Medscape is available in 5 Language Editions – Choose your Edition here.


Carotid Artery Dissection Treatment & Management

  • Author: David Zohrabian, MD, FAAEM, FACEP; Chief Editor: Barry E Brenner, MD, PhD, FACEP  more...
Updated: Sep 02, 2015

Initial Management

Cervical spine immobilization, which is usually appropriate, should be performed in the setting of any significant traumatic injury that could involve the neck.

Patients with internal carotid artery dissection may present to the emergency department (ED) in various ways and with various nonspecific complaints, but in all cases, the emergency physician should maintain a high index of suspicion. If internal carotid artery dissection is included in the differential diagnosis, the possibility should be pursued until it is clinically ruled out.

Depending on the likelihood of dissection, patient characteristics, neurologic status, and hemodynamic stability, medical management may occur during the diagnostic process or after the diagnosis is made. As in all medical care decisions, the benefits of treatment must be carefully weighed against the risks. Input from endovascular and surgical consultants should facilitate management decisions.

Initial computed tomography (CT) of the head is usually warranted, depending on the patient’s presentation. If the scan yields negative results or the findings do not correlate with the patient’s symptoms and signs, it should be followed up by a more definitive imaging modality, such as magnetic resonance angiography (MRA), CT angiography (CTA), or conventional angiography (depending on institutional preferences).


Pharmacologic, Endovascular, and Surgical Therapy

There is no general consensus regarding optimal management of internal carotid artery dissection, but the choice among medical, endovascular,[17] and surgical options may depend on the type of injury, the anatomic location, the mechanism of injury, coexisting injuries, and comorbid conditions. Therefore, after the diagnosis is made, the risk-to-benefit ratio of antithrombotic therapy should be determined, especially in cases of high-impact trauma, and vascular surgery or interventional radiology consultations should be obtained.

Anticoagulant therapy should be initiated when a thrombus is detected. Anticoagulation with intravenous (IV) heparin followed by warfarin has generally been accepted as adequate medical management for preventing thromboembolic complications. Do not initiate anticoagulation in trauma patients without first ruling out intracranial hemorrhage (ICH) and extracranial sources of hemorrhage.

Antiplatelet therapy has also been used alone, especially when systemic anticoagulation is contraindicated. Do not initiate either anticoagulation or antiplatelet therapy in pregnant patients without consulting an obstetrician.

Candidates for angioplasty and stent placement include patients with persistent ischemic symptoms despite adequate anticoagulation, patients with a contraindication to anticoagulant therapy, patients with an iatrogenic dissection developing during an intravascular procedure, and patients with significantly compromised cerebral blood flow.[17, 18, 19]

Surgery has a limited role in the management of carotid artery dissections. The usual complications associated with surgical or endovascular procedures may occur if such procedures are employed in the early management of the dissection.

Nonetheless, a literature review study by Xianjun and Zhiming indicated that in selected patients, internal carotid artery dissections can be effectively managed with stenting or stent-graft-supported angioplasty. The review included 201 patients who suffered traumatic, spontaneous, or iatrogenic internal carotid artery dissection. Endovascular treatment of these patients had a 99.1% technical success rate, with no procedure-associated mortality reported. Perioperatively, there was an overall rate of major cardiovascular events of 4%, and postoperatively, over a mean 16.5-month follow-up period, the rate of intimal hyperplasia or in-stent restenosis or occlusion was 3.3%. Over a mean 20.9-month follow-up period, recurrent transient ischemic attack in the treated vessel’s territory occurred in just 2.1% of patients.[17]



For each patient with carotid artery dissection, the risks and benefit of initiating antithrombotic therapy must be assessed. Consultation with 1 or more of the following services may be useful, particularly in difficult situations such as multiple trauma, traumatic brain injury, preexisting brain lesion, or upper gastrointestinal bleeding:

  • Neurology
  • Vascular surgery
  • Neurosurgery
  • Interventional radiology

Long-Term Monitoring

Patients should be closely monitored for delayed ischemic or embolic neurologic symptoms and for the hemorrhagic side effects of antithrombotic medication. Ischemic stroke, mainly from thromboembolic complications of the initial dissection, may occur. Hemorrhagic stroke may occur secondary to anticoagulant use in some patients.

If anticoagulation is initiated, continue it for 3-6 months with appropriate follow-up for international normalized ratio (INR) and prothrombin time (PT) monitoring. The target range for the INR should be 2.0-3.0. Follow-up with CTA, Doppler ultrasonography (DUS), or another angiographic imaging modalities should be done several months after the event to reevaluate the dissection. Dissection may recur in the unaffected artery; the incidence of this development may be greater than 1% per year in patients with a known heritable arteriopathy.

Contributor Information and Disclosures

David Zohrabian, MD, FAAEM, FACEP Emergency Physician, Emergent Medical Associates, Valley Presbyterian Hospital

David Zohrabian, MD, FAAEM, FACEP is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, Society for Academic Emergency Medicine, Emergency Medicine Residents' Association

Disclosure: Nothing to disclose.

