fraction of alkaline phosphatase, are also indicated in patients with possible metastasis to liver or bone.

Kidney function should be evaluated prior to the initiation of therapy because patients with marginal or abnormal renal function may have an obstruction or some type of renal disease that may worsen with intravesical therapy. Renal function can be evaluated with serum creatinine measurements or technetium scans of the kidneys.


Urinalysis and Urine Culture

Urinalysis is used routinely to evaluate for the presence of red blood cells (RBCs), WBCs, and protein and to assess for urinary tract infection. The presence of RBCs in the urine mandates either a repeat study or an evaluation by a urologist to investigate for any serious disease.

Gross hematuria always requires a careful assessment with imaging studies of the entire urinary tract (CT urography) and cystoscopy. Prior to performing an endoscopic examination or initiating any therapy, a urine culture should be performed to confirm that the urine is free of evidence of infection.

Men do not usually have RBCs in their urine, and any number should lead to further urologic testing. In women, RBCs can frequently be found in a voided specimen, but persistent microhematuria warrants further testing.

Less than 20% of bladder cancer cases are identified on the basis of microscopic hematuria. Routine care visits or employment screens may be the setting for such a finding.

According to the American Urological Association Guidelines Committee, "the recommended definition of microscopic hematuria is 3 or more red blood cells per high-power microscopic field in urinary sediment from two of three properly collected urinalysis specimens. This definition accounts for some degree of hematuria in normal patients, as well as the intermittent nature of hematuria in patients with urologic malignancies."[67]


Urine Cytology

Voided urine cytology is the standard noninvasive method for diagnosis in the detection of bladder carcinoma. Cytology is used to assess morphologic changes in intact cells. Exfoliated urothelial cells are viewed using microscopy. In some urothelial cancers, cellular clumping, a high nuclear-to-cytoplasmic ratio, nucleoli, and atypia are seen.

As with any type of cytologic examination, the experience and skill of the cytopathologist is extremely important. Many hospital laboratories lack the personnel and technology necessary to accurately perform this type of study. Good reference laboratories are available if local facilities cannot provide this service.

At least 100 mL of a freshly voided specimen is usually sufficient for urine cytology. The first morning sample should not be used, because cells sitting in the urine overnight tend to become distorted and are difficult to analyze. If the urine is very dilute, the number of cells may be insufficient, necessitating a larger urine volume.

Bladder washings can be obtained by placing a catheter into the bladder and vigorously irrigating with saline (ie, barbotage). Bladder wash cytology yields more tumor cells in the sample and is more sensitive in identifying cancer, especially for high-grade tumors, but it also yields a higher false-positive rate than voided urine cytology.[68]

Sensitivity and specificity

Unfortunately, the sensitivity of cytology is low, with various studies reporting values between 11% and 76%.[69] Sensitivity depends largely on the degree of tumor differentiation. High-grade tumors with marked pleomorphism and distinctly abnormal nuclear features are identified more accurately.

Small and/or well-differentiated tumors are less likely to exfoliate cells because intercellular attachments are better preserved and the degree of morphologic departure from normal is smaller, complicating cytologic recognition.[70] This results in poor sensitivity in low-grade and early stage cancers.

Several other factors affect the sensitivity of cytology, including specimen quality, number of exfoliated cells, and pathologist expertise. However, the overall low sensitivity of cytology is due to its low sensitivity in detecting low-grade bladder tumors.[71] Urine cytology is associated with a significant false-negative rate, especially for low-grade carcinoma (10-50% accuracy rate). The false-positive rate is 1-12%, although cytology has a 95% accuracy rate for diagnosing high-grade carcinoma and CIS.

Urine cytology is often the test used for diagnosis of CIS. Suggestive urine cytology findings encourage the urologist to perform a bladder biopsy. With a properly collected urine sample that is promptly placed into fixative, CIS is detected in 70-75% of patients.

Instrumentation may cause reactive cellular changes, contributing to variability in interpretation. False-positive reports of malignant cells are uncommon, but ambiguous reports of atypical cells are frequent.

Improving accuracy

Perform urine cytology at the same time as cystoscopy, although its routine use for screening is controversial. If the cystoscopic examination yields normal findings but the urine cytology result is positive, further evaluation should include an upper tract study and random biopsies of the bladder. Obtain biopsy samples of the prostatic urethra in men.

Fluorescence in situ hybridization (FISH) may improve the sensitivity and specificity of routine cytology. The US Food and Drug Administration (FDA) has approved a FISH assay for the detection of recurrent bladder cancer in voided urine specimens from patients with a history of bladder cancer, as well as for the detection of bladder cancer in voided urine specimens from patients with gross or microscopic hematuria but no previous history of bladder cancer.[72]

Cytoimmunologic techniques have been developed using cytokeratin 20 as a target molecule. This assay may be more sensitive than conventional cytology, although the ability to detect low-grade tumors tends to be poor in all cytologic examinations. In contrast, the positive predictive value in patients with CIS tends to be around 75%.


Urine Tumor Markers

Noninvasive urine markers can offer an alternative to the standard means of detecting bladder cancer or can be used as an adjunct to cystoscopy.[73] Over 30 urinary biomarkers have been reported for use in bladder cancer diagnosis, but only a few are commercially available.[74]

The 2013 update of the European Association of Urology (EAU) guidelines on non–muscle-invasive urothelial carcinoma of the bladder states that most of these tests are more sensitive than cytology but are less specific, and none have been accepted for diagnosis or follow-up in routine urologic practice or in guidelines.[75] The National Comprehensive Cancer Network's (NCCN) 2015 Clinical Practice Guidelines in Oncology: Bladder Cancer generally agree with the EAU guidelines but note that urinary biomarker tests approved by the U.S. Food and Drug Administration may be considered for use in monitoring for recurrence; however, this is a category 2B recommendation (ie, based on lower-level evidence).[45]

See Urine Tumor Markers in Bladder Cancer Diagnosis for more information on this topic.



Cystoscopy is the primary modality for the diagnosis of bladder carcinoma because of its low risk and because biopsy specimens can be taken and papillary tumors resected during a single procedure. The 2011 EAU guidelines on non–muscle-invasive bladder cancer state that cystoscopy should be performed in all patients with symptoms of possible bladder cancer and that no noninvasive test can take its place.[75]

However, cystoscopy may be an embarrassing procedure for the patient because of exposure and handling of the genitalia. The procedure must therefore be performed with respect, and the patient should remain exposed only as long as necessary to complete the evaluation.

Men are most easily evaluated with a flexible cystoscope. In women, cystoscopy can be performed as described for men, using a flexible cystoscope, although, because the female urethra is relatively straight, a rigid cystoscope may be used instead.

