Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Appendicitis Clinical Presentation

  • Author: Sandy Craig, MD; Chief Editor: Barry E Brenner, MD, PhD, FACEP  more...
 
Updated: Dec 27, 2015
 

History

Variations in the position of the appendix, age of the patient, and degree of inflammation make the clinical presentation of appendicitis notoriously inconsistent. Statistics report that 1 of 5 cases of appendicitis is misdiagnosed; however, a normal appendix is found in 15-40% of patients who have an emergency appendectomy.

Niwa et al reported an interesting case of a young woman with recurrent pain in who was referred for appendicitis, treated with antibiotics, and was found to have an appendiceal diverticulitis associated with a rare pelvic pseudocyst at laparotomy after 12 months.[15] Her condition was probably due to diverticular perforation of the pseudocyst.

Symptoms

The classic history of anorexia and periumbilical pain followed by nausea, right lower quadrant (RLQ) pain, and vomiting occurs in only 50% of cases. Nausea is present in 61-92% of patients; anorexia is present in 74-78% of patients. Neither finding is statistically different from findings in patients who present to the emergency department with other etiologies of abdominal pain. In addition, when vomiting occurs, it nearly always follows the onset of pain. Vomiting that precedes pain is suggestive of intestinal obstruction, and the diagnosis of appendicitis should be reconsidered. Diarrhea or constipation is noted in as many as 18% of patients and should not be used to discard the possibility of appendicitis.

The most common symptom of appendicitis is abdominal pain. Typically, symptoms begin as periumbilical or epigastric pain migrating to the right lower quadrant (RLQ) of the abdomen. This pain migration is the most discriminating feature of the patient's history, with a sensitivity and specificity of approximately 80%, a positive likelihood ratio of 3.18, and a negative likelihood ratio of 0.5.[3] Patients usually lie down, flex their hips, and draw their knees up to reduce movements and to avoid worsening their pain. Later, a worsening progressive pain along with vomiting, nausea, and anorexia are described by the patient. Usually, a fever is not present at this stage.

The duration of symptoms is less than 48 hours in approximately 80% of adults but tends to be longer in elderly persons and in those with perforation. Approximately 2% of patients report duration of pain in excess of 2 weeks. A history of similar pain is reported in as many as 23% of cases, but this history of similar pain, in and of itself, should not be used to rule out the possibility of appendicitis.

In addition to recording the history of the abdominal pain, obtain a complete summary of the recent personal history surrounding gastroenterologic, genitourinary, and pneumologic conditions, as well as consider gynecologic history in female patients. An inflamed appendix near the urinary bladder or ureter can cause irritative voiding symptoms and hematuria or pyuria. Cystitis in male patients is rare in the absence of instrumentation. Consider the possibility of an inflamed pelvic appendix in male patients with apparent cystitis. Also consider the possibility of appendicitis in pediatric or adult patients who present with acute urinary retention.[16]

Next

Physical Examination

It is important to remember that the position of the appendix is variable. Of 100 patients undergoing 3-dimensional (3-D) multidetector computed tomography (MDCT) scanning, the base of the appendix was located at the McBurney point in only 4% of patients; in 36%, the base was within 3 cm of the point; in 28%, it was 3-5 cm from that point; and, in 36% of patients, the base of the appendix was more than 5 cm from the McBurney point.[17]

The most specific physical findings in appendicitis are rebound tenderness, pain on percussion, rigidity, and guarding. Although RLQ tenderness is present in 96% of patients, this is a nonspecific finding. Rarely, left lower quadrant (LLQ) tenderness has been the major manifestation in patients with situs inversus or in patients with a lengthy appendix that extends into the LLQ. Tenderness on palpation in the RLQ over the McBurney point is the most important sign in these patients.

A careful physical examination, not limited to the abdomen, must be performed in any patient with suspected appendicitis. Gastrointestinal (GI), genitourinary, and pulmonary systems must be studied. Male infants and children occasionally present with an inflamed hemiscrotum due to migration of an inflamed appendix or pus through a patent processus vaginalis. This is often initially misdiagnosed as acute testicular torsion. In addition, perform a rectal examination in any patient with an unclear clinical picture, and perform a pelvic examination in all women with abdominal pain.

