Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Decompression Sickness Clinical Presentation

  • Author: Stephen A Pulley, DO, MS, FACOEP; Chief Editor: Joe Alcock, MD, MS  more...
 
Updated: Jul 12, 2016
 

History

When taking the history remember that symptoms or signs that appear during or following a dive are pressure-related until proven otherwise based on a diagnostic or therapeutic recompression via hyperbaric oxygen (HBO). Therefore, having the forethought to ask about pressure exposure aids in the diagnosis. Having a familiarity with diving aids the healthcare provider in raising concern for pressure-related injuries. However, some patients have symptoms temporally linked to diving that ultimately are determined to be nondiving-related issues. The take-home point is to consider decompression sickness (DCS) as a possibility but not to exclude others, especially if symptoms are atypical and the dive profile would not normally have been expected to cause a problem.

The following specifics about the dive should be elicited:

  • Location of the dive (eg, ocean, lake, river, quarry, or cave)
  • Timing of events during the dive and over the prior 72 hours (eg, time dives occurred, length of dives, surface intervals, safety stops, flying, and method of timing used [eg, watch with tables, dive computer])
  • Maximum dive depth and the rate of ascent
  • Approximate times spent at specific depths
  • Work of the patient during the dive (ie, consider currents, distance swam, water temperature, and primary activity [eg, wreck diving, artifact recovery, commercial work])
  • Gases and equipment used (ie, compressed air, rebreathing equipment, mixed gases, or none as in a free dive)
  • Problems encountered (eg, violation of no–decompression-limit dive tables, equipment, entanglement, dizziness, marine bites or stings)
  • Patient's physical condition before, during, and after the dive (eg, fatigue, hydration, drug or alcohol intake, fever, vertigo, nausea, overexertion, pulled muscles)
  • First aid delivered (ie, oxygen, positioning, medications, fluids)

Ask the patient about the following symptoms:

  • General symptoms of profound fatigue or heaviness, weakness, sweating, malaise, or anorexia
  • Musculoskeletal symptoms of joint pain, tendonitis, crepitus, back pain, or heaviness of extremities
  • Mental-status symptoms of confusion, unconsciousness, changes in personality
  • Eye and ear symptoms of scotomata (negative then positive), diplopia, tunnel vision, blurring, extraocular motor paresis, tinnitus, or partial hearing loss
  • Skin symptoms of pruritus or mottling
  • Pulmonary symptoms of dyspnea, nonproductive cough, or hemoptysis
  • Cardiac symptoms of inspiratory, substernal, or sharp or burning chest pain
  • Gastrointestinal symptoms of girdle abdominal pain, fecal incontinence, nausea, or vomiting
  • Genitourinary symptoms of urinary incontinence or urinary retention
  • Neurologic symptoms of paresthesia (general or over a joint), paresis, paralysis, migrainous headache, vertigo, dysarthria, or ataxia
  • Lymphatic symptoms of edema
Next

Physical

Physical examination findings may include the following:

  • General - Fatigue, shock
  • Mental status - Disorientation, mental dullness
  • Eyes - Visual-field deficit, pupillary changes, air bubbles in the retinal vessels, or nystagmus
  • Mouth - Liebermeister sign (a sharply defined area of pallor in the tongue)
  • Pulmonary - Tachypnea, respiratory failure, respiratory distress, or hemoptysis
  • Cardiac - Tachycardia, hypotension, dysrhythmia, or Hamman sign (crackling sound heard over the heart during systole)
  • Gastrointestinal - Vomiting
  • Genitourinary - Urinary bladder distention, decreased urinary output
  • Neurologic - Hyperesthesia, hypoesthesia, paresis, anal sphincter weakness, loss of bulbocavernosus reflex, spotty motor or sensory deficits, focal seizure, generalized seizure, or ataxia
  • Musculoskeletal - Subjective joint pain without objective findings, or decreased range of motion because of muscle splinting of involved joint or tendon
  • Lymphatic - Lymphedema
  • Skin - Pruritus, mottling/marbling, hyperemia, violaceous color, cyanosis, or pallor

Diagnostic maneuvers

Pain, frequently musculoskeletal, occurs in 50-60% of decompression sickness (DCS) cases. Two specific maneuvers can aid the practitioner in diagnosing DCS.

Place a large blood pressure (BP) cuff over the area of pain and inflate it to 150-250 mm Hg. In patients with nitrogen bubbling in the joint or tendons, this increase can force some of the nitrogen back into solution, resulting in a temporary decrease in pain.

Milking the muscle toward the affected joint may increase pain by pushing more nitrogen bubbles toward the joint.

Differentiating between arterial gas embolization (AGE) and DCS

For AGE, (1) any type of dive can cause AGE, (2) the onset is immediate (< 10-120 min), and (3) neurologic deficits manifest in only the brain.

For DCS, (1) the dive must be of sufficient duration to saturate tissues, (2) the onset is latent (0-36 h), and (3) neurologic deficits manifest in spinal cord and brain.

Differentiating carbon monoxide poisoning

The symptoms of carbon monoxide poisoning (eg, dyspnea, headache, fatigue, dizziness, visual changes, unconsciousness) can mimic DCS or AGE. Sources for this carbon monoxide can include improper filling of tanks or boat engine exhausts, among others. Failure to recognize carbon monoxide poisoning is not a serious omission as long as the patient is recognized as having a diving injury. The hyperbaric treatment of DCS and AGE is also the treatment of choice for carbon monoxide poisoning. Also see Carbon Monoxide Toxicity and Carbon Monoxide Screening.

Previous
Next

Causes

Predisposing causes of DCS include the following:

  • Inadequate decompression or surpassing no-decompression limits: This includes increased depth and duration of the dives and repeated dives.
  • Inadequate surface intervals (ie, failure to decrease accumulated nitrogen)
  • Failure to take recommended safety stops
  • Flying or going to higher altitude soon (12-24 h) after diving (increases the pressure gradient) [100]
  • Smoking [101]

A principal cause of DCS is rapid ascent. A major cause of rapid ascent may be panic. Anxiety traits can be identified during instruction.[102]

Individual predisposing physiologic characteristics include the following:

  • Obesity: Obesity had been thought to be a risk factor because nitrogen is lipid soluble. However, studies have shown that neither body fat or body mass index (BMI) correlates with venous gas embolism and resultant DCS. [103, 104]
  • Fatigue
  • Age and poor aerobic conditioning: These do appear to influence risk of venous gas embolism and DCS. [103, 104]
  • Dehydration
  • High-fat meal [105]
  • Illness affecting lung or circulatory efficiency
  • Prior musculoskeletal injury (scar tissue decreases diffusion)

Predisposing environmental factors are as follows:

  • Cold water (vasoconstriction decreases nitrogen offloading)
  • Heavy work (vacuum effect in which tendon use causes gas pockets)
  • Rough sea conditions
  • Heated diving suits (leads to dehydration and increases nitrogen upload) [73, 106, 107]

Divers who have been chilled on decompression dives (or dives near the no-decompression limit) and take very hot baths or showers may stimulate bubble formation.