See Cystoscopy for more information on this topic.


Diagnostic Strategy

In the setting of findings that are negative for cystoscopy and urinary cytology but positive for FISH, 2 possible scenarios arise. One is that the FISH result is falsely positive. The other is that it is an anticipatory positive result; in such cases, the patient has a 30% chance of developing a bladder tumor over 2 years. Patients in this category should undergo surveillance with increased frequency (see Table 1, below).

Table 1. Clinical Findings and Recommended Action in Patients with Negative Cystoscopy (Open Table in a new window)

Cystoscopy Findings Urine Cytology Findings FISH* Findings Action
Negative Negative Negative† Routine follow-up
Negative Negative Positive‡ Increased frequency of surveillance, whether FISH findings are false positive or anticipatory positive
Negative Positive Negative or positive Cancer until proven otherwise
  • Upper tract imaging with contrast
  • Cystoscopy with retrograde pyelography, washings, and/or ureteroscopy
  • Evaluate urethra
  • Increased frequency of surveillance upon negative findings
*FISH - Fluorescent in situ hybridization.

†Negative predictive value 95%.

‡Positive predictive value 30%.


Histologic Findings

In North America, South America, Europe, and Asia, more than 90% of bladder cancers are TCCs. Approximately 5% are squamous cell carcinomas (SCCs), and less than 2% are adenocarcinomas.

Carcinoma in situ

The typical visual appearance of CIS is that of a flat carcinoma extending along the surface of the bladder. This is in contrast to a papillary tumor, which extends on a stalk into the lumen of the bladder. CIS, by definition, does not invade through the basement membrane into the lamina propria. When it does, the cancer is considered to behave as an aggressive TCC and is managed accordingly.

The histologic pattern of CIS is characterized by bizarre, abnormal cells in the epithelial layer. The cells appear to be those of high-grade cancer; thus, they are readily detected in cytology specimens.

The pathologist may have difficulty distinguishing between cellular atypia and CIS. A consultant should review the slides if the pathologist is uncertain or diagnoses atypia. Upon further review, these cases usually prove to be CIS. The distinction is important because CIS requires therapy while atypia can be managed with observation. Finally, some pathologists attempt to grade CIS; however, CIS is not graded. An associated papillary tumor would be graded as low or high grade.

For more information, see Pathology of Urinary Bladder Squamous Cell Carcinoma and Pathologic Findings in Small Cell Bladder Carcinoma.


Computed Tomography Scanning

Upper tract imaging is necessary for the hematuria workup. The imaging modality chosen should be able to visualize the kidneys and the urothelium.

American Urologic Association Best Practice Policy recommends CT scanning of the abdomen and pelvis with contrast, with preinfusion and postinfusion phases.[76] This evaluation is ideally performed with CT urography, using multidetector CT, or it can be performed with a single-detector CT-scan study followed by an excretory radiographic study of the kidneys, ureters, and bladder (KUB) to obtain images similar to those produced with IVP.

Conduct retrograde pyelography in patients in whom contrast CT scanning cannot be performed because of azotemia or a severe allergy to intravenous contrast.


Intravenous Pyelography

IVP is the traditional standard for upper tract urothelium imaging; however, it is a poor modality for evaluating the renal parenchyma. Few centers in the United States perform IVP today, although the test is still included in the 2012 NCCN guidelines as an acceptable modality for imaging the upper tract collecting system.[45] The EAU 2011 guideline update recommends CT urography as more informative than IVP for upper urinary tract tumors.[75]

Renal Ultrasonography

Ultrasonography is also commonly used in the diagnosis of bladder cancer. However, urothelial tumors of the upper tract and small stones are easily missed. The 2011 EAU guideline update states that ultrasonography is useful for identifying obstruction in patients with hematuria. It can detect renal masses, hydronephrosis, and bladder intraluminal masses. The guideline supports the statement that ultrasonography cannot be used to rule out tumors in the upper urinary tract.[75]



The International Union Against Cancer and the American Joint Committee on Cancer Staging developed the tumor, node, and metastases (TNM) staging system, which is used to stage bladder cancer (see below).[77] Ta and T1 tumors and CIS were once considered superficial bladder tumors. T2, T3, and T4 tumors were traditionally described as invasive bladder cancer. However, urologic oncologists now recommend avoiding the term superficial bladder cancer to describe Ta, T1, and CIS tumors because it is a misnomer and tends to group together patients who may require different treatments and who may have different prognoses.

Urothelial carcinoma is histologically graded as low grade (formerly graded 1-2) or high grade (formerly graded 3). CIS is characterized by full mucosal thickness and high-grade dysplasia of the bladder epithelium and is associated with a poorer prognosis.

The following is the TNM staging system for bladder cancer:

  • CIS - Carcinoma in situ, high-grade dysplasia, confined to the epithelium
  • Ta - Papillary tumor confined to the epithelium
  • T1 - Tumor invasion into the lamina propria
  • T2 - Tumor invasion into the muscularis propria
  • T3 - Tumor involvement of the perivesical fat
  • T4 - Tumor involvement of adjacent organs such as the prostate, rectum, or pelvic sidewall
  • N+ - Lymph node metastasis
  • M+ - Metastasis

See Bladder Cancer Staging for more information on this topic.

More than 70% of all newly diagnosed bladder cancers are non–muscle invasive, approximately 50-70% are Ta, 20-30% are T1, and 10% are CIS. Approximately 5% of patients present with metastatic disease, which commonly involves the lymph nodes, lung, liver, bone, and central nervous system. Approximately 25% of affected patients have muscle-invasive disease at diagnosis.

Clinically stage a patient who has muscle-invasive disease with CT scanning of the abdomen and pelvis,[78] chest radiography, and serum chemistries. If the patient is asymptomatic with normal calcium and alkaline phosphatase levels, a bone scan is unnecessary.


As many as 50% of patients with muscle-invasive bladder cancer may have occult metastases that become clinically apparent within 5 years of initial diagnosis. Most patients with overt metastatic disease die within 2 years despite chemotherapy. Approximately 25-30% of patients with only limited regional lymph node metastasis discovered during cystectomy and pelvic lymph node dissection may survive beyond 5 years.


Stage and grade are critical to the likelihood of cancer recurrence and progression in persons with bladder cancer who are treated with local therapy. Using the American Joint Committee on Cancer staging system combined with grade, tumors may be classified using a T-G system of labeling. For example, a Ta tumor that is grade 2 (intermediate differentiation) is described as Ta-G2. The extremes are Ta-G1 (low stage, low grade) to T1-G3 (invading the lamina propria, high grade), with correspondingly favorable or unfavorable prognoses.