According to the American College of Emergency Physicians (ACEP) 2010 clinical policy update, clinical signs and symptoms should be used to stratify patient risk and to choose next steps for testing and management.[10, 11]

Accessory signs

In a minority of patients with acute appendicitis, some other signs may be noted. However, their absence never should be used to rule out appendiceal inflammation. The Rovsing sign (RLQ pain with palpation of the LLQ) suggests peritoneal irritation in the RLQ precipitated by palpation at a remote location. The obturator sign (RLQ pain with internal and external rotation of the flexed right hip) suggests that the inflamed appendix is located deep in the right hemipelvis. The psoas sign (RLQ pain with extension of the right hip or with flexion of the right hip against resistance) suggests that an inflamed appendix is located along the course of the right psoas muscle.

The Dunphy sign (sharp pain in the RLQ elicited by a voluntary cough) may be helpful in making the clinical diagnosis of localized peritonitis. Similarly, RLQ pain in response to percussion of a remote quadrant of the abdomen, or to firm percussion of the patient's heel, suggests peritoneal inflammation.

The Markle sign, pain elicited in a certain area of the abdomen when the standing patient drops from standing on toes to the heels with a jarring landing, was studied in 190 patients undergoing appendectomy and found to have a sensitivity of 74%.[4]

Rectal examination

There is no evidence in the medical literature that the digital rectal examination (DRE) provides useful information in the evaluation of patients with suspected appendicitis; however, failure to perform a rectal examination is frequently cited in successful malpractice claims. In 2008, Sedlak et al studied 577 patients who underwent DRE as part of an evaluation for suspected appendicitis and found no value as a means of distinguishing patients with and without appendicitis.[18]

Previous
Next

Appendicitis and Pregnancy

The incidence of appendicitis is unchanged in pregnancy relative to the general population, but the clinical presentation is more variable than at other times.

During pregnancy, the appendix migrates in a counterclockwise direction toward the right kidney, rising above the iliac crest at about 4.5 months' gestation. RLQ pain and tenderness dominate in the first trimester, but in the latter half of pregnancy, right upper quadrant (RUQ) or right flank pain must be considered a possible sign of appendiceal inflammation.

Nausea, vomiting, and anorexia are common in uncomplicated first trimester pregnancies, but their reappearance later in gestation should be viewed with suspicion.

Previous
Next

Diagnostic Scoring

Several investigators have created diagnostic scoring systems to predict the likelihood of acute appendicitis. In these systems, a finite number of clinical variables is elicited from the patient and each is given a numeric value; then, the sum of these values is used.

The best known of these scoring systems is the MANTRELS score, which tabulates migration of pain, anorexia, nausea and/or vomiting, tenderness in the RLQ, rebound tenderness, elevated temperature, leukocytosis, and shift to the left (see Table 1).[19]

Table 1. MANTRELS Score (Open Table in a new window)

Characteristic Score
M = Migration of pain to the RLQ 1
A = Anorexia 1
N = Nausea and vomiting 1
T = Tenderness in RLQ 2
R = Rebound pain 1
E = Elevated temperature 1
L = Leukocytosis 2
S = Shift of WBCs to the left 1
Total 10
Source: Alvarado.[19]
RLQ = right lower quadrant; WBCs = white blood cells

Clinical scoring systems are attractive because of their simplicity; however, none has been shown prospectively to improve on the clinician's judgment in the subset of patients evaluated in the emergency department (ED) for abdominal pain suggestive of appendicitis. The MANTRELS score, in fact, was based on a population of patients hospitalized for suspected appendicitis, which differs markedly from the population seen in the ED.

In reviewing the records of 150 ED patients who underwent abdominopelvic computed tomography (CT) scanning to rule out appendicitis, McKay and Shepherd suggested that patients with an MANTRELS score of 0-3 could be discharged without imaging, that those with scores of 7 or above receive surgical consultation, and those with scores of 4-6 undergo CT evaluation.[20] The investigators found that patients with a MANTRELS score of 3 or lower had a 3.6% incidence of appendicitis, patients with scores of 4-6 had a 32% incidence of appendicitis, and patients with scores of 7-10 had a 78% incidence of appendicitis.[20]

In another study, Schneider et al concluded that the MANTRELS score was not sufficiently accurate to be used as the sole method for determining the need for appendectomy in the pediatric population.[21] These investigators, studied 588 patients aged 3-21 years and found that a MANTRELS score of 7 or greater had a positive predictive value of 65% and a negative predictive value of 85%.