Improper use of decompression tables may increase the diver's risk. DCS may occur even if the decompression tables and no-decompression limits are strictly observed. The decompression tables and no-decompression limits list the maximum time allowed for a dive based on the maximum depth achieved (see the comment below about the US Navy tables). The limits take into consideration nitrogen saturation of lipid tissues. According to the Henry law, once nitrogen has saturated tissues, a standard ascent to the surface with decreasing ambient pressure can allow nitrogen to bubble out of solution. Once the no-decompression limit has been passed, one or more decompression stops are required during ascent to allow delayed diffusion of nitrogen out of the lipid tissues back into the blood. Nitrogen is then exhaled through the lungs. Current recommendations are for routine decompression stops, even if within the times of the tables. These tables also include calculations based on the surface interval between dives and residual nitrogen offloading during the time between dives.

The original tables have three problems. First, the tables are based on young, healthy, and fit US Navy volunteers. Since many civilian divers do not fit this profile, the tables have limitations. Second, the rapidly expanding use of dive computers takes into account the actual time spent at each depth, rather than just the maximum depth. This allows for more time under water and removes a built-in factor (the shorter maximum depth time) that helps keep divers in the conservative range. Third, the number of casual divers is increasing. This can lead to mistakes from lack of practice of the stringent routine/adherence to safety principles needed

See the discussion under Prevention for more information.

Previous
Next

Complications

Residual paralysis, myocardial necrosis, and other ischemic injuries may occur without immediate recompression. These may occur even in adequately treated patients.

Previous
 
 
Contributor Information and Disclosures
Author

Stephen A Pulley, DO, MS, FACOEP Clinical Professor, Department of Emergency Medicine, Philadelphia College of Osteopathic Medicine; Attending Physician, Mercy Suburban Hospital; Costin Scholar, Midwestern University

Stephen A Pulley, DO, MS, FACOEP is a member of the following medical societies: American College of Emergency Physicians, American College of Osteopathic Emergency Physicians, American Osteopathic Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

James Steven Walker, DO, MS Clinical Professor of Surgery, Department of Surgery, University of Oklahoma College of Medicine

James Steven Walker, DO, MS is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, American College of Osteopathic Emergency Physicians, American Osteopathic Association

Disclosure: Nothing to disclose.

Chief Editor

Joe Alcock, MD, MS Associate Professor, Department of Emergency Medicine, University of New Mexico Health Sciences Center

Joe Alcock, MD, MS is a member of the following medical societies: American Academy of Emergency Medicine

Disclosure: Nothing to disclose.

Additional Contributors

Eric M Kardon, MD, FACEP Attending Emergency Physician, Georgia Emergency Medicine Specialists; Physician, Division of Emergency Medicine, Athens Regional Medical Center

Eric M Kardon, MD, FACEP is a member of the following medical societies: American College of Emergency Physicians, American Medical Informatics Association, Medical Association of Georgia

Disclosure: Nothing to disclose.

References
  1. Auten JD, Kuhne MA, Walker HM 2nd, Porter HO. Neurologic decompression sickness following cabin pressure fluctuations at high altitude. Aviat Space Environ Med. 2010 Apr. 81(4):427-30. [Medline].

  2. AIDA International. World Records. Association Internationale pour le Développement de l'Apnée. Available at https://www.aidainternational.org/competitive/worlds-records. Accessed: March 17, 2014.

  3. John Liang. Herbert Nitsch Speaks To DeeperBlue.com About His Recovery From His 2012 Dive Attempt. Deeper Blue. Available at http://www.deeperblue.com/herbert-nitsch-speaks-deeperblue-com-recovery-2012-dive-attempt/. Accessed: March 17, 2014.

  4. Camporesi EM. Diving and pregnancy. Semin Perinatol. 1996 Aug. 20(4):292-302. [Medline].

  5. Lemaitre F, Carturan D, Tourney-Chollet C, Gardette B. Circulating venous bubbles in children after diving. Pediatr Exerc Sci. 2009 Feb. 21(1):77-85. [Medline].

  6. Blatteau JE, Souraud JB, Gempp E, Boussuges A. Gas nuclei, their origin, and their role in bubble formation. Aviat Space Environ Med. 2006 Oct. 77(10):1068-76. [Medline].

  7. Thom SR, Milovanova TN, Bogush M, Bhopale VM, Yang M, Bushmann K, et al. Microparticle production, neutrophil activation, and intravascular bubbles following open-water SCUBA diving. J Appl Physiol (1985). 2012 Apr. 112(8):1268-78. [Medline].

  8. Møllerløkken A, Breskovic T, Palada I, Valic Z, Dujic Z, Brubakk AO. Observation of increased venous gas emboli after wet dives compared to dry dives. Diving Hyperb Med. 2011 Sep. 41(3):124-8. [Medline].

  9. Swan JG, Wilbur JC, Moodie KL, Kane SA, Knaus DA, Phillips SD, et al. Microbubbles are detected prior to larger bubbles following decompression. J Appl Physiol (1985). 2014 Apr. 116(7):790-6. [Medline].

  10. Vallee N, Meckler C, Risso JJ, Blatteau JE. Neuroprotective role of the TREK-1 channel in decompression sickness. J Appl Physiol (1985). 2012 Apr. 112(7):1191-6. [Medline].

  11. Bao XC, Fang YQ, Ma J, Meng M. [Change of adhesion molecules in the lungs of rat with decompression sickness]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2012 Jul. 28(4):369-72. [Medline].

  12. Thom SR, Bennett M, Banham ND, Chin W, Blake DF, Rosen A, et al. Association of microparticles and neutrophil activation with decompression sickness. J Appl Physiol (1985). 2015 Sep 1. 119 (5):427-34. [Medline].

  13. Yang M, Barak OF, Dujic Z, Madden D, Bhopale VM, Bhullar J, et al. Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving. Am J Physiol Regul Integr Comp Physiol. 2015 Aug 15. 309 (4):R338-44. [Medline].

  14. Thom SR, Yang M, Bhopale VM, Milovanova TN, Bogush M, Buerk DG. Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury. J Appl Physiol (1985). 2013 Mar 1. 114(5):550-8. [Medline].

  15. Pontier JM, Gempp E, Ignatescu M. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive. Appl Physiol Nutr Metab. 2012 Oct. 37(5):888-92. [Medline].

  16. Philp RB, Freeman D, Francey I, Bishop B. Hematology and blood chemistry in saturation diving: I. Antiplatelet drugs, aspirin, and VK744. Undersea Biomed Res. 1975 Dec. 2(4):233-49. [Medline].

  17. Pontier JM, Blatteau JE, Vallée N. Blood platelet count and severity of decompression sickness in rats after a provocative dive. Aviat Space Environ Med. 2008 Aug. 79(8):761-4. [Medline].

  18. Pontier JM, Jimenez C, Blatteau JE. Blood platelet count and bubble formation after a dive to 30 msw for 30 min. Aviat Space Environ Med. 2008 Dec. 79(12):1096-9. [Medline].

  19. Blatteau JE, Brubakk AO, Gempp E, Castagna O, Risso JJ, Vallée N. Sidenafil pre-treatment promotes decompression sickness in rats. PLoS One. 2013. 8(4):e60639. [Medline]. [Full Text].

  20. Taylor LH. A Diver's Guide To Nitrogen Species. University of Michigan. Available at http://www-personal.umich.edu/~lpt/nitrogen.htm. Accessed: April 1, 2014.

  21. Thom SR, Milovanova TN, Bogush M, Yang M, Bhopale VM, Pollock NW, et al. Bubbles, microparticles, and neutrophil activation: changes with exercise level and breathing gas during open-water SCUBA diving. J Appl Physiol (1985). 2013 May 15. 114(10):1396-405. [Medline].