In 2004, the International Society of Urologic Pathologists and World Health Organization eliminated grade 2 and adopted low-grade or high-grade designations. Papillary urothelial neoplasia of low malignant potential (PUNLMP) has also been added as a designation.

CIS, which is defined as a flat, high-grade, noninvasive cancer, is an exception to the above concept. Although some are tempted to consider CIS a premalignant condition, in reality it is an aggressive form of cancer that is detected prior to invasion. Therefore, aggressive management and surveillance are warranted. Likewise, the opportunity to affect CIS-associated mortality is significant because this type of cancer may respond to conservative therapy. If left untreated, however, CIS eventually becomes invasive and progresses.

In addition, a move is developing toward classifying such cancers as either high grade or low grade instead of using the multiple-level classification that has been employed in the past. Regardless, the correlation between stage and grade is significant.

Designation of CIS

By definition, CIS is confined to the epithelial surface of the urinary tract and has no other official stage definition. It grows along the inner surface of the bladder and is therefore considered to be a form of non–muscle-invasive bladder cancer, but this specific designation is reserved for papillary or solid TCCs.

In another commonly used staging system, tumors are Ta or T0 if they are confined to the epithelial layer and T1 if present in the lamina propria. However, CIS is just CIS. If there is evidence of tumor cell invasion into the lamina propria or deeper into the muscle, the cancer is considered to be a TCC and the designation of CIS is no longer used.

Contributor Information and Disclosures

Gary David Steinberg, MD, FACS The Bruce and Beth White Family Professor and Vice Chairman of Urology, Director of Urologic Oncology, Section of Urology, Department of Surgery, The University of Chicago Medical Center and Cancer Center

Gary David Steinberg, MD, FACS is a member of the following medical societies: American Association for Cancer Research, Society of Laparoendoscopic Surgeons, American Society of Clinical Oncology, Societe Internationale d'Urologie (International Society of Urology), American College of Surgeons, American Urological Association, Society of Urologic Oncology

Disclosure: Received consulting fee from Abbott Molecular for consulting; Received consulting fee from Endo Pharmaceuticals for consulting; Received consulting fee from Bioniche for consulting; Received consulting fee from Tengion for consulting; Received consulting fee from Archimedes for review panel membership; Received consulting fee from PhotoCure for review panel membership; Received consulting fee from Taris Biomedical for review panel membership; Received none from Cold Genesys for other; Received h for: Photocure; Taris Biomedical; Heat Biologics: Cold Genesys; Merck; Roche/Genentech; Karl Storz; Mdx Health, Telesta.


Kush Sachdeva, MD Southern Oncology and Hematology Associates, South Jersey Healthcare, Fox Chase Cancer Center Partner

Disclosure: Nothing to disclose.

Bagi RP Jana, MD Associate Professor of Medicine (Genitourinary Oncology), Division of Hematology and Oncology, University of Texas Medical Branch

Bagi RP Jana, MD is a member of the following medical societies: American Cancer Society, American Medical Association, SWOG, American Society of Clinical Oncology

Disclosure: Nothing to disclose.

Chief Editor

Bradley Fields Schwartz, DO, FACS Professor of Urology, Director, Center for Laparoscopy and Endourology, Department of Surgery, Southern Illinois University School of Medicine

Bradley Fields Schwartz, DO, FACS is a member of the following medical societies: American College of Surgeons, Society of Laparoendoscopic Surgeons, Society of University Urologists, Association of Military Osteopathic Physicians and Surgeons, American Urological Association, Endourological Society

Disclosure: Nothing to disclose.


Sujeet S Acharya, MD Resident Physician, Department of Surgery, Section of Urology, University of Chicago Division of the Biological Sciences, The Pritzker School of Medicine

Disclosure: Nothing to disclose.

Brendan Curti, MD Director, Genitourinary Oncology Research, Robert W Franz Cancer Research Center, Earle A Chiles Research Institute, Providence Cancer Center

Brendan Curti, MD is a member of the following medical societies: American College of Physicians, American Society of Clinical Oncology, Oregon Medical Association, and Society for Biological Therapy

Disclosure: Nothing to disclose.

Edward M Gong, MD Fellow, Department of Surgery, Division of Urology, Children's Hospital Boston

Disclosure: Nothing to disclose.

Mark H Katz, MD Fellow in Urologic Oncology and Minimally Invasive Surgery, University of Chicago Medical Center

Mark H Katz, MD is a member of the following medical societies: Alpha Omega Alpha, American Urological Association, Endourological Society, and Society of Urologic Oncology

Disclosure: Nothing to disclose.

Hyung L Kim, MD Associate Professor, Cedars-Sinai Medical Center

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Dan Theodorescu, MD, PhD Paul A Bunn Professor of Cancer Research, Professor of Surgery and Pharmacology, Director, University of Colorado Comprehensive Cancer Center

Dan Theodorescu, MD, PhD is a member of the following medical societies: American Cancer Society, American College of Surgeons, American Urological Association, Medical Society of Virginia, Society for Basic Urologic Research, and Society of Urologic Oncology

Disclosure: Key Genomics Ownership interest Co-Founder-50% Stock Ownership; KromaTiD, Inc Stock Options Board membership

  1. Kantor AF, Hartge P, Hoover RN, Fraumeni JF Jr. Epidemiological characteristics of squamous cell carcinoma and adenocarcinoma of the bladder. Cancer Res. 1988 Jul 1. 48(13):3853-5. [Medline].

  2. Escudero DO, Shirodkar SP, Lokeshwar VB. Bladder Carcinogenesis and Molecular Pathways. Lokeshwar VB. Bladder Tumors: Molecular Aspects and Clinical Management. New York: Springer Science; 2010. 23-41.

  3. Spruck CH 3rd, Ohneseit PF, Gonzalez-Zulueta M, Esrig D, Miyao N, Tsai YC, et al. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res. 1994 Feb 1. 54(3):784-8. [Medline].

  4. Trias I, Algaba F, Condom E, Español I, Seguí J, Orsola I, et al. Small cell carcinoma of the urinary bladder. Presentation of 23 cases and review of 134 published cases. Eur Urol. 2001 Jan. 39(1):85-90. [Medline].

  5. Bessette PL, Abell MR, Herwig KR. A clinicopathologic study of squamous cell carcinoma of the bladder. J Urol. 1974 Jul. 112(1):66-7. [Medline].