Chief Editor

Barry E Brenner, MD, PhD, FACEP Professor of Emergency Medicine, Professor of Internal Medicine, Program Director for Emergency Medicine, Case Medical Center, University Hospitals, Case Western Reserve University School of Medicine

Barry E Brenner, MD, PhD, FACEP is a member of the following medical societies: Alpha Omega Alpha, American Heart Association, American Thoracic Society, Arkansas Medical Society, New York Academy of Medicine, New York Academy of Sciences, Society for Academic Emergency Medicine, American Academy of Emergency Medicine, American College of Chest Physicians, American College of Emergency Physicians, American College of Physicians

Disclosure: Nothing to disclose.


A Antoine Kazzi MD, Deputy Chief of Staff, American University of Beirut Medical Center; Associate Professor, Department of Emergency Medicine, American University of Beirut, Lebanon

A Antoine Kazzi is a member of the following medical societies: American Academy of Emergency Medicine

Disclosure: Nothing to disclose.

Joseph J Sachter, MD, FACEP Consulting Staff, Department of Emergency Medicine, Muhlenberg Regional Medical Center

Joseph J Sachter, MD, FACEP is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, American College of Physician Executives, American Medical Association, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

  1. Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med. 2001 Mar 22. 344(12):898-906. [Medline].

  2. Redekop GJ. Extracranial carotid and vertebral artery dissection: a review. Can J Neurol Sci. 2008 May. 35(2):146-52. [Medline].

  3. Goyal MS, Derdeyn CP. The diagnosis and management of supraaortic arterial dissections. Curr Opin Neurol. 2009 Feb. 22(1):80-9. [Medline].

  4. Cothren CC, Moore EE, Biffl WL, Ciesla DJ, Ray CE Jr, Johnson JL. Anticoagulation is the gold standard therapy for blunt carotid injuries to reduce stroke rate. Arch Surg. 2004 May. 139(5):540-5; discussion 545-6. [Medline].

  5. Debette S, Leys D. Cervical-artery dissections: predisposing factors, diagnosis, and outcome. Lancet Neurol. 2009 Jul. 8(7):668-78. [Medline].

  6. Baker WE, Wassermann J. Unsuspected vascular trauma: blunt arterial injuries. Emerg Med Clin North Am. 2004 Nov. 22(4):1081-98. [Medline].

  7. Baumgartner RW. Management of spontaneous dissection of the cervical carotid artery. Acta Neurochir Suppl. 2010. 107:57-61. [Medline].

  8. Arthurs ZM, Starnes BW. Blunt carotid and vertebral artery injuries. Injury. 2008 Nov. 39(11):1232-41. [Medline].

  9. Tobin J, Flitman S. Cluster-like headaches associated with internal carotid artery dissection responsive to verapamil. Headache. Mar 2008. 48(3):461-6.

  10. Divjak I, Slankamenac P, Jovicevic M, Zikic TR, Prokin AL, Jovanovic A. A case series of 22 patients with internal carotid artery dissection. Med Pregl. 2011 Nov-Dec. 64(11-12):575-8. [Medline].

  11. Patel RR, Adam R, Maldjian C, Lincoln CM, Yuen A, Arneja A. Cervical Carotid Artery Dissection: Current Review of Diagnosis and Treatment. Cardiol Rev. 2012 Feb 1. [Medline].

  12. Stallmeyer MJ, Morales RE, Flanders AE. Imaging of traumatic neurovascular injury. Radiol Clin North Am. 2006 Jan. 44(1):13-39, vii. [Medline].

  13. Caplan LR. Dissections of brain-supplying arteries. Nat Clin Pract Neurol. 2008 Jan. 4(1):34-42. [Medline].

  14. Flis CM, Jager HR, Sidhu PS. Carotid and vertebral artery dissections: clinical aspects, imaging features and endovascular treatment. Eur Radiol. 2007 Mar. 17(3):820-34. [Medline].

  15. Kim YK, Schulman S. Cervical artery dissection: pathology, epidemiology and management. Thromb Res. 2009 Apr. 123(6):810-21. [Medline].

  16. Arnold M, Baumgartner RW, Stapf C, Nedeltchev K, Buffon F, Benninger D. Ultrasound diagnosis of spontaneous carotid dissection with isolated Horner syndrome. Stroke. 2008 Jan. 39(1):82-6. [Medline].

  17. Xianjun H, Zhiming Z. A systematic review of endovascular management of internal carotid artery dissections. Interv Neurol. 2013 Sep. 1(3-4):164-70. [Medline]. [Full Text].

  18. Fava M, Meneses L, Loyola S, Tevah J, Bertoni H, Huete I. Carotid artery dissection: endovascular treatment. Report of 12 patients. Catheter Cardiovasc Interv. 2008 Apr 1. 71(5):694-700. [Medline].

  19. Zhou Y, Yang PF, Hong B, et al. Stent placement for the treatment of complex internal carotid bifurcation aneurysms: a review of 16 cases. Turk Neurosurg. 2013. 23(2):232-40. [Medline].

Arterial dissection. (A) Tear and elevation of intima from wall of artery, resulting in luminal stenosis. Illustration shows stasis of flow in false lumen beneath elevated intima. This condition creates blind pouch that predisposes patient to thrombus formation. (B) Subadventitial dissection represents hemorrhage between media and adventitia. Artery may become dilated as result of thickening of arterial wall, with some degree of luminal narrowing. Elevation of intimal flap is not commonly associated with this type of dissection. Hemorrhage may extravasate through adventitia, resulting in pseudoaneurysm or fistula formation.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.