  22. Boussuges A, Succo E, Juhan-Vague I, Sainty JM. Activation of coagulation in decompression illness. Aviat Space Environ Med. 1998 Feb. 69(2):129-32. [Medline].

  23. Oode Y, Yanagawa Y, Inoue T, Oomori K, Osaka H, Okamoto K. Cutaneous manifestation of decompression sickness: cutis marmorata. Intern Med. 2013. 52(21):2479. [Medline].

  24. Kemper TC, Rienks R, van Ooij PJ, van Hulst RA. Cutis marmorata in decompression illness may be cerebrally mediated: a novel hypothesis on the aetiology of cutis marmorata. Diving Hyperb Med. 2015 Jun. 45 (2):84-8. [Medline].

  25. Wilmshurst PT. Cutis marmorata and cerebral arterial gas embolism. Diving Hyperb Med. 2015 Dec. 45 (4):261. [Medline].

  26. Germonpre P, Balestra C, Obeid G, Caers D. Cutis Marmorata skin decompression sickness is a manifestation of brainstem bubble embolization, not of local skin bubbles. Med Hypotheses. 2015 Dec. 85 (6):863-9. [Medline].

  27. Xu W, Liu W, Huang G, Zou Z, Cai Z, Xu W. Decompression illness: clinical aspects of 5278 consecutive cases treated in a single hyperbaric unit. PLoS One. 2012. 7(11):e50079. [Medline]. [Full Text].

  28. Hennedige T, Chow W, Ng YY, Chung-Tsing GC, Lim TC, Kei PL. MRI in spinal cord decompression sickness. J Med Imaging Radiat Oncol. 2012 Jun. 56(3):282-8. [Medline].

  29. Gempp E, Blatteau JE, Stephant E, Pontier JM, Constantin P, Pény C. MRI findings and clinical outcome in 45 divers with spinal cord decompression sickness. Aviat Space Environ Med. 2008 Dec. 79(12):1112-6. [Medline].

  30. Blatteau JE, Gempp E, Simon O, Coulange M, Delafosse B, Souday V, et al. Prognostic factors of spinal cord decompression sickness in recreational diving: retrospective and multicentric analysis of 279 cases. Neurocrit Care. 2011 Aug. 15(1):120-7. [Medline].

  31. Mathew B, Laden G. Management of severe spinal cord injury following hyperbaric exposure. Diving Hyperb Med. 2015 Sep. 45 (3):210. [Medline].

  32. Schipke JD, Tetzlaff K. Why predominantly neurological decompression sickness in breath-hold divers?. J Appl Physiol (1985). 2016 Jun 15. 120 (12):1474-7. [Medline].

  33. James PB. Hyperbaric oxygenation in fluid microembolism. Neurol Res. 2007 Mar. 29(2):156-61. [Medline].

  34. Latham E, van Hoesen K, Grover I. Diplopia due to mask barotrauma. J Emerg Med. 2008 Nov 6. [Medline].

  35. Uzun C, Yagiz R, Tas A, Adali MK, Inan N, Koten M, et al. Alternobaric vertigo in sport SCUBA divers and the risk factors. J Laryngol Otol. 2003 Nov. 117(11):854-60. [Medline].

  36. Klingmann C, Benton PJ, Ringleb PA, Knauth M. Embolic inner ear decompression illness: correlation with a right-to-left shunt. Laryngoscope. 2003 Aug. 113(8):1356-61. [Medline].

  37. Klingmann C, Praetorius M, Baumann I, Plinkert PK. Barotrauma and decompression illness of the inner ear: 46 cases during treatment and follow-up. Otol Neurotol. 2007 Jun. 28(4):447-54. [Medline].

  38. Klingmann C. Inner ear decompression sickness in compressed-air diving. Undersea Hyperb Med. 2012 Jan-Feb. 39(1):589-94. [Medline].

  39. Gempp E, Louge P. Inner ear decompression sickness in scuba divers: a review of 115 cases. Eur Arch Otorhinolaryngol. 2013 May. 270(6):1831-7. [Medline].

  40. Goplen FK, Grønning M, Irgens A, Sundal E, Nordahl SH. Vestibular symptoms and otoneurological findings in retired offshore divers. Aviat Space Environ Med. 2007 Apr. 78(4):414-9. [Medline].

  41. Mitchell SJ, Doolette DJ. Selective vulnerability of the inner ear to decompression sickness in divers with right-to-left shunt: the role of tissue gas supersaturation. J Appl Physiol. 2009 Jan. 106(1):298-301. [Medline].

  42. Ignatescu M, Bryson P, Klingmann C. Susceptibility of the inner ear structure to shunt-related decompression sickness. Aviat Space Environ Med. 2012 Dec. 83(12):1145-51. [Medline].

  43. Tremolizzo L, Malpieri M, Ferrarese C, Appollonio I. Inner-ear decompression sickness: 'hubble-bubble' without brain trouble?. Diving Hyperb Med. 2015 Jun. 45 (2):135-6. [Medline].

  44. Mitchell SJ, Doolette DJ. Pathophysiology of inner ear decompression sickness: potential role of the persistent foramen ovale. Diving Hyperb Med. 2015 Jun. 45 (2):105-10. [Medline].

  45. Lampert R. Evaluation and management of arrhythmia in the athletic patient. Prog Cardiovasc Dis. 2012 Mar-Apr. 54(5):423-31. [Medline].

  46. Mukundakrishnan K, Ayyaswamy PS, Eckmann DM. Computational simulation of hematocrit effects on arterial gas embolism dynamics. Aviat Space Environ Med. 2012 Feb. 83(2):92-101. [Medline]. [Full Text].

  47. Williams ST, Prior FG, Bryson P. Hematocrit change in tropical scuba divers. Wilderness Environ Med. 2007. 18(1):48-53. [Medline].

  48. Newton HB, Burkart J, Pearl D, Padilla W. Neurological decompression illness and hematocrit: analysis of a consecutive series of 200 recreational scuba divers. Undersea Hyperb Med. 2008 Mar-Apr. 35(2):99-106. [Medline].

  49. Fahlman A, Dromsky DM. Dehydration effects on the risk of severe decompression sickness in a swine model. Aviat Space Environ Med. 2006 Feb. 77(2):102-6. [Medline].

  50. Gempp E, Blatteau JE, Pontier JM, Balestra C, Louge P. Preventive effect of pre-dive hydration on bubble formation in divers. Br J Sports Med. 2009 Mar. 43(3):224-8. [Medline].

  51. Hjelde A, Bergh K, Brubakk AO, Iversen OJ. Complement activation in divers after repeated air/heliox dives and its possible relevance to DCS. J Appl Physiol. 1995 Mar. 78(3):1140-4. [Medline].

  52. Huang KL, Lin YC. Activation of complement and neutrophils increases vascular permeability during air embolism. Aviat Space Environ Med. 1997 Apr. 68(4):300-5. [Medline].

  53. Shastri KA, Logue GL, Lundgren CE, Logue CJ, Suggs DF. Diving decompression fails to activate complement. Undersea Hyperb Med. 1997 Jun. 24(2):51-7. [Medline].

  54. Koch AE, Kirsch H, Reuter M, Warninghoff V, Rieckert H, Deuschl G. Prevalence of patent foramen ovale (PFO) and MRI-lesions in mild neurological decompression sickness (type B-DCS/AGE). Undersea Hyperb Med. 2008 May-Jun. 35(3):197-205. [Medline].