  6. Faysal MH. Squamous cell carcinoma of the bladder. J Urol. 1981 Nov. 126(5):598-9. [Medline].

  7. Lagwinski N, Thomas A, Stephenson AJ, Campbell S, Hoschar AP, El-Gabry E, et al. Squamous cell carcinoma of the bladder: a clinicopathologic analysis of 45 cases. Am J Surg Pathol. 2007 Dec. 31(12):1777-87. [Medline].

  8. El-Sebaie M, Zaghloul MS, Howard G, Mokhtar A. Squamous cell carcinoma of the bilharzial and non-bilharzial urinary bladder: a review of etiological features, natural history, and management. Int J Clin Oncol. 2005 Feb. 10(1):20-5. [Medline].

  9. Heyns CF, van der Merwe A. Bladder cancer in Africa. Can J Urol. 2008 Feb. 15(1):3899-908. [Medline].

  10. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007 Sep. 213(1):91-8. [Medline]. [Full Text].

  11. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005 Apr. 16(2):139-49. [Medline].

  12. Fadl-Elmula I. Chromosomal changes in uroepithelial carcinomas. Cell Chromosome. 2005 Aug 7. 4:1. [Medline]. [Full Text].

  13. Knowles MA. Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese?. Carcinogenesis. 2006 Mar. 27(3):361-73. [Medline].

  14. Salinas-Sánchez AS, Lorenzo-Romero JG, Giménez-Bachs JM, Sánchez-Sánchez F, Donate-Moreno MJ, Rubio-Del-Campo A, et al. Implications of p53 gene mutations on patient survival in transitional cell carcinoma of the bladder: a long-term study. Urol Oncol. 2008 Nov-Dec. 26(6):620-6. [Medline].

  15. Miyamoto H, Shuin T, Ikeda I, Hosaka M, Kubota Y. Loss of heterozygosity at the p53, RB, DCC and APC tumor suppressor gene loci in human bladder cancer. J Urol. 1996 Apr. 155(4):1444-7. [Medline].

  16. Karam JA, Lotan Y, Karakiewicz PI, Ashfaq R, Sagalowsky AI, Roehrborn CG, et al. Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol. 2007 Feb. 8(2):128-36. [Medline].

  17. Campbell SC, Volpert OV, Ivanovich M, Bouck NP. Molecular mediators of angiogenesis in bladder cancer. Cancer Res. 1998 Mar 15. 58(6):1298-304. [Medline].

  18. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A. 2009 Aug 18. 106(33):14016-21. [Medline]. [Full Text].

  19. Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol. 2006 Feb 10. 24(5):778-89. [Medline].

  20. Brennan P, Bogillot O, Cordier S, Greiser E, Schill W, Vineis P, et al. Cigarette smoking and bladder cancer in men: a pooled analysis of 11 case-control studies. Int J Cancer. 2000 Apr 15. 86(2):289-94. [Medline].

  21. Fortuny J, Kogevinas M, Chang-Claude J, González CA, Hours M, Jöckel KH, et al. Tobacco, occupation and non-transitional-cell carcinoma of the bladder: an international case-control study. Int J Cancer. 1999 Jan 5. 80(1):44-6. [Medline].

  22. Freedman ND, Silverman DT, Hollenbeck AR, Schatzkin A, Abnet CC. Association between smoking and risk of bladder cancer among men and women. JAMA. 2011 Aug 17. 306(7):737-45. [Medline]. [Full Text].

  23. Cumberbatch MG, Cox A, Teare D, Catto JW. Contemporary Occupational Carcinogen Exposure and Bladder Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2015 Dec. 1 (9):1282-90. [Medline].

  24. Baris D, Waddell R, Beane Freeman LE, Schwenn M, Colt JS, et al. Elevated Bladder Cancer in Northern New England: The Role of Drinking Water and Arsenic. J Natl Cancer Inst. 2016 Sep. 108 (9):[Medline].

  25. Nelson R. Arsenic-Contaminated Well Water Boosts Bladder Cancer Risk. Medscape Medical News. Available at May 5, 2016; Accessed: May 7, 2016.

  26. Stein JP, Skinner EC, Boyd SD, Skinner DG. Squamous cell carcinoma of the bladder associated with cyclophosphamide therapy for Wegener's granulomatosis: a report of 2 cases. J Urol. 1993 Mar. 149(3):588-9. [Medline].

  27. Figueroa JD, Koutros S, Colt JS, Kogevinas M, Garcia-Closas M, et al. Modification of Occupational Exposures on Bladder Cancer Risk by Common Genetic Polymorphisms. J Natl Cancer Inst. 2015 Nov. 107 (11):[Medline].

  28. El-Bolkainy MN, Mokhtar NM, Ghoneim MA, Hussein MH. The impact of schistosomiasis on the pathology of bladder carcinoma. Cancer. 1981 Dec 15. 48(12):2643-8. [Medline].

  29. Botelho M, Ferreira AC, Oliveira MJ, Domingues A, Machado JC, da Costa JM. Schistosoma haematobium total antigen induces increased proliferation, migration and invasion, and decreases apoptosis of normal epithelial cells. Int J Parasitol. 2009 Aug. 39(10):1083-91. [Medline].

  30. Ahmad I, Barnetson RJ, Krishna NS. Keratinizing squamous metaplasia of the bladder: a review. Urol Int. 2008. 81(3):247-51. [Medline].

  31. Khan MS, Thornhill JA, Gaffney E, Loftus B, Butler MR. Keratinising squamous metaplasia of the bladder: natural history and rationalization of management based on review of 54 years experience. Eur Urol. 2002 Nov. 42(5):469-74. [Medline].

  32. Newman DM, Brown JR, Jay AC, Pontius EE. Squamous cell carcinoma of the bladder. J Urol. 1968 Oct. 100(4):470-3. [Medline].

  33. Faysal MH, Freiha FS. Primary neoplasm in vesical diverticula. A report of 12 cases. Br J Urol. 1981 Apr. 53(2):141-3. [Medline].

  34. Yurdakul T, Avunduk MC, Piskin MM. Pure squamous cell carcinoma after intravesical BCG treatment. A case report. Urol Int. 2005. 74(3):283-5. [Medline].

  35. STUART WT. Carcinoma of the bladder associated with exstrophy. Report of a case and review of the literature. Va Med Mon (1918). 1962 Jan. 89:39-42. [Medline].

  36. Ribeiro JC, Silva C, Sousa L, García P, Santos A. [Squamous cell carcinoma in bladder extrophy]. Actas Urol Esp. 2005 Jan. 29(1):110-2. [Medline].

  37. Gupta S, Gupta IM. Ectopia vesicae complicated by squamous cell carcinoma. Br J Urol. 1976 Aug. 48(4):244. [Medline].