Scoring systems and computer-aided diagnosis

Computer-aided diagnosis consists of using retrospective data of clinical features of patients with appendicitis and other causes of abdominal pain and then prospectively assessing the risk of appendicitis. Computer-aided diagnosis can achieve a sensitivity greater than 90% while reducing rates of perforation and negative laparotomy by as much as 50%.

However, the principle disadvantages to this method are that each institution must generate its own database to reflect characteristics of its local population, and specialized equipment and significant initiation time are required. In addition, computer-aided diagnosis is not widely available in US EDs.

Previous
Next

Stages of Appendicitis

The stages of appendicitis can be divided into early, suppurative, gangrenous, perforated, phlegmonous, spontaneous resolving, recurrent, and chronic.

Early stage appendicitis

In the early stage of appendicitis, obstruction of the appendiceal lumen leads to mucosal edema, mucosal ulceration, bacterial diapedesis, appendiceal distention due to accumulated fluid, and increasing intraluminal pressure. The visceral afferent nerve fibers are stimulated, and the patient perceives mild visceral periumbilical or epigastric pain, which usually lasts 4-6 hours.

Suppurative appendicitis

Increasing intraluminal pressures eventually exceed capillary perfusion pressure, which is associated with obstructed lymphatic and venous drainage and allows bacterial and inflammatory fluid invasion of the tense appendiceal wall. Transmural spread of bacteria causes acute suppurative appendicitis. When the inflamed serosa of the appendix comes in contact with the parietal peritoneum, patients typically experience the classic shift of pain from the periumbilicus to the right lower abdominal quadrant (RLQ), which is continuous and more severe than the early visceral pain.

Gangrenous appendicitis

Intramural venous and arterial thromboses ensue, resulting in gangrenous appendicitis.

Perforated appendicitis

Persisting tissue ischemia results in appendiceal infarction and perforation. Perforation can cause localized or generalized peritonitis.

Phlegmonous appendicitis or abscess

An inflamed or perforated appendix can be walled off by the adjacent greater omentum or small-bowel loops, resulting in phlegmonous appendicitis or focal abscess.

Spontaneously resolving appendicitis

If the obstruction of the appendiceal lumen is relieved, acute appendicitis may resolve spontaneously.[22, 23] This occurs if the cause of the symptoms is lymphoid hyperplasia or when a fecalith is expelled from the lumen.

Recurrent appendicitis

The incidence of recurrent appendicitis is 10%. The diagnosis is accepted as such if the patient underwent similar occurrences of RLQ pain at different times that, after appendectomy, were histopathologically proven to be the result of an inflamed appendix.

Chronic appendicitis

Chronic appendicitis occurs with an incidence of 1% and is defined by the following: (1) the patient has a history of RLQ pain of at least 3 weeks’ duration without an alternative diagnosis; (2) after appendectomy, the patient experiences complete relief of symptoms; (3) histopathologically, the symptoms were proven to be the result of chronic active inflammation of the appendiceal wall or fibrosis of the appendix.

Previous
 
 
Contributor Information and Disclosures
Author

Sandy Craig, MD Residency Program Director, Carolinas Medical Center; Associate Professor, Department of Emergency Medicine, University of North Carolina at Chapel Hill School of Medicine

Sandy Craig, MD is a member of the following medical societies: Alpha Omega Alpha, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Chief Editor

Barry E Brenner, MD, PhD, FACEP Professor of Emergency Medicine, Professor of Internal Medicine, Program Director for Emergency Medicine, Case Medical Center, University Hospitals, Case Western Reserve University School of Medicine

Barry E Brenner, MD, PhD, FACEP is a member of the following medical societies: Alpha Omega Alpha, American Heart Association, American Thoracic Society, Arkansas Medical Society, New York Academy of Medicine, New York Academy of Sciences, Society for Academic Emergency Medicine, American Academy of Emergency Medicine, American College of Chest Physicians, American College of Emergency Physicians, American College of Physicians

Disclosure: Nothing to disclose.

Acknowledgements

Eugene Hardin, MD, FAAEM, FACEP Former Chair and Associate Professor, Department of Emergency Medicine, Charles Drew University of Medicine and Science; Former Chair, Department of Emergency Medicine, Martin Luther King Jr/Drew Medical Center

Disclosure: Nothing to disclose.