  55. Koch AE, Wegner-Bröse H, Warninghoff V, Deuschl G. Viewpoint: the type A- and the type B-variants of Decompression Sickness. Undersea Hyperb Med. 2008 Mar-Apr. 35(2):91-7. [Medline].

  56. Bove AA. Risk of decompression sickness with patent foramen ovale. Undersea Hyperb Med. 1998. 25(3):175-8. [Medline].

  57. Germonpre P, Dendale P, Unger P, Balestra C. Patent foramen ovale and decompression sickness in sports divers. J Appl Physiol. 1998 May. 84(5):1622-6. [Medline].

  58. Wilmshurst PT, Morrison WL, Walsh KP. Comparison of the size of persistent foramen ovale and atrial septal defects in divers with shunt-related decompression illness and in the general population. Diving Hyperb Med. 2015 Jun. 45 (2):89-93. [Medline].

  59. Germonpré P. Persistent (patent) foramen ovale (PFO): implications for safe diving. Diving Hyperb Med. 2015 Jun. 45 (2):73-4. [Medline].

  60. Aslam F, Shirani J, Haque AA. Patent foramen ovale: assessment, clinical significance and therapeutic options. South Med J. 2006 Dec. 99(12):1367-72. [Medline].

  61. Drighil A, El Mosalami H, Elbadaoui N, Chraibi S, Bennis A. Patent foramen ovale: a new disease?. Int J Cardiol. 2007 Oct 31. 122(1):1-9. [Medline].

  62. Harrah JD, O'Boyle PS, Piantadosi CA. Underutilization of echocardiography for patent foramen ovale in divers with serious decompression sickness. Undersea Hyperb Med. 2008 May-Jun. 35(3):207-11. [Medline].

  63. Honěk J, Šefc L, Honěk T, Šrámek M, Horváth M, Veselka J. Patent Foramen Ovale in Recreational and Professional Divers: An Important and Largely Unrecognized Problem. Can J Cardiol. 2015 Aug. 31 (8):1061-6. [Medline].

  64. Cartoni D, De Castro S, Valente G, Costanzo C, Pelliccia A, Beni S, et al. Identification of professional scuba divers with patent foramen ovale at risk for decompression illness. Am J Cardiol. 2004 Jul 15. 94(2):270-3. [Medline].

  65. Trevett AJ, Sheehan C, Forbes R. Decompression illness presenting as breast pain. Undersea Hyperb Med. 2006 Mar-Apr. 33(2):77-9. [Medline].

  66. Honek T, Veselka J, Tomek A, Srámek M, Janugka J, Sefc L, et al. [Paradoxical embolization and patent foramen ovale in scuba divers: screening possibilities]. Vnitr Lek. 2007 Feb. 53(2):143-6. [Medline].

  67. Rasmussen W. Saline Shunt Study for the Evaluation of an ASD or PFO. Imaging Skills for Echocardiography. Available at http://echocardiographyskills.com/saline-shunt-study-asd-and-pfo. Accessed: June 30, 2016.

  68. Beda RD, Gill EA Jr. Patent foramen ovale: does it play a role in the pathophysiology of migraine headache?. Cardiol Clin. 2005 Feb. 23(1):91-6. [Medline].

  69. Wilmshurst PT, Nightingale S, Walsh KP, Morrison WL. Effect on migraine of closure of cardiac right-to-left shunts to prevent recurrence of decompression illness or stroke or for haemodynamic reasons. Lancet. 2000 Nov 11. 356(9242):1648-51. [Medline].

  70. Sastry S, MacNab A, Daly K, Ray S, McCollum C. Transcranial Doppler detection of venous-to-arterial circulation shunts: criteria for patent foramen ovale. J Clin Ultrasound. 2009 Jun. 37(5):276-80. [Medline].

  71. Honek J, Honek T, Januška J, Sebesta P, Novotný S, Sefc L, et al. [Patent foramen ovale and the risk of paradoxical embolization of venous bubbles in divers - cave for foam sclerotization of varicose veins]. Rozhl Chir. 2012 Jul. 91(7):378-80. [Medline].

  72. Billinger M, Zbinden R, Mordasini R, Windecker S, Schwerzmann M, Meier B, et al. Patent foramen ovale closure in recreational divers: effect on decompression illness and ischaemic brain lesions during long-term follow-up. Heart. 2011 Dec. 97(23):1932-7. [Medline].

  73. Leffler CT, White JC. Recompression treatments during the recovery of TWA Flight 800. Undersea Hyperb Med. 1997 Winter. 24(4):301-8. [Medline].

  74. Schultz GJ. Accusations "reckless and a mistake," says co-author. America's NAVY. Available at http://www.navy.mil/navydata/nav_legacy.asp?id=284. 2009 Sep 16; Accessed: June 30, 2016.

  75. Huang KL, Wu CP, Chen YL, Kang BH, Lin YC. Heat stress attenuates air bubble-induced acute lung injury: a novel mechanism of diving acclimatization. J Appl Physiol. 2003 Apr. 94(4):1485-90. [Medline].

  76. Su CL, Wu CP, Chen SY, Kang BH, Huang KL, Lin YC. Acclimatization to neurological decompression sickness in rabbits. Am J Physiol Regul Integr Comp Physiol. 2004 Nov. 287(5):R1214-8. [Medline].

  77. Chen Y, Montcalm-Smith E, Schlaerth C, Auker C, McCarron RM. Acclimation to decompression: stress and cytokine gene expression in rat lungs. J Appl Physiol (1985). 2011 Oct. 111(4):1007-13. [Medline].

  78. Sporting Goods Manufacturers Association. Sports Participation in America Topline Report 2004. August 2004. Available at http://sgma.affiniscape.com/associations/5119/files/sport-part-topline2004.pdf.

  79. Sporting Goods Manufacturers Association. Sports Participation in America 2004. August 2004. Available at http://www.sgma.com/associations/5119/files/p27-02-04-m.pdf.

  80. Sporting Goods Manufacturers Association. 2007 Sports and Fitness Participation Report. 2007. Available at http://www.sgma.com/associations/5119/files/topline07.pdf.

  81. The Sports & Fitness Industry Association. Scuba Diving Participation Report 2013. SFIA. Available at http://www.sfia.org/reports/84_Scuba-Diving-Participation-Report-2013. Accessed: March 17, 2014.

  82. Glazer TA, Telian SA. Otologic Hazards Related to Scuba Diving. Sports Health. 2016 Feb 8. [Medline].

  83. Lee YI, Ye BJ. Underwater and hyperbaric medicine as a branch of occupational and environmental medicine. Ann Occup Environ Med. 2013 Dec 19. 25(1):39. [Medline]. [Full Text].

  84. van der Hulst GA, Buzzacott PL. Diver Health Survey score and probability of decompression sickness among occupational dive guides and instructors. Diving Hyperb Med. 2012 Mar. 42(1):18-23. [Medline].

  85. Gempp E, Blatteau JE. Preconditioning methods and mechanisms for preventing the risk of decompression sickness in scuba divers: a review. Res Sports Med. 2010 Jul. 18(3):205-18. [Medline].

  86. United States of America. Health Insurance Portability and Accountability Act of 1996. Health Information Privacy. Available at http://www.hhs.gov/ocr/privacy/hipaa/understanding/index.html. Accessed: March 17, 2014.