  38. Rieder JM, Parsons JK, Gearhart JP, Schoenberg M. Primary squamous cell carcinoma in unreconstructed exstrophic bladder. Urology. 2006 Jan. 67(1):199. [Medline].

  39. Sheldon CA, Clayman RV, Gonzalez R, Williams RD, Fraley EE. Malignant urachal lesions. J Urol. 1984 Jan. 131(1):1-8. [Medline].

  40. Lin RY, Rappoport AE, Deppisch LM, Natividad NS, Katz W. Squamous cell carcinoma of the urachus. J Urol. 1977 Dec. 118(6):1066-7. [Medline].

  41. SHAW RE. Squamous-cell carcinoma in a cyst of the urachus. Br J Urol. 1958 Mar. 30(1):87-9. [Medline].

  42. Chow YC, Lin WC, Tzen CY, Chow YK, Lo KY. Squamous cell carcinoma of the urachus. J Urol. 2000 Mar. 163(3):903-4. [Medline].

  43. Fujiyama C, Nakashima N, Tokuda Y, Uozumi J. Squamous cell carcinoma of the urachus. Int J Urol. 2007 Oct. 14(10):966-8. [Medline].

  44. Cancer Facts & Figures 2016. American Cancer Society. Available at Accessed: May 7, 2016.

  45. [Guideline] NCCN Clinical Practice Guidelines in Oncology. Bladder Cancer, Version 1.2016. National Comprehensive Cancer Network. Available at Accessed: May 9, 2016.

  46. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012 Jan-Feb. 62(1):10-29. [Medline].

  47. Dawson C, Whitfield H. ABC of Urology. Urological malignancy--II: Urothelial tumours. BMJ. 1996 Apr 27. 312(7038):1090-4. [Medline]. [Full Text].

  48. Abrahams NA, Moran C, Reyes AO, Siefker-Radtke A, Ayala AG. Small cell carcinoma of the bladder: a contemporary clinicopathological study of 51 cases. Histopathology. 2005 Jan. 46(1):57-63. [Medline].

  49. Lohrisch C, Murray N, Pickles T, Sullivan L. Small cell carcinoma of the bladder: long term outcome with integrated chemoradiation. Cancer. 1999 Dec 1. 86(11):2346-52. [Medline].

  50. Gouda I, Mokhtar N, Bilal D, El-Bolkainy T, El-Bolkainy NM. Bilharziasis and bladder cancer: a time trend analysis of 9843 patients. J Egypt Natl Canc Inst. 2007 Jun. 19(2):158-62. [Medline].

  51. Felix AS, Soliman AS, Khaled H, Zaghloul MS, Banerjee M, El-Baradie M, et al. The changing patterns of bladder cancer in Egypt over the past 26 years. Cancer Causes Control. 2008 May. 19(4):421-9. [Medline].

  52. Elsobky E, El-Baz M, Gomha M, Abol-Enein H, Shaaban AA. Prognostic value of angiogenesis in schistosoma-associated squamous cell carcinoma of the urinary bladder. Urology. 2002 Jul. 60(1):69-73. [Medline].

  53. Griffiths TR, Charlton M, Neal DE, Powell PH. Treatment of carcinoma in situ with intravesical bacillus Calmette-Guerin without maintenance. J Urol. 2002 Jun. 167(6):2408-12. [Medline].

  54. Pycha A, Mian C, Posch B, Haitel A, Mokhtar AA, El-Baz M, et al. Numerical chromosomal aberrations in muscle invasive squamous cell and transitional cell cancer of the urinary bladder: an alternative to classic prognostic indicators?. Urology. 1999 May. 53(5):1005-10. [Medline].

  55. Shaaban AA, Javadpour N, Tribukait B, Ghoneim MA. Prognostic significance of flow-DNA analysis and cell surface isoantigens in carcinoma of bilharzial bladder. Urology. 1992 Mar. 39(3):207-10. [Medline].

  56. Ghoneim MA, Ashamallah AK, Awaad HK, Whitmore WF Jr. Randomized trial of cystectomy with or without preoperative radiotherapy for carcinoma of the bilharzial bladder. J Urol. 1985 Aug. 134(2):266-8. [Medline].

  57. Cheng L, Pan CX, Yang XJ, Lopez-Beltran A, MacLennan GT, Lin H, et al. Small cell carcinoma of the urinary bladder: a clinicopathologic analysis of 64 patients. Cancer. 2004 Sep 1. 101(5):957-62. [Medline].

  58. Shahab N. Extrapulmonary small cell carcinoma of the bladder. Semin Oncol. 2007 Feb. 34(1):15-21. [Medline].

  59. Mackey JR, Au HJ, Hugh J, Venner P. Genitourinary small cell carcinoma: determination of clinical and therapeutic factors associated with survival. J Urol. 1998 May. 159(5):1624-9. [Medline].

  60. Choong NW, Quevedo JF, Kaur JS. Small cell carcinoma of the urinary bladder. The Mayo Clinic experience. Cancer. 2005 Mar 15. 103(6):1172-8. [Medline].

  61. van Rhijn BW, Burger M, Lotan Y, Solsona E, Stief CG, Sylvester RJ, et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol. 2009 Sep. 56(3):430-42. [Medline].

  62. Fernandez-Gomez J, Solsona E, Unda M, Martinez-Piñeiro L, Gonzalez M, Hernandez R, et al. Prognostic factors in patients with non-muscle-invasive bladder cancer treated with bacillus Calmette-Guérin: multivariate analysis of data from four randomized CUETO trials. Eur Urol. 2008 May. 53(5):992-1001. [Medline].

  63. Cha EK, Tirsar LA, Schwentner C, Christos PJ, Mian C, Hennenlotter J, et al. Immunocytology is a strong predictor of bladder cancer presence in patients with painless hematuria: a multicentre study. Eur Urol. 2012 Jan. 61(1):185-92. [Medline].

  64. Strittmatter F, Buchner A, Karl A, Sommer ML, Straub J, Tilki D, et al. Individual learning curve reduces the clinical value of urinary cytology. Clin Genitourin Cancer. 2011 Sep. 9(1):22-6. [Medline].

  65. Lotan Y, Roehrborn CG. Cost-effectiveness of a modified care protocol substituting bladder tumor markers for cystoscopy for the followup of patients with transitional cell carcinoma of the bladder: a decision analytical approach. J Urol. 2002 Jan. 167(1):75-9. [Medline].

  66. Apolo AB, Vogelzang NJ, Theodorescu D. New and promising strategies in the management of bladder cancer. Am Soc Clin Oncol Educ Book. 2015. 35:105-12. [Medline]. [Full Text].