William Lober, MD, MS Associate Professor, Health Informatics and Global Health, Schools of Medicine, Nursing, and Public Health, University of Washington

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Polites SF, Mohamed MI, Habermann EB, et al. A simple algorithm reduces computed tomography use in the diagnosis of appendicitis in children. Surgery. 2014 Jun 19. [Medline].

  2. Douglas D. Algorithm cuts pediatric CT use in suspected appendicitis. Reuters Health Information. July 10, 2014. [Full Text].

  3. Yeh B. Evidence-based emergency medicine/rational clinical examination abstract. Does this adult patient have appendicitis?. Ann Emerg Med. 2008 Sep. 52(3):301-3. [Medline].

  4. Markle GB 4th. Heel-drop jarring test for appendicitis. Arch Surg. 1985 Feb. 120(2):243. [Medline].

  5. Thimsen DA, Tong GK, Gruenberg JC. Prospective evaluation of C-reactive protein in patients suspected to have acute appendicitis. Am Surg. 1989 Jul. 55(7):466-8. [Medline].

  6. de Carvalho BR, Diogo-Filho A, Fernandes C, Barra CB. [Leukocyte count, C reactive protein, alpha-1 acid glycoprotein and erythrocyte sedimentation rate in acute appendicitis]. Arq Gastroenterol. 2003 Jan-Mar. 40(1):25-30. [Medline].

  7. Albu E, Miller BM, Choi Y, et al. Diagnostic value of C-reactive protein in acute appendicitis. Dis Colon Rectum. 1994 Jan. 37(1):49-51. [Medline].

  8. Bolandparvaz S, Vasei M, Owji AA, Ata-Ee N, Amin A, Daneshbod Y, et al. Urinary 5-hydroxy indole acetic acid as a test for early diagnosis of acute appendicitis. Clin Biochem. 2004 Nov. 37(11):985-9. [Medline].

  9. Kim K, Kim YH, Kim SY, Kim S, Lee YJ, Kim KP, et al. Low-dose abdominal CT for evaluating suspected appendicitis. N Engl J Med. 2012 Apr 26. 366(17):1596-605. [Medline].

  10. Howell JM, Eddy OL, Lukens TW, Thiessen ME, Weingart SD, Decker WW. Clinical policy: Critical issues in the evaluation and management of emergency department patients with suspected appendicitis. Ann Emerg Med. 2010 Jan. 55(1):71-116. [Medline].

  11. [Guideline] National Guideline Clearinghouse (NGC). Guideline summary: Clinical policy: critical issues in the evaluation and management of emergency department patients with suspected appendicitis. National Guideline Clearinghouse (NGC), Rockville (MD). Available at http://guideline.gov/content.aspx?id=15598. Accessed: November 18, 2013.

  12. Barloon TJ, Brown BP, Abu-Yousef MM, Warnock N, Berbaum KS. Sonography of acute appendicitis in pregnancy. Abdom Imaging. 1995 Mar-Apr. 20(2):149-51. [Medline].

  13. Manterola C, Vial M, Moraga J, Astudillo P. Analgesia in patients with acute abdominal pain. Cochrane Database Syst Rev. 2011 Jan 19. 1:CD005660. [Medline].

  14. Karamanakos SN, Sdralis E, Panagiotopoulos S, Kehagias I. Laparoscopy in the emergency setting: a retrospective review of 540 patients with acute abdominal pain. Surg Laparosc Endosc Percutan Tech. 2010 Apr. 20(2):119-24. [Medline].

  15. Niwa H, Hiramatsu T. A rare presentation of appendiceal diverticulitis associated with pelvic pseudocyst. World J Gastroenterol. 2008 Feb 28. 14(8):1293-5. [Medline]. [Full Text].

  16. Place RC. Acute urinary retention in a 9-year-old child: an atypical presentation of acute appendicitis. J Emerg Med. 2006 Aug. 31(2):173-5. [Medline].

  17. Oto A, Ernst RD, Mileski WJ, Nishino TK, Le O, Wolfe GC, et al. Localization of appendix with MDCT and influence of findings on choice of appendectomy incision. AJR Am J Roentgenol. 2006 Oct. 187(4):987-90. [Medline].

  18. Sedlak M, Wagner OJ, Wild B, Papagrigoriades S, Exadaktylos AK. Is there still a role for rectal examination in suspected appendicitis in adults?. Am J Emerg Med. 2008 Mar. 26(3):359-60. [Medline].