  87. Bennett PB. What me bent?. Alert Diver (Divers Alert Network). 1997. Vol 2:

  88. Taylor DM, O'Toole KS, Ryan CM. Experienced, recreational scuba divers in Australia continue to dive despite medical contraindications. Wilderness Environ Med. 2002. 13(3):187-93. [Medline].

  89. St Leger Dowse M, Waterman MK, Penny CE, Smerdon GR. Does self-certification reflect the cardiac health of UK sport divers?. Diving Hyperb Med. 2015 Sep. 45 (3):184-9. [Medline].

  90. Divers Alert Network. Report on Decompression Illness, DivingFatalities and Project Dive Exploration 2005 Edition. 2005. Available at http://dan.org/medical/report/2005DCIReport.pdf.

  91. Divers Alert Network. Annual Diving Report 2006 Edition. Oct 11, 2006. Available at http://dan.org/medical/report/2006DANDivingReport.pdf.

  92. Goldhahn RT Jr. Scuba diving deaths: a review and approach for the pathologist. Leg Med Annu. 1977. 1976:109-32. [Medline].

  93. Lewis PR. Skin diving fatalities in New Zealand. N Z Med J. 1979 Jun 27. 89(638):472-5. [Medline].

  94. Arness MK. Scuba decompression illness and diving fatalities in an overseas military community. Aviat Space Environ Med. 1997 Apr. 68(4):325-33. [Medline].

  95. Klingmann C, Gonnermann A, Dreyhaupt J, Vent J, Praetorius M, Plinkert PK. Decompression illness reported in a survey of 429 recreational divers. Aviat Space Environ Med. 2008 Feb. 79(2):123-8. [Medline].

  96. Eichhorn L, Leyk D. Diving medicine in clinical practice. Dtsch Arztebl Int. 2015 Feb 27. 112 (9):147-57; quiz 158. [Medline].

  97. Landsberg PG. South African underwater diving accidents, 1969-1976. S Afr Med J. 1976 Dec 25. 50(55):2155-59. [Medline].

  98. Denoble PJ, Caruso JL, Dear Gde L, Pieper CF, Vann RD. Common causes of open-circuit recreational diving fatalities. Undersea Hyperb Med. 2008 Nov-Dec. 35(6):393-406. [Medline].

  99. Tomassoni AJ. Cardiac problems associated with dysbarism. Cardiol Clin. 1995 May. 13(2):266-71. [Medline].

  100. Cialoni D, Pieri M, Balestra C, Marroni A. Flying after diving: should recommendations be reviewed? In-flight echocardiographic study in bubble-prone and bubble-resistant divers. Diving Hyperb Med. 2015 Mar. 45 (1):10-5. [Medline].

  101. Buch DA, El Moalem H, Dovenbarger JA, Uguccioni DM, Moon RE. Cigarette smoking and decompression illness severity: a retrospective study in recreational divers. Aviat Space Environ Med. 2003 Dec. 74(12):1271-4. [Medline].

  102. Morgan WP, Raglin JS, O'Connor PJ. Trait anxiety predicts panic behavior in beginning scuba students. Int J Sports Med. 2004 May. 25(4):314-22. [Medline].

  103. Schellart NA, van Rees Vellinga TP, van Hulst RA. Body fat does not affect venous bubble formation after air dives of moderate severity: theory and experiment. J Appl Physiol (1985). 2013 Mar 1. 114(5):602-10. [Medline].

  104. Schellart NA, Vellinga TP, van Dijk FJ, Sterk W. Doppler bubble grades after diving and relevance of body fat. Aviat Space Environ Med. 2012 Oct. 83(10):951-7. [Medline].

  105. Kaczerska D, Pleskacz K, Siermontowski P, Olszański R, Krefft K. Risk factors increasing health hazards after air dives. Undersea Hyperb Med. 2015 Nov-Dec. 42 (6):565-72. [Medline].

  106. Pollock NW. Re: Don't dive cold when you don't have to. Diving Hyperb Med. 2015 Sep. 45 (3):209. [Medline].

  107. Gerth WA. On diver thermal status and susceptibility to decompression sickness. Diving Hyperb Med. 2015 Sep. 45 (3):208. [Medline].

  108. Reuter M, Tetzlaff K, Hutzelmann A, Fritsch G, Steffens JC, Bettinghausen E, et al. MR imaging of the central nervous system in diving-related decompression illness. Acta Radiol. 1997 Nov. 38(6):940-4. [Medline].

  109. Sparacia G, Banco A, Sparacia B, Midiri M, Brancatelli G, Accardi M, et al. Magnetic resonance findings in scuba diving-related spinal cord decompression sickness. MAGMA. 1997 Jun. 5(2):111-5. [Medline].

  110. McCormac J, Mirvis SE, Cotta-Cumba C, Shanmuganathan K. Spinal myelopathy resulting from decompression sickness: MR findings in a case and review of the literature. Emerg Radiol. 2002 Oct. 9(4):240-2. [Medline].

  111. Blogg SL, Loveman GA, Seddon FM, Woodger N, Koch A, Reuter M, et al. Magnetic resonance imaging and neuropathology findings in the goat nervous system following hyperbaric exposures. Eur Neurol. 2004. 52(1):18-28. [Medline].

  112. Gao GK, Wu D, Yang Y, Yu T, Xue J, Wang X, et al. Cerebral magnetic resonance imaging of compressed air divers in diving accidents. Undersea Hyperb Med. 2009 Jan-Feb. 36(1):33-41. [Medline].

  113. Aksoy FG. MR imaging of subclinical cerebral decompression sickness. A case report. Acta Radiol. 2003 Jan. 44(1):108-10. [Medline].

  114. Yoshiyama M, Asamoto S, Kobayashi N, Sugiyama H, Doi H, Sakagawa H, et al. Spinal cord decompression sickness associated with scuba diving: correlation of immediate and delayed magnetic resonance imaging findings with severity of neurologic impairment--a report on 3 cases. Surg Neurol. 2007 Mar. 67(3):283-7. [Medline].

  115. Tetzlaff K, Friege L, Hutzelmann A, Reuter M, Holl D, Leplow B. Magnetic resonance signal abnormalities and neuropsychological deficits in elderly compressed-air divers. Eur Neurol. 1999. 42(4):194-9. [Medline].

  116. Hutchinson EB, Sobakin AS, Meyerand ME, Eldridge M, Ferrazzano P. Diffusion tensor MRI of spinal decompression sickness. Undersea Hyperb Med. 2013 Jan-Feb. 40(1):23-31. [Medline]. [Full Text].

  117. Pierce NE, Parell GJ, Jesus RO, Ojano-Dirain CP, Antonelli PJ. Magnetic resonance imaging in a guinea pig model of inner ear decompression sickness and barotrauma. Laryngoscope. 2015 Dec 9. [Medline].

  118. Blatteau JE, Jean F, Pontier JM, Blanche E, Bompar JM, Meaudre E. [Decompression sickness accident management in remote areas. Use of immediate in-water recompression therapy. Review and elaboration of a new protocol targeted for a mission at Clipperton atoll]. Ann Fr Anesth Reanim. 2006 Aug. 25(8):874-83. [Medline].

  119. Gold D, Aiyarak S, Wongcharoenyong S, Geater A, Juengprasert W, Gerth WA. The indigenous fisherman divers of Thailand: diving practices. Int J Occup Saf Ergon. 2000. 6(1):89-112. [Medline].