  67. Grossfeld GD, Litwin MS, Wolf JS Jr, Hricak H, Shuler CL, Agerter DC, et al. Evaluation of asymptomatic microscopic hematuria in adults: the American Urological Association best practice policy--part II: patient evaluation, cytology, voided markers, imaging, cystoscopy, nephrology evaluation, and follow-up. Urology. 2001 Apr. 57(4):604-10. [Medline].

  68. Murphy WM, Crabtree WN, Jukkola AF, Soloway MS. The diagnostic value of urine versus bladder washing in patients with bladder cancer. J Urol. 1981 Sep. 126(3):320-2. [Medline].

  69. Lokeshwar VB, Soloway MS. Current bladder tumor tests: does their projected utility fulfill clinical necessity?. J Urol. 2001 Apr. 165(4):1067-77. [Medline].

  70. Grossman HB, Soloway M, Messing E, Katz G, Stein B, Kassabian V, et al. Surveillance for recurrent bladder cancer using a point-of-care proteomic assay. JAMA. 2006 Jan 18. 295(3):299-305. [Medline].

  71. Al-Sukhun S, Hussain M. Molecular biology of transitional cell carcinoma. Crit Rev Oncol Hematol. 2003 Aug. 47(2):181-93. [Medline].

  72. Halling KC, Kipp BR. Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol. 2008 Sep. 15(5):279-86. [Medline].

  73. Soloway MS, Briggman V, Carpinito GA, Chodak GW, Church PA, Lamm DL, et al. Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J Urol. 1996 Aug. 156(2 Pt 1):363-7. [Medline].

  74. van Rhijn BW, van der Poel HG, van der Kwast TH. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol. 2005 Jun. 47 (6):736-48. [Medline].

  75. [Guideline] Babjuk M, Burger M, Zigeuner R, Shariat SF, van Rhijn BW, Compérat E, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol. 2013 Oct. 64 (4):639-53. [Medline]. [Full Text].

  76. Hall MC, Chang SS, Dalbagni G, Pruthi RS, Seigne JD, Skinner EC, et al. Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1, and Tis): 2007 update. J Urol. 2007 Dec. 178(6):2314-30. [Medline].

  77. Greene LF, Page DL, Fleming D, et al. American Joint Committee on Cancer (AJCC) Cancer Staging Manual. 6th ed. New York, NY: Springer-Verlag; 2002.

  78. [Guideline] Stenzl A, Cowan NC, De Santis M, Jakse G, Kuczyk MA, Merseburger AS, et al. The updated EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2009 Apr. 55(4):815-25. [Medline].

  79. Chedgy EC, Black PC. Radical Cystectomy and the Multidisciplinary Management of Muscle-Invasive Bladder Cancer. JAMA Oncol. 2016 May 5. [Medline]. [Full Text].

  80. Mitin T. Rethinking Radical Cystectomy as the Best Choice for Most Patients With Muscle-Invasive Bladder Cancer. JAMA Oncol. 2016 May 5. [Medline]. [Full Text].

  81. Teo MT, Dyrskjøt L, Nsengimana J, Buchwald C, Snowden H, Morgan J, et al. Next-generation sequencing identifies germline MRE11A variants as markers of radiotherapy outcomes in muscle-invasive bladder cancer. Ann Oncol. 2014 Apr. 25 (4):877-83. [Medline]. [Full Text].

  82. Serretta V, Galuffo A, Pavone C, Allegro R, Pavone-MacAluso M. Gemcitabine in intravesical treatment of Ta-T1 transitional cell carcinoma of bladder: Phase I-II study on marker lesions. Urology. 2005 Jan. 65(1):65-9. [Medline].

  83. Sylvester RJ, van der Meijden AP, Witjes JA, Kurth K. Bacillus calmette-guerin versus chemotherapy for the intravesical treatment of patients with carcinoma in situ of the bladder: a meta-analysis of the published results of randomized clinical trials. J Urol. 2005 Jul. 174(1):86-91; discussion 91-2. [Medline].

  84. Witjes JA, Hendricksen K. Intravesical pharmacotherapy for non-muscle-invasive bladder cancer: a critical analysis of currently available drugs, treatment schedules, and long-term results. Eur Urol. 2008 Jan. 53(1):45-52. [Medline].

  85. Zaharoff DA, Hoffman BS, Hooper HB, Benjamin CJ Jr, Khurana KK, Hance KW, et al. Intravesical immunotherapy of superficial bladder cancer with chitosan/interleukin-12. Cancer Res. 2009 Aug 1. 69(15):6192-9. [Medline]. [Full Text].

  86. Islam MA, Bhuiyan ZH, Shameem IA. Intravesical adjuvant therapy using mitomycin C. Mymensingh Med J. 2006 Jan. 15(1):40-4. [Medline].

  87. Herr HW, Dalbagni G, Donat SM. Bacillus Calmette-Guérin without maintenance therapy for high-risk non-muscle-invasive bladder cancer. Eur Urol. 2011 Jul. 60(1):32-6. [Medline].

  88. Schmidbauer J, Witjes F, Schmeller N, Donat R, Susani M, Marberger M. Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy. J Urol. 2004 Jan. 171(1):135-8. [Medline].

  89. Jichlinski P, Guillou L, Karlsen SJ, Malmström PU, Jocham D, Brennhovd B, et al. Hexyl aminolevulinate fluorescence cystoscopy: new diagnostic tool for photodiagnosis of superficial bladder cancer--a multicenter study. J Urol. 2003 Jul. 170(1):226-9. [Medline].

  90. Hungerhuber E, Stepp H, Kriegmair M, Stief C, Hofstetter A, Hartmann A, et al. Seven years' experience with 5-aminolevulinic acid in detection of transitional cell carcinoma of the bladder. Urology. 2007 Feb. 69(2):260-4. [Medline].

  91. Kausch I, Sommerauer M, Montorsi F, Stenzl A, Jacqmin D, Jichlinski P, et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol. 2010 Apr. 57(4):595-606. [Medline].

  92. Waknine Y. FDA Approves Cysview for Cystoscopic Detection of Papillary Bladder Cancer. Medscape Medical News, June 4, 2010. Available at Accessed: January 10, 2013.

  93. Booth CM, Tannock IF. Benefits of Adjuvant Chemotherapy for Bladder Cancer. JAMA Oncol. 2015 Sep. 1 (6):727-8. [Medline].

  94. Standard or Extended Pelvic Lymphadenectomy in Treating Patients Undergoing Surgery for Invasive Bladder Cancer. Available at Accessed: January 4, 2013.

