Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Prosthetic Heart Valves

  • Author: Eric M Kardon, MD, FACEP; Chief Editor: Richard A Lange, MD, MBA  more...
 
Updated: Feb 18, 2015
 

Practice Essentials

Bioprosthetic valves (see the image below) used in heart valve replacement generally offer functional properties (eg, hemodynamics, resistance to thrombosis) that are more similar to those of native valves. Implantation of prosthetic cardiac valves to treat hemodynamically significant aortic or mitral valve disease has become increasingly common.

The Hancock M.O. II aortic bioprosthesis (porcine) The Hancock M.O. II aortic bioprosthesis (porcine). Reproduced with permission from Medtronic, Inc.

Replacement of diseased valves with prosthetic heart valves reduces the morbidity and mortality associated with native valvular disease, but it comes at the expense of risking complications related to the implanted prosthetic device. Emergency medicine physicians must be able to rapidly identify patients at risk and begin appropriate diagnostic testing, stabilization, and treatment. Even when promptly recognized and treated, acute prosthetic valve failure is associated with a high mortality rate.

Essential update: Study finds equivalent patient survival rates for bioprosthetic and mechanical aortic valves

In a retrospective cohort analysis of 4253 patients who underwent primary isolated aortic-valve replacement, 15-year survival and stroke rates were equivalent with bioprosthetic and mechanical valves. For bioprosthetic valves, the risk of repeat surgery was greater but the incidence of major bleeding was lower.[1, 2]

In propensity-matched comparisons, actuarial 15-year mortality rates were 60.6% with the bioprosthetic aortic valve and 62.1% with the mechanical valve. Cumulative 15-year stroke rates were 7.7% and 8.6% in the two groups, respectively. The reoperation rate was 12.1% in the bioprosthetic valve group at 15 years and 6.9% in the mechanical valve group, while major bleeding occurred in 6.6% of bioprosthesis patients and in 13.0% of the mechanical-valve group.

Signs and symptoms

Signs and symptoms of prosthetic heart valve malfunction depend on the type of valve, its location, and the nature of the complication. Presentations may include the following:

  • Acute prosthetic valve failure: Sudden onset of dyspnea, syncope, or precordial pain
  • Acute aortic valve failure: Sudden death; survivors have acute severe dyspnea, sometimes accompanied by precordial pain, or syncope
  • Subacute valvular failure: Symptoms of gradually worsening congestive heart failure; they also may present with unstable angina or, at times, may be entirely asymptomatic
  • Embolic complications: Symptoms related to the site of embolization (eg, stroke, myocardial infarction [MI], sudden death, or symptoms of visceral or peripheral embolization)
  • Anticoagulant-related hemorrhage: Symptoms related to the site of hemorrhage

A history of fever should raise the possibility of prosthetic valve endocarditis (PVE).

On physical examination, normal prosthetic heart valve sounds include the following:

  • Mechanical valves: Loud, high-frequency, metallic closing sound; soft opening sound (tilting disc and bileaflet valves); low-frequency opening and closing sounds of nearly equal intensity (caged ball valves)
  • Tissue valves: Closing similar to those of native valves, low-frequency early opening sound in the mitral position

Prosthetic heart valve murmurs noted include the following:

  • Aortic prosthetic valves: Some degree of outflow obstruction with a resultant systolic ejection murmur (loudest in caged ball and small porcine valves); low-intensity diastolic murmur (tilting disc and bileaflet valves)
  • Mitral prosthetic valves: Low-grade systolic murmur (caged ball valves); short diastolic murmur (bioprostheses and, occasionally, St. Jude bileaflet valves)

Additional findings may include the following:

  • Acute valvular failure: Evidence of poor tissue perfusion; hyperdynamic precordium and right ventricular impulse (50% of cases); absence of a normal valve closure sound or presence of an abnormal regurgitant murmur
  • Subacute valvular failure: Rales and jugular venous distention; signs of right-side failure; a new regurgitant murmur or absence of normal closing sounds; a new or worsening hemolytic anemia (may be the only presenting abnormality)
  • PVE (often obscure): Fever (97% of cases); a new or changing murmur (56% of cases); classic signs of native valve endocarditis; splenomegaly; congestive heart failure, septic shock, or primary valvular failure; systemic emboli

See Clinical Presentation for more detail.

Diagnosis

Laboratory studies that may be useful include the following:

  • Complete blood count
  • Blood urea nitrogen (BUN) and creatinine levels
  • Urinalysis
  • Blood culture
  • Prothrombin time (PT) or international normalized ratio (INR)

Imaging studies that may be helpful include the following:

  • Chest radiography: This can help in delineating the valvular morphology and determining whether the valve and occluder are intact; each of the most commonly used valve types has its own characteristic radiographic appearance
  • Echocardiography (2-dimensional, Doppler, transesophageal [the study of choice for a suspected prosthetic valve complication], transthoracic)
  • Cinefluorography: This may detect impaired occluder movement but often cannot readily determine the etiology
  • Computed tomography: A consensus statement from the Society of Cardiovascular Computed Tomography (SCCT) states that CT should be performed as part of the evaluation of all patients being considered for transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR), except those in whom CT is contraindicated, [3, 4] and that the CT images should be interpreted with a member of the TAVI/TAVR team or reviewed with the operator before the procedure

See Workup for more detail.

Management

In patients with acute valvular failure, diagnostic studies must be performed simultaneously with resuscitative efforts.