  120. Gold D, Geater A, Aiyarak S, Juengprasert W, Chuchaisangrat B, Samakkaran A. The indigenous fisherman divers of Thailand: in-water recompression. Int Marit Health. 1999. 50(1-4):39-48. [Medline].

  121. Gold D, Geater A, Aiyarak S, Wongcharoenyong S, Juengprasert W, Johnson M, et al. The indigenous fisherman divers of Thailand: diving-related mortality and morbidity. Int J Occup Saf Ergon. 2000. 6(2):147-67. [Medline].

  122. Blatteau JE, Pontier JM, Buzzacott P, Lambrechts K, Nguyen VM, Cavenel P, et al. Prevention and treatment of decompression sickness using training and in-water recompression among fisherman divers in Vietnam. Inj Prev. 2016 Feb. 22 (1):25-32. [Medline].

  123. Longphre JM, Denoble PJ, Moon RE, Vann RD, Freiberger JJ. First aid normobaric oxygen for the treatment of recreational diving injuries. Undersea Hyperb Med. 2007 Jan-Feb. 34(1):43-9. [Medline].

  124. Bessereau J, Coulange M, Genotelle N, Barthélémy A, Michelet P, Bruguerolle B, et al. [Aspirin in decompression sickness]. Therapie. 2008 Nov-Dec. 63(6):419-23. [Medline].

  125. Bessereau J, Genotelle N, Brun PM, Aboab J, Antona M, Chenaitia H, et al. Decompression sickness in urban divers in France. Int Marit Health. 2012. 63(3):170-3. [Medline].

  126. Westerweel PE, Fijen VA, Van Hulst RA. Aspirin in the treatment of decompression sickness: what can we learn from French experience?. Int Marit Health. 2013. 64(1):51. [Medline].

  127. Bessereau J, Annane D. Response to letter to the editor by Westerweel et al., entitled 'aspirin in the treatment of decompression sickness: what can we learn from French experience?' [Int Marit Health 2013; 64, 1: 51]. Int Marit Health. 2013. 64(3):175. [Medline].

  128. Bennett MH, Lehm JP, Mitchell SJ, Wasiak J. Recompression and adjunctive therapy for decompression illness. Cochrane Database Syst Rev. 2012 May 16. 5:CD005277. [Medline].

  129. de Watteville G. [A critical assessment of Trendelenburg's position in the acute phase after a diving accident]. Schweiz Z Sportmed. 1993 Sep. 41(3):123-5. [Medline].

  130. Chin W, Jacoby L, Simon O, Talati N, Wegrzyn G, Jacoby R, et al. Hyperbaric programs in the United States: Locations and capabilities of treating decompression sickness, arterial gas embolisms, and acute carbon monoxide poisoning: survey results. Undersea Hyperb Med. 2016 Jan-Feb. 43 (1):29-43. [Medline].

  131. Goldenberg I, Shupak A, Shoshani O. Oxy-helium treatment for refractory neurological decompression sickness: a case report. Aviat Space Environ Med. 1996 Jan. 67(1):57-60. [Medline].

  132. Shupak A, Melamed Y, Ramon Y, Bentur Y, Abramovich A, Kol S. Helium and oxygen treatment of severe air-diving-induced neurologic decompression sickness. Arch Neurol. 1997 Mar. 54(3):305-11. [Medline].

  133. Tempel R, Severance HW. Proposing short-term observation units for the management of decompression illness. Undersea Hyperb Med. 2006 Mar-Apr. 33(2):89-94. [Medline].

  134. Kot J, Sicko Z, Michalkiewicz M, Lizak E, Góralczyk P. Recompression treatment for decompression illness: 5-year report (2003-2007) from National Centre for Hyperbaric Medicine in Poland. Int Marit Health. 2008. 59(1-4):69-80. [Medline].

  135. Gil A, Shupak A, Lavon H, Adir Y. [Decompression sickness in divers treated at the Israel Naval Medical Institute between the years 1992 to 1997]. Harefuah. 2000 May 1. 138(9):751-4, 806. [Medline].

  136. Blatteau JE, Gempp E, Constantin P, Louge P. Risk factors and clinical outcome in military divers with neurological decompression sickness: influence of time to recompression. Diving Hyperb Med. 2011 Sep. 41(3):129-34. [Medline].

  137. Mutzbauer TS, Staps E. How delay to recompression influences treatment and outcome in recreational divers with mild to moderate neurological decompression sickness in a remote setting. Diving Hyperb Med. 2013 Mar. 43(1):42-5. [Medline].

  138. Hadanny A, Fishlev G, Bechor Y, Bergan J, Friedman M, Maliar A, et al. Delayed recompression for decompression sickness: retrospective analysis. PLoS One. 2015. 10 (4):e0124919. [Medline].

  139. Dromsky DM, Spiess BD, Fahlman A. Treatment of decompression sickness in swine with intravenous perfluorocarbon emulsion. Aviat Space Environ Med. 2004 Apr. 75(4):301-5. [Medline].

  140. Zhu J, Hullett JB, Somera L, Barbee RW, Ward KR, Berger BE, et al. Intravenous perfluorocarbon emulsion increases nitrogen washout after venous gas emboli in rabbits. Undersea Hyperb Med. 2007 Jan-Feb. 34(1):7-20. [Medline].

  141. Spahn DR. Blood substitutes. Artificial oxygen carriers: perfluorocarbon emulsions. Crit Care. 1999. 3(5):R93-7. [Medline]. [Full Text].

  142. Smith CR, Parsons JT, Zhu J, Spiess BD. The effect of intravenous perfluorocarbon emulsions on whole-body oxygenation after severe decompression sickness. Diving Hyperb Med. 2012 Mar. 42(1):10-7. [Medline].

  143. Zhang RJ, Liu K, Kang ZM, Fan DF, Ni XX, Liu Y, et al. Combined effects of intravenous perfluorocarbon emulsion and oxygen breathing on decompression-induced spinal cord injury in rats. Undersea Hyperb Med. 2011 Sep-Oct. 38(5):335-43. [Medline].

  144. Mahon RT, Auker CR, Bradley SG, Mendelson A, Hall AA. The emulsified perfluorocarbon Oxycyte improves spinal cord injury in a swine model of decompression sickness. Spinal Cord. 2013 Mar. 51(3):188-92. [Medline].

  145. Spiess BD. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J Appl Physiol. 2009 Apr. 106(4):1444-52. [Medline].

  146. Spiess BD, Zhu J, Pierce B, Weis R, Berger BE, Reses J, et al. Effects of perfluorocarbon infusion in an anesthetized swine decompression model. J Surg Res. 2009 May 1. 153(1):83-94. [Medline].

  147. Cronin WA, Senese AL, Arnaud FG, Regis DP, Auker CR, Mahon RT. The effect of the perfluorocarbon emulsion Oxycyte on platelet count and function in the treatment of decompression sickness in a swine model. Blood Coagul Fibrinolysis. 2015 Dec 8. [Medline].

  148. Dainer H, Nelson J, Brass K, Montcalm-Smith E, Mahon R. Short oxygen prebreathing and intravenous perfluorocarbon emulsion reduces morbidity and mortality in a swine saturation model of decompression sickness. J Appl Physiol. 2007 Mar. 102(3):1099-104. [Medline].