  95. Mukesh M, Cook N, Hollingdale AE, Ainsworth NL, Russell SG. Small cell carcinoma of the urinary bladder: a 15-year retrospective review of treatment and survival in the Anglian Cancer Network. BJU Int. 2009 Mar. 103(6):747-52. [Medline].

  96. Ehdaie B, Maschino A, Shariat SF, Rioja J, Hamilton RJ, Lowrance WT, et al. Comparative outcomes of pure squamous cell carcinoma and urothelial carcinoma with squamous differentiation in patients treated with radical cystectomy. J Urol. 2012 Jan. 187(1):74-9. [Medline].

  97. Brinkman MT, Karagas MR, Zens MS, Schned A, Reulen RC, Zeegers MP. Minerals and vitamins and the risk of bladder cancer: results from the New Hampshire Study. Cancer Causes Control. 2010 Apr. 21(4):609-19. [Medline]. [Full Text].

  98. O'Donnell MA, Lilli K, Leopold C. Interim results from a national multicenter phase II trial of combination bacillus Calmette-Guerin plus interferon alfa-2b for superficial bladder cancer. J Urol. 2004 Sep. 172(3):888-93. [Medline].

  99. Nepple KG, Lightfoot AJ, Rosevear HM, O'Donnell MA, Lamm DL. Bacillus Calmette-Guérin with or without interferon a-2b and megadose versus recommended daily allowance vitamins during induction and maintenance intravesical treatment of nonmuscle invasive bladder cancer. J Urol. 2010 Nov. 184(5):1915-9. [Medline].

  100. Kamat AM, Dickstein RJ, Messetti F, Anderson R, Pretzsch SM, Gonzalez GN, et al. Use of fluorescence in situ hybridization to predict response to bacillus Calmette-Guérin therapy for bladder cancer: results of a prospective trial. J Urol. 2012 Mar. 187(3):862-7. [Medline]. [Full Text].

  101. Barlow L, McKiernan JM, Benson MC. Long-term survival outcomes with intravesical docetaxel for recurrent nonmuscle invasive bladder cancer after previous bacillus Calmette-Guérin therapy. J Urol. 2013 Mar. 189(3):834-9. [Medline].

  102. Schmidbauer J, Witjes F, Schmeller N, Donat R, Susani M, Marberger M. Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy. J Urol. 2004 Jan. 171(1):135-8. [Medline].

  103. Jichlinski P, Guillou L, Karlsen SJ, Malmström PU, Jocham D, Brennhovd B, et al. Hexyl aminolevulinate fluorescence cystoscopy: new diagnostic tool for photodiagnosis of superficial bladder cancer--a multicenter study. J Urol. 2003 Jul. 170(1):226-9. [Medline].

  104. Hungerhuber E, Stepp H, Kriegmair M, Stief C, Hofstetter A, Hartmann A, et al. Seven years' experience with 5-aminolevulinic acid in detection of transitional cell carcinoma of the bladder. Urology. 2007 Feb. 69(2):260-4. [Medline].

  105. Fradet Y, Grossman HB, Gomella L, Lerner S, Cookson M, Albala D, et al. A comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of carcinoma in situ in patients with bladder cancer: a phase III, multicenter study. J Urol. 2007 Jul. 178(1):68-73; discussion 73. [Medline].

  106. Jocham D, Witjes F, Wagner S, Zeylemaker B, van Moorselaar J, Grimm MO, et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol. 2005 Sep. 174(3):862-6; discussion 866. [Medline].

  107. Stenzl A, Burger M, Fradet Y, Mynderse LA, Soloway MS, Witjes JA, et al. Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer. J Urol. 2010 Nov. 184(5):1907-13. [Medline].

  108. Hermann GG, Mogensen K, Carlsson S, Marcussen N, Duun S. Fluorescence-guided transurethral resection of bladder tumours reduces bladder tumour recurrence due to less residual tumour tissue in Ta/T1 patients: a randomized two-centre study. BJU Int. 2011 Oct. 108(8 Pt 2):E297-303. [Medline].

  109. Tilki D, Reich O, Svatek RS, Karakiewicz PI, Kassouf W, Novara G, et al. Characteristics and outcomes of patients with clinical carcinoma in situ only treated with radical cystectomy: an international study of 243 patients. J Urol. 2010 May. 183(5):1757-63. [Medline].

  110. Davis JW, Castle EP, Pruthi RS, Ornstein DK, Guru KA. Robot-assisted radical cystectomy: an expert panel review of the current status and future direction. Urol Oncol. 2010 Sep-Oct. 28(5):480-6. [Medline].

  111. Chang SS, Cookson MS. Radical cystectomy for bladder cancer: the case for early intervention. Urol Clin North Am. 2005 May. 32(2):147-55. [Medline].

  112. Sánchez-Ortiz RF, Huang WC, Mick R, Van Arsdalen KN, Wein AJ, Malkowicz SB. An interval longer than 12 weeks between the diagnosis of muscle invasion and cystectomy is associated with worse outcome in bladder carcinoma. J Urol. 2003 Jan. 169(1):110-5; discussion 115. [Medline].

  113. Standard or Extended Pelvic Lymphadenectomy in Treating Patients Undergoing Surgery for Invasive Bladder Cancer. Available at Accessed: November 13, 2012.

  114. Raghavan D, Burgess E, Gaston KE, Haake MR, Riggs SB. Neoadjuvant and adjuvant chemotherapy approaches for invasive bladder cancer. Semin Oncol. 2012 Oct. 39(5):588-97. [Medline].

  115. Winquist E, Kirchner TS, Segal R, Chin J, Lukka H. Neoadjuvant chemotherapy for transitional cell carcinoma of the bladder: a systematic review and meta-analysis. J Urol. 2004 Feb. 171(2 Pt 1):561-9. [Medline].

  116. Grossman HB, Natale RB, Tangen CM, Speights VO, Vogelzang NJ, Trump DL, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003 Aug 28. 349(9):859-66. [Medline].

  117. Herr HW, Faulkner JR, Grossman HB, Natale RB, deVere White R, Sarosdy MF, et al. Surgical factors influence bladder cancer outcomes: a cooperative group report. J Clin Oncol. 2004 Jul 15. 22(14):2781-9. [Medline].

  118. Griffiths G, Hall R, Sylvester R, Raghavan D, Parmar MK. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J Clin Oncol. 2011 Jun 1. 29(16):2171-7. [Medline]. [Full Text].

  119. Mooso BA, Vinall RL, Mudryj M, Yap SA, deVere White RW, Ghosh PM. The role of EGFR family inhibitors in muscle invasive bladder cancer: a review of clinical data and molecular evidence. J Urol. 2015 Jan. 193 (1):19-29. [Medline].