  19. Alvarado A. A practical score for the early diagnosis of acute appendicitis. Ann Emerg Med. 1986 May. 15(5):557-64. [Medline].

  20. Schneider C, Kharbanda A, Bachur R. Evaluating appendicitis scoring systems using a prospective pediatric cohort. Ann Emerg Med. 2007 Jun. 49(6):778-84, 784.e1. [Medline].

  21. Schneider C, Kharbanda A, Bachur R. Evaluating appendicitis scoring systems using a prospective pediatric cohort. Ann Emerg Med. 2007 Jun. 49(6):778-84, 784.e1. [Medline].

  22. Migraine S, Atri M, Bret PM, Lough JO, Hinchey JE. Spontaneously resolving acute appendicitis: clinical and sonographic documentation. Radiology. 1997 Oct. 205(1):55-8. [Medline].

  23. Cobben LP, de Van Otterloo AM, Puylaert JB. Spontaneously resolving appendicitis: frequency and natural history in 60 patients. Radiology. 2000 May. 215(2):349-52. [Medline].

  24. Dueholm S, Bagi P, Bud M. Laboratory aid in the diagnosis of acute appendicitis. A blinded, prospective trial concerning diagnostic value of leukocyte count, neutrophil differential count, and C-reactive protein. Dis Colon Rectum. 1989 Oct. 32(10):855-9. [Medline].

  25. Gurleyik E, Gurleyik G, Unalmiser S. Accuracy of serum C-reactive protein measurements in diagnosis of acute appendicitis compared with surgeon's clinical impression. Dis Colon Rectum. 1995 Dec. 38(12):1270-4. [Medline].

  26. Shakhatreh HS. The accuracy of C-reactive protein in the diagnosis of acute appendicitis compared with that of clinical diagnosis. Med Arh. 2000. 54(2):109-10. [Medline].

  27. Asfar S, Safar H, Khoursheed M, Dashti H, al-Bader A. Would measurement of C-reactive protein reduce the rate of negative exploration for acute appendicitis?. J R Coll Surg Edinb. 2000 Feb. 45(1):21-4. [Medline].

  28. Erkasap S, Ates E, Ustuner Z, Sahin A, Yilmaz S, Yasar B, et al. Diagnostic value of interleukin-6 and C-reactive protein in acute appendicitis. Swiss Surg. 2000. 6(4):169-72. [Medline].

  29. Gronroos JM, Gronroos P. Leucocyte count and C-reactive protein in the diagnosis of acute appendicitis. Br J Surg. 1999 Apr. 86(4):501-4. [Medline].

  30. Ortega-Deballon P, Ruiz de Adana-Belbel JC, Hernandez-Matias A, Garcia-Septiem J, Moreno-Azcoita M. Usefulness of laboratory data in the management of right iliac fossa pain in adults. Dis Colon Rectum. 2008 Jul. 51(7):1093-9. [Medline].

  31. Gronroos JM. Is there a role for leukocyte and CRP measurements in the diagnosis of acute appendicitis in the elderly?. Maturitas. 1999 Mar 15. 31(3):255-8. [Medline].

  32. Yang HR, Wang YC, Chung PK, et al. Role of leukocyte count, neutrophil percentage, and C-reactive protein in the diagnosis of acute appendicitis in the elderly. Am Surg. 2005 Apr. 71(4):344-7. [Medline].

  33. Gronroos JM. Do normal leucocyte count and C-reactive protein value exclude acute appendicitis in children?. Acta Paediatr. 2001 Jun. 90(6):649-51. [Medline].

  34. Stefanutti G, Ghirardo V, Gamba P. Inflammatory markers for acute appendicitis in children: are they helpful?. J Pediatr Surg. 2007 May. 42(5):773-6. [Medline].

  35. Mohammed AA, Daghman NA, Aboud SM, Oshibi HO. The diagnostic value of C-reactive protein, white blood cell count and neutrophil percentage in childhood appendicitis. Saudi Med J. 2004 Sep. 25(9):1212-5. [Medline].

  36. Yang HR, Wang YC, Chung PK, Chen WK, Jeng LB, Chen RJ. Laboratory tests in patients with acute appendicitis. ANZ J Surg. 2006 Jan-Feb. 76(1-2):71-4. [Medline].