  149. Cianci P, Slade JB Jr. Delayed treatment of decompression sickness with short, no-air-break tables: review of 140 cases. Aviat Space Environ Med. 2006 Oct. 77(10):1003-8. [Medline].

  150. Weisher DD. Resolution of neurological DCI after long treatment delays. Undersea Hyperb Med. 2008 May-Jun. 35(3):159-61. [Medline].

  151. Dunford RG, Vann RD, Gerth WA, Pieper CF, Huggins K, Wacholtz C, et al. The incidence of venous gas emboli in recreational diving. Undersea Hyperb Med. 2002. 29(4):247-59. [Medline].

  152. Barratt DM, Van Meter K. Decompression sickness in Miskito Indian lobster divers: review of 229 cases. Aviat Space Environ Med. 2004 Apr. 75(4):350-3. [Medline].

  153. MacDonald RD, O'Donnell C, Allan GM, Breeck K, Chow Y, DeMajo W. Interfacility transport of patients with decompression illness: literature review and consensus statement. Prehosp Emerg Care. 2006 Oct-Dec. 10(4):482-7. [Medline].

  154. Bennett PB. Putting on the brakes: extra safety stops and slower ascent rates may help reduce decompression injuries. Alert Diver (Divers Alert Network). 2001. 1.

  155. Bennett PB, Marroni A, Cronje FJ, Cali-Corleo R, Germonpre P, Pieri M, et al. Effect of varying deep stop times and shallow stop times on precordial bubbles after dives to 25 msw (82 fsw). Undersea Hyperb Med. 2007 Nov-Dec. 34(6):399-406. [Medline].

  156. Blatteau JE, Hugon J, Gempp E, Castagna O, Pény C, Vallée N. Oxygen breathing or recompression during decompression from nitrox dives with a rebreather: effects on intravascular bubble burden and ramifications for decompression profiles. Eur J Appl Physiol. 2012 Jun. 112(6):2257-65. [Medline].

  157. Jankowski LW, Tikuisis P, Nishi RY. Exercise effects during diving and decompression on postdive venous gas emboli. Aviat Space Environ Med. 2004 Jun. 75(6):489-95. [Medline].

  158. Dujic Z, Valic Z, Brubakk AO. Beneficial role of exercise on scuba diving. Exerc Sport Sci Rev. 2008 Jan. 36(1):38-42. [Medline].

  159. Dujic Z, Palada I, Obad A, Duplancic D, Bakovic D, Valic Z. Exercise during a 3-min decompression stop reduces postdive venous gas bubbles. Med Sci Sports Exerc. 2005 Aug. 37(8):1319-23. [Medline].

  160. O'Connor PE. The nontechnical causes of diving accidents: can U.S. Navy divers learn from other industries?. Undersea Hyperb Med. 2007 Jan-Feb. 34(1):51-9. [Medline].

  161. Gutvik CR, Brubakk AO. A dynamic two-phase model for vascular bubble formation during decompression of divers. IEEE Trans Biomed Eng. 2009 Mar. 56(3):884-9. [Medline].

  162. Mollerlokken A, Berge VJ, Jorgensen A, Wisloff U, Brubakk AO. Effect of a short-acting NO donor on bubble formation from a saturation dive in pigs. J Appl Physiol. 2006 Dec. 101(6):1541-5. [Medline].

  163. Dujic Z, Palada I, Valic Z, Duplancic D, Obad A, Wisløff U. Exogenous nitric oxide and bubble formation in divers. Med Sci Sports Exerc. 2006 Aug. 38(8):1432-5. [Medline].

  164. Madden LA, Laden G. Gas bubbles may not be the underlying cause of decompression illness - The at-depth endothelial dysfunction hypothesis. Med Hypotheses. 2009 Apr. 72(4):389-92. [Medline].

  165. Blatteau JE, Barre S, Pascual A, Castagna O, Abraini JH, Risso JJ, et al. Protective effects of fluoxetine on decompression sickness in mice. PLoS One. 2012. 7(11):e49069. [Medline]. [Full Text].

  166. Blatteau JE, de Maistre S, Lambrechts K, Abraini J, Risso JJ, Vallée N. Fluoxetine stimulates anti-inflammatory IL-10 cytokine production and attenuates sensory deficits in a rat model of decompression sickness. J Appl Physiol (1985). 2015 Dec 15. 119 (12):1393-9. [Medline].

  167. Zhang K, Wang D, Xu J, Li R, Cai Z, Liu K, et al. Simvastatin decreases incidence of decompression sickness in rats. Undersea Hyperb Med. 2015 Mar-Apr. 42 (2):115-23. [Medline].

  168. Dujic Z, Obad A, Palada I, Ivancev V, Valic Z. Venous bubble count declines during strenuous exercise after an open sea dive to 30 m. Aviat Space Environ Med. 2006 Jun. 77(6):592-6. [Medline].

  169. Wisløff U, Brubakk AO. Aerobic endurance training reduces bubble formation and increases survival inrats exposed to hyperbaric pressure. J Physiol. 2001 Dec 1. 537(Pt 2):607-11. [Medline].

  170. Dujic Z, Duplancic D, Marinovic-Terzic I, Bakovic D, Ivancev V, Valic Z, et al. Aerobic exercise before diving reduces venous gas bubble formation in humans. J Physiol. 2004 Mar 16. 555(Pt 3):637-42. [Medline].

  171. Loset A Jr, Mollerlokken A, Berge V, Wisloff U, Brubakk AO. Post-dive bubble formation in rats: effects of exercise 24 h ahead repeated 30min before the dive. Aviat Space Environ Med. 2006 Sep. 77(9):905-8. [Medline].

  172. Berge VJ, Jørgensen A, Løset A, Wisløff U, Brubakk AO. Exercise ending 30 min pre-dive has no effect on bubble formation in the rat. Aviat Space Environ Med. 2005 Apr. 76(4):326-8. [Medline].

  173. Blatteau JE, Boussuges A, Gempp E, Pontier JM, Castagna O, Robinet C, et al. Haemodynamic changes induced by submaximal exercise before a dive and its consequences on bubble formation. Br J Sports Med. 2007 Jun. 41(6):375-9. [Medline].

  174. Pendergast DR, Senf C, Lundgren CE. Is the rate of whole-body nitrogen elimination influenced by exercise?. Undersea Hyperb Med. 2012 Jan-Feb. 39(1):595-604. [Medline].

  175. Gennser M, Jurd KM, Blogg SL. Pre-dive exercise and post-dive evolution of venous gas emboli. Aviat Space Environ Med. 2012 Jan. 83(1):30-4. [Medline].

  176. Wisløff U, Richardson RS, Brubakk AO. Exercise and nitric oxide prevent bubble formation: a novel approach to the prevention of decompression sickness?. J Physiol. 2004 Mar 16. 555:825-9. [Medline].

  177. Wisløff U, Richardson RS, Brubakk AO. NOS inhibition increases bubble formation and reduces survival in sedentary but not exercised rats. J Physiol. 2003 Jan 15. 546:577-82. [Medline].

  178. Pontier JM, Guerrero F, Castagna O. Bubble formation and endothelial function before and after 3 months of dive training. Aviat Space Environ Med. 2009 Jan. 80(1):15-9. [Medline].

  179. Madden D, Thom SR, Dujic Z. Exercise before and after SCUBA diving and the role of cellular microparticles in decompression stress. Med Hypotheses. 2016 Jan. 86:80-4. [Medline].