  120. Sternberg CN, Skoneczna I, Kerst JM, Albers P, Fossa SD, et al. Immediate versus deferred chemotherapy after radical cystectomy in patients with pT3-pT4 or N+ M0 urothelial carcinoma of the bladder (EORTC 30994): an intergroup, open-label, randomised phase 3 trial. Lancet Oncol. 2015 Jan. 16 (1):76-86. [Medline].

  121. Saxman SB, Propert KJ, Einhorn LH, Crawford ED, Tannock I, Raghavan D, et al. Long-term follow-up of a phase III intergroup study of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J Clin Oncol. 1997 Jul. 15(7):2564-9. [Medline].

  122. Sternberg CN, de Mulder P, Schornagel JH, Theodore C, Fossa SD, van Oosterom AT, et al. Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF versus classic M-VAC in advanced urothelial tract tumours. Eur J Cancer. 2006 Jan. 42(1):50-4. [Medline].

  123. von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 2005 Jul 20. 23(21):4602-8. [Medline].

  124. von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 2005 Jul 20. 23(21):4602-8. [Medline].

  125. Iwasaki K, Obara W, Kato Y, Takata R, Tanji S, Fujioka T. Neoadjuvant gemcitabine plus carboplatin for locally advanced bladder cancer. Jpn J Clin Oncol. 2013 Feb. 43(2):193-9. [Medline].

  126. Bellmunt J, Théodore C, Demkov T, Komyakov B, Sengelov L, Daugaard G, et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J Clin Oncol. 2009 Sep 20. 27(27):4454-61. [Medline].

  127. Ploeg M, Kums AC, Aben KK, van Lin EN, Smits G, Vergunst H, et al. Prognostic factors for survival in patients with recurrence of muscle invasive bladder cancer after treatment with curative intent. Clin Genitourin Cancer. 2011 Sep. 9(1):14-21. [Medline].

  128. Bruins HM, Djaladat H, Ahmadi H, Sherrod A, Cai J, Miranda G, et al. Incidental cancer of the prostate in patients with bladder urothelial carcinoma: comprehensive analysis of 1476 radical cystoprostatectomy specimens. J Urol. 2013 May 23. [Medline].

  129. Zehnder P, Studer UE, Daneshmand S, et al. Outcomes of radical cystectomy with extended lymphadenectomy alone in patients with lymph node-positive bladder cancer who are unfit for or who decline adjuvant chemotherapy. BJU Int. 2014 Apr. 113(4):554-60. [Medline].

  130. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016 Mar 4. [Medline].

In an ileal conduit, a small segment of ileum is taken out of continuity with the gastrointestinal tract but is maintained on its mesentery. Ureters are anastomosed to one end of this ileal segment, and the other end is brought out as a stoma to the abdominal wall.
In an Indiana pouch, a urinary reservoir is created from detubularized right colon and an efferent limb of terminal ileum. Terminal ileum is plicated and brought to the abdominal wall. The continence mechanism is the ileocecal valve.
In an orthotopic neobladder, a segment of ileum is used to construct a neobladder, which is connected to the urethra. Orthotopic neobladder most closely restores the natural storage and voiding function of the native bladder.
The classic appearance of carcinoma in situ as a flat, velvety patch. However, using special staining techniques such as 5-aminolevulinic acid, it has been shown that significant areas of carcinoma in situ are easily overlooked by conventional cystoscopy. Courtesy of Abbott and Vysis Inc.
Papillary bladder tumors such as this one are typically of low stage and grade (Ta-G1). Courtesy of Abbott and Vysis Inc.
Sessile lesions as shown usually invade muscle, although occasionally a tumor is detected at the T1-G3 stage prior to muscle invasion. Courtesy of Abbott and Vysis Inc.
Photograph in which fluorescence in situ hybridization centromere staining identifies aneuploidy of chromosome 3. Multiple instances of overexpression of the chromosome (note the multiple red dots, which identify centromeres of this chromosome) prove aneuploidy.
Cross-section through the bladder, uterus, and vagina with squamous cell carcinoma of the bladder infiltrating through the bladder wall into the vaginal wall.
High power, Pap stain showing high grade urothelial carcinoma on a bladder wash cytology.
Intermediate power, H and E stain of urothelial carcinoma in situ. The superficial cells shed into the urine and correlate with those seen in cytologic bladder washing or urine cytology.
High power, H and E stain of high grade urothelial carcinoma. This tumor is now invasive into the muscularis propria (smooth muscle seen in center of image).
Histopathology of bladder shows eggs of Schistosoma haematobium surrounded by intense infiltrates of eosinophils and other inflammatory cells.
(A) When infused into the bladder, the optical imaging agent hexaminolevulinate (Cysview) accumulates preferentially in malignant cells. (B) On blue-light cystoscopy, the collection of hexaminolevulinate within tumors is visible as bright red spots. Courtesy of Gary David Steinberg, MD, FACS.
Table 1. Clinical Findings and Recommended Action in Patients with Negative Cystoscopy
Cystoscopy Findings Urine Cytology Findings FISH* Findings Action
Negative Negative Negative† Routine follow-up
Negative Negative Positive‡ Increased frequency of surveillance, whether FISH findings are false positive or anticipatory positive
Negative Positive Negative or positive Cancer until proven otherwise
  • Upper tract imaging with contrast
  • Cystoscopy with retrograde pyelography, washings, and/or ureteroscopy
  • Evaluate urethra
  • Increased frequency of surveillance upon negative findings
*FISH - Fluorescent in situ hybridization.

†Negative predictive value 95%.

‡Positive predictive value 30%.

Table 2. Recurrence and Progression Rates at 5 Years for Ta, T1, and CIS TCC of the Bladder Treated With BCG
Stage Recurrence, % Progression, %
Ta 55 11
T1 61 31
CIS 45 23
G1 61 2-4
G2 56 5-7
G3 50-70 30-40
Table 3. Most Common Complications of Radical Cystectomy
Early Complications Rate, % Late Complications Rate, %
Ileus 10 Small-bowel obstruction 7.4
Wound infection 5.5 Ureteroenteric stricture 7.0
Sepsis 4.9 Renal calculi 3.9
Pelvic abscess 4.7 Acute pyelonephritis 3.1
Hemorrhage 3.4 Parastomal hernia 2.8
Wound dehiscence 3.3 Stomal stenosis 2.8
Bowel obstruction 3.0 Incisional hernia 2.2
Enterocutaneous fistula 2.2 Fistula 1.3
Rectal injury 2.2 Rectal complications < 1
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.