  37. Tundidor Bermudez AM, Amado Dieguez JA, Montes de Oca Mastrapa JL. [Urological manifestations of acute appendicitis]. Arch Esp Urol. 2005 Apr. 58(3):207-12. [Medline].

  38. Rao PM, Rhea JT, Rattner DW, et al. Introduction of appendiceal CT: impact on negative appendectomy and appendiceal perforation rates. Ann Surg. 1999 Mar. 229(3):344-9. [Medline].

  39. McGory ML, Zingmond DS, Nanayakkara D, Maggard MA, Ko CY. Negative appendectomy rate: influence of CT scans. Am Surg. 2005 Oct. 71(10):803-8. [Medline].

  40. Harswick C, Uyenishi AA, Kordick MF, Chan SB. Clinical guidelines, computed tomography scan, and negative appendectomies: a case series. Am J Emerg Med. 2006 Jan. 24(1):68-72. [Medline].

  41. Frei SP, Bond WF, Bazuro RK, Richardson DM, Sierzega GM, Reed JF. Appendicitis outcomes with increasing computed tomographic scanning. Am J Emerg Med. 2008 Jan. 26(1):39-44. [Medline].

  42. Pickhardt PJ, Lawrence EM, Pooler BD, Bruce RJ. Diagnostic performance of multidetector computed tomography for suspected acute appendicitis. Ann Intern Med. 2011 Jun 21. 154(12):789-96. [Medline].

  43. Kepner AM, Bacasnot JV, Stahlman BA. Intravenous contrast alone vs intravenous and oral contrast computed tomography for the diagnosis of appendicitis in adult ED patients. Am J Emerg Med. 2012 May 23. [Medline].

  44. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007 Nov 29. 357(22):2277-84. [Medline].

  45. Zilbert NR, Stamell EF, Ezon I, Schlager A, Ginsburg HB, Nadler EP. Management and outcomes for children with acute appendicitis differ by hospital type: areas for improvement at public hospitals. Clin Pediatr (Phila). 2009 Jun. 48(5):499-504. [Medline].

  46. Doria AS, Moineddin R, Kellenberger CJ, Epelman M, Beyene J, Schuh S, et al. US or CT for Diagnosis of Appendicitis in Children and Adults? A Meta-Analysis. Radiology. 2006 Oct. 241(1):83-94. [Medline].

  47. Boggs W. Ultrasound/MRI Strategy Diagnoses Appendicitis in Kids Without Radiation. Medscape Medical News. Available at http://www.medscape.com/viewarticle/821332. Accessed: March 12, 2014.

  48. Aspelund G, Fingeret A, Gross E, Kessler D, Keung C, Thirumoorthi A, et al. Ultrasonography/MRI Versus CT for Diagnosing Appendicitis. Pediatrics. 2014 Mar 3. [Medline].

  49. Cobben LP, Groot I, Haans L, Blickman JG, Puylaert J. MRI for clinically suspected appendicitis during pregnancy. AJR Am J Roentgenol. 2004 Sep. 183(3):671-5. [Medline].

  50. Repplinger MD, Levy JF, Peethumnongsin E, et al. Systematic review and meta-analysis of the accuracy of MRI to diagnose appendicitis in the general population. J Magn Reson Imaging. 2015 Dec 22. [Medline].

  51. Thieme ME, Leeuwenburgh MM, Valdehueza ZD, Bouman DE, de Bruin IG, Schreurs WH, et al. Diagnostic accuracy and patient acceptance of MRI in children with suspected appendicitis. Eur Radiol. 2013 Oct 19. [Medline].

  52. Singer DD, Thode HC Jr, Singer AJ. Effects of pain severity and CT imaging on analgesia prescription in acute appendicitis. Am J Emerg Med. 2016 Jan. 34 (1):36-9. [Medline].

  53. Eriksson S, Granström L. Randomized controlled trial of appendicectomy versus antibiotic therapy for acute appendicitis. Br J Surg. 1995 Feb. 82(2):166-9. [Medline].

  54. Salminen P, Paajanen H, Rautio T, et al. Antibiotic Therapy vs Appendectomy for Treatment of Uncomplicated Acute Appendicitis: The APPAC Randomized Clinical Trial. JAMA. 2015 Jun 16. 313 (23):2340-8. [Medline].

  55. Bonadio W, Rebillot K, Ukwuoma O, Saracino C, Iskhakov A. Management of pediatric perforated appendicitis: comparing outcomes using early appendectomy vs solely medical management. Pediatr Infect Dis J. 2015 Dec 14. [Medline].