  180. Castagna O, Gempp E, Blatteau JE. Pre-dive normobaric oxygen reduces bubble formation in scuba divers. Eur J Appl Physiol. 2009 May. 106(2):167-72. [Medline].

  181. Mahon RT, Dainer HM, Gibellato MG, Soutiere SE. Short oxygen prebreathe periods reduce or prevent severe decompression sickness in a 70-kg swine saturation model. J Appl Physiol. 2009 Apr. 106(4):1459-63. [Medline].

  182. Sobakin AS, Wilson MA, Lehner CE, Dueland RT, Gendron-Fitzpatrick AP. Oxygen pre-breathing decreases dysbaric diseases in UW sheep undergoing hyperbaric exposure. Undersea Hyperb Med. 2008 Jan-Feb. 35(1):61-7. [Medline].

  183. Wang FF, Fang YQ, You P, Bao XC, Ma J, Zhang S. [Effect of different pressure oxygen pre-breathe in diving decompression sickness of rats]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2015 Sep. 31 (5):401-4. [Medline].

  184. Blatteau JE, Gempp E, Balestra C, Mets T, Germonpre P. Predive sauna and venous gas bubbles upon decompression from 400 kPa. Aviat Space Environ Med. 2008 Dec. 79(12):1100-5. [Medline].

  185. Fismen L, Hjelde A, Svardal AM, Djurhuus R. Differential effects on nitric oxide synthase, heat shock proteins and glutathione in human endothelial cells exposed to heat stress and simulated diving. Eur J Appl Physiol. 2012 Jul. 112(7):2717-25. [Medline].

  186. Ni XX, Ni M, Fan DF, Sun Q, Kang ZM, Cai ZY, et al. Heat-shock protein 70 is involved in hyperbaric oxygen preconditioning on decompression sickness in rats. Exp Biol Med (Maywood). 2013 Jan. 238(1):12-22. [Medline].

  187. Candito M, Candito E, Chatel M, van Obberghen E, Dunac A. [Homocysteinemia and thrombophilic factors in unexplained decompression sickness]. Rev Neurol (Paris). 2006 Sep. 162(8-9):840-4. [Medline].

  188. Candito M, Chatel M, Candito E, Lapoussiere M, Mengual R, Van Obberghen E, et al. [Thrombophilic factors in divers with undeserved decompression sickness]. Pathol Biol (Paris). 2006 Apr. 54(3):155-8. [Medline].

  189. Eftedal OS, Lydersen S, Brubakk AO. The relationship between venous gas bubbles and adverse effects of decompression after air dives. Undersea Hyperb Med. 2007 Mar-Apr. 34(2):99-105. [Medline].

  190. Tufan K, Ademoglu A, Kurtaran E, Yildiz G, Aydin S, Egi SM. Automatic detection of bubbles in the subclavian vein using Doppler ultrasound signals. Aviat Space Environ Med. 2006 Sep. 77(9):957-62. [Medline].

  191. Ball R, Schwartz SL. Kinetic and dynamic models of diving gases in decompression sickness prevention. Clin Pharmacokinet. 2002. 41(6):389-402. [Medline].

  192. Brubakk AO, Arntzen AJ, Wienke BR, Koteng S. Decompression profile and bubble formation after dives with surface decompression: experimental support for a dual phase model of decompression. Undersea Hyperb Med. 2003. 30(3):181-93. [Medline].

  193. Montcalm-Smith E, Caviness J, Chen Y, McCarron RM. Stress biomarkers in a rat model of decompression sickness. Aviat Space Environ Med. 2007 Feb. 78(2):87-93. [Medline].

  194. Lemeshchenko GP, Isaeva NM. [A toxicological evaluation of micromycetes isolated from salmon roe]. Mikrobiol Zh. 1990 Mar-Apr. 52(2):66-9. [Medline].

  195. Kondo Y, Shiohira S, Kamizato K, Teruya K, Fuchigami T, Kakinohana M, et al. Vascular hyperpermeability in pulmonary decompression illness: 'the chokes'. Emerg Med Australas. 2012 Aug. 24(4):460-2. [Medline].

  196. Gempp E, Morin J, Louge P, Blatteau JE. Reliability of plasma D-dimers for predicting severe neurological decompression sickness in scuba divers. Aviat Space Environ Med. 2012 Aug. 83(8):771-5. [Medline].

  197. Blatteau JE, David HN, Vallée N, Meckler C, Demaistre S, Lambrechts K, et al. Xenon Blocks Neuronal Injury Associated with Decompression. Sci Rep. 2015 Oct 15. 5:15093. [Medline].

  198. Wright PJ. Comparison of phosphodiesterase type 5 (PDE5) inhibitors. Int J Clin Pract. 2006 Aug. 60(8):967-75. [Medline].

  199. Gempp E, Louge P, Blatteau JE, Hugon M. Risks factors for recurrent neurological decompression sickness in recreational divers: a case-control study. J Sports Med Phys Fitness. 2012 Oct. 52(5):530-6. [Medline].

  200. Attaran RR, Ata I, Kudithipudi V, Foster L, Sorrell VL. Protocol for optimal detection and exclusion of a patent foramen ovale using transthoracic echocardiography with agitated saline microbubbles. Echocardiography. 2006 Aug. 23 (7):616-22. [Medline].

  201. Woods TD, Patel A. A critical review of patent foramen ovale detection using saline contrast echocardiography: when bubbles lie. J Am Soc Echocardiogr. 2006 Feb. 19 (2):215-22. [Medline].

  202. Tsivgoulis G, Stamboulis E, Sharma VK, Heliopoulos I, Voumvourakis K, Teoh HL, et al. Safety of transcranial Doppler 'bubble study' for identification of right to left shunts: an international multicentre study. J Neurol Neurosurg Psychiatry. 2011 Nov. 82 (11):1206-8. [Medline].

  203. Smart D, Mitchell S, Wilmshurst P, Turner M, Banham N. Joint position statement on persistent foramen ovale (PFO) and diving. South Pacific Underwater Medicine Society (SPUMS) and the United Kingdom Sports Diving Medical Committee (UKSDMC). Diving Hyperb Med. 2015 Jun. 45 (2):129-31. [Medline].

  204. Wilmshurst PT. The role of persistent foramen ovale and other shunts in decompression illness. Diving Hyperb Med. 2015 Jun. 45 (2):98-104. [Medline].

  205. Klingmann C, Rathmann N, Hausmann D, Bruckner T, Kern R. Lower risk of decompression sickness after recommendation of conservative decompression practices in divers with and without vascular right-to-left shunt. Diving Hyperb Med. 2012 Sep. 42(3):146-50. [Medline].

 
Previous
Next
 
Illustration of Dalton gas law. As an individual descends, the total pressure of breathing air increases and the partial pressures of the individual components have to increase proportionally. Nitrogen at higher partial pressures alters the electrical properties of cerebral cellular membranes, causing an anesthetic effect. Oxygen at higher partial pressures can cause CNS oxygen toxicity.
Illustration of Henry gas law. If nitrogen is added to a bottle, it diffuses into and equilibrates with the fluid. If pressure is suddenly released (decreased), such as when an individual ascends rapidly, a lag occurs before nitrogen can diffuse back to the nonfluid space. This delay causes nitrogen to bubble while still in the fluid.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.