  56. Bickell NA, Aufses AH Jr, Rojas M, Bodian C. How time affects the risk of rupture in appendicitis. J Am Coll Surg. 2006 Mar. 202(3):401-6. [Medline].

  57. Abou-Nukta F, Bakhos C, Arroyo K, Koo Y, Martin J, Reinhold R, et al. Effects of delaying appendectomy for acute appendicitis for 12 to 24 hours. Arch Surg. 2006 May. 141(5):504-6; discussion 506-7. [Medline].

  58. Fair BA, Kubasiak JC, Janssen I, et al. The impact of operative timing on outcomes of appendicitis: a National Surgical Quality Improvement Project analysis. Am J Surg. 2015 Mar. 209 (3):498-502. [Medline].

  59. Boomer LA, Cooper JN, Anandalwar S, et al. Delaying appendectomy does not lead to higher rates of surgical site infections: a multi-institutional analysis of children with appendicitis. Ann Surg. 2015 Dec 16. [Medline].

  60. [Guideline] Korndorffer JR Jr, Fellinger E, Reed W. SAGES guideline for laparoscopic appendectomy. Surg Endosc. 2010 Apr. 24(4):757-61. [Medline]. [Full Text].

  61. Wilasrusmee C, Sukrat B, McEvoy M, Attia J, Thakkinstian A. Systematic review and meta-analysis of safety of laparoscopic versus open appendicectomy for suspected appendicitis in pregnancy. Br J Surg. 2012 Nov. 99(11):1470-8. [Medline].

  62. Liang MK, Lo HG, Marks JL. Stump appendicitis: a comprehensive review of literature. Am Surg. 2006 Feb. 72(2):162-6. [Medline].

  63. Barclay L. Ultrasound, CT Comparable to Detect Appendicitis in Children. Medscape Medical News. Available at http://www.medscape.com/viewarticle/817370. Accessed: December 9, 2013.

  64. Le J, Kurian J, Cohen HW, Weinberg G, Scheinfeld MH. Do clinical outcomes suffer during transition to an ultrasound-first paradigm for the evaluation of acute appendicitis in children?. AJR Am J Roentgenol. 2013 Dec. 201(6):1348-52. [Medline].

  65. Hurst AL, Olson D, Somme S, et al. Once-daily ceftriaxone plus metronidazole versus ertapenem and/or cefoxitin for pediatric appendicitis. J Pediatric Infect Dis Soc. 2015 Dec 24. [Medline].

 
Previous
Next
 
CT scan reveals an enlarged appendix with thickened walls, which do not fill with colonic contrast agent, lying adjacent to the right psoas muscle.
Sagittal graded compression transabdominal sonogram shows an acutely inflamed appendix. The tubular structure is noncompressible, lacks peristalsis, and measures greater than 6 mm in diameter. A thin rim of periappendiceal fluid is present.
Transverse graded compression transabdominal sonogram of an acutely inflamed appendix. Note the targetlike appearance due to thickened wall and surrounding loculated fluid collection.
Technetium-99m radionuclide scan of the abdomen shows focal uptake of labeled WBCs in the right lower quadrant consistent with acute appendicitis.
Perforated appendicitis.
Normal appendix; barium enema radiographic examination. A complete contrast-filled appendix is observed (arrows), which effectively excludes the diagnosis of appendicitis.
Table 1. MANTRELS Score
Characteristic Score
M = Migration of pain to the RLQ 1
A = Anorexia 1
N = Nausea and vomiting 1
T = Tenderness in RLQ 2
R = Rebound pain 1
E = Elevated temperature 1
L = Leukocytosis 2
S = Shift of WBCs to the left 1
Total 10
Source: Alvarado.[19]
RLQ = right lower quadrant; WBCs = white blood cells
Table 2. WBC Count and Likelihood of Appendicitis
WBC (× 10,000) Likelihood Ratio (95% CI)
4-7 0.10 (0-0.39)
7-9 0.52 (0-1.57)
9-11 0.29 (0-0.62)
11-13 2.8 (1.2-4.4)
13-15 1.7 (0-3.6)
15-17 2.8 (0-6.0)
17-19 3.5 (0-10)
19-22
Source: Dueholm et al.[24]
CI = confidence interval; WBC = white blood cell.
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.