Treatment approaches to primary valve failure include the following:

  • Emergency valve replacement
  • Concomitant adjunctive therapy
  • Afterload reduction and inotropic support
  • In selected cases, intra-aortic balloon counterpulsation

Treatment approaches to PVE include the following:

  • Intravenous antibiotics administered as soon as 2 sets of blood cultures are drawn
  • Cessation of warfarin until central nervous system involvement is ruled out and invasive procedures are determined to be unnecessary [5]
  • Consideration of anticoagulation
  • Consideration of emergency surgery in patients with moderate to severe heart failure or with an unstable prosthesis noted on echocardiography or fluoroscopy

Treatment approaches to thromboembolic complications include the following:

  • Anticoagulation (if it has not already been initiated or if the patient has a subtherapeutic INR)
  • Assessment of valve function
  • Note: US dabigatran prescribing information now includes a contraindication in patients with mechanical prosthetic valves [6]

Treatment approaches to prosthetic valve thrombosis include the following:

  • Surgery (historically the mainstay of treatment but associated with a high mortality)
  • Thrombolytic therapy (appropriate for selected patients with thrombosed prosthetic valves): Should always be performed in conjunction with cardiovascular surgical consultation
  • In cases of major anticoagulant-related hemorrhage, reversal of anticoagulation

See Treatment and Medication for more detail.

Next

Background

Implantation of prosthetic cardiac valves to treat hemodynamically significant valvular disease has become an increasingly common procedure. It is estimated that 60,000-95,000 patients per year are undergoing heart valve replacement in the United States.

Bioprosthetic valves used in heart valve replacement generally offer functional properties (eg, hemodynamics, resistance to thrombosis) that are more similar to those of native valves. Implantation of prosthetic cardiac valves to treat hemodynamically significant aortic or mitral valve disease has become increasingly common.

Replacement of diseased valves reduces the morbidity and mortality associated with native valvular disease but comes at the expense of risking complications related to the implanted prosthetic device. These complications include primary valve failure, prosthetic valve endocarditis (PVE), prosthetic valve thrombosis (PVT), thromboembolism, and mechanical hemolytic anemia. In addition, because many of these patients require long-term anticoagulation, anticoagulant-related hemorrhage may occur.

Transcatheter approaches to aortic valve implantation have allowed patients previously felt to be poor operative risks to undergo valve replacement.

Emergency medicine physicians must be able to rapidly identify patients at risk and begin appropriate diagnostic testing, stabilization, and treatment. Even when promptly recognized and treated, acute prosthetic valve failure is associated with a high mortality rate.

More than 80 models of artificial valves have been introduced since 1950. In day-to-day emergency practice, however, it is necessary to be familiar with a few basic types. Prosthetic valves are either created from synthetic material (mechanical prosthesis) or fashioned from biological tissue (bioprosthesis). The choice of prosthesis is determined by the anticipated longevity of the patient and his/her ability to tolerate anticoagulation.[7]

Previous
Next

Design Features

Three main designs of mechanical valves exist: the caged ball valve, the tilting disc (single leaflet) valve, and the bileaflet valve. The only Food and Drug Administration (FDA)–approved caged ball valve is the Starr-Edwards valve, shown in the image below.

Starr-Edwards Silastic ball valve mitral Model 612 Starr-Edwards Silastic ball valve mitral Model 6120. Reproduced with permission from Baxter International, Inc.

Tilting disc valve models include the Medtronic Hall valve, shown in the image below, Omnicarbon (Medical CV) valves, Monostrut (Alliance Medical Technologies), and the discontinued Bjork-Shiley valves.

Medtronic Hall mitral valve. Reproduced with permi Medtronic Hall mitral valve. Reproduced with permission from Medtronic, Inc.

Bileaflet valves include the St. Jude (St. Jude Medical), shown in the image below, which is the most commonly implanted valve in the United States; CarboMedics valves (Sulzer CarboMedics); ATS Open Pivot valves (ATS Medical); and On-X and Conform-X valves (MCRI).

St. Jude Medical mechanical heart valve. Photograp St. Jude Medical mechanical heart valve. Photograph courtesy of St. Jude Medical, Inc. All rights reserved. St. Jude Medical is a registered trademark of St. Jude Medical, Inc.

Bioprosthetic (xenograft) valves are made from porcine valves or bovine pericardium. Porcine models include the Carpentier-Edwards valves (Edwards Lifesciences) and Hancock II and Mosaic valves (Medtronic); both valves are shown in the images below.

Carpentier-Edwards Duralex mitral bioprosthesis (p Carpentier-Edwards Duralex mitral bioprosthesis (porcine). Reproduced with permission from Baxter International, Inc.
The Hancock M.O. II aortic bioprosthesis (porcine) The Hancock M.O. II aortic bioprosthesis (porcine). Reproduced with permission from Medtronic, Inc.

Pericardial valves include the Perimount series valves (Edwards LifeSciences). Ionescu-Shiley pericardial valves have been discontinued. Stentless porcine valves have also come into use. They offer improved hemodynamics with a decreased transvalvular pressure gradient when compared with older stented models. These models include the Edwards Prima Plus, Medtronic Freestyle, and Toronto SPV valve (St. Jude Medical).[8]

Homografts or preserved human aortic valves are used in a minority of patients.

Two devices have been approved for transcatheter aortic valve implantation (TAVI): the SAPIEN XT valve (Edwards LifeSciences), made of bovine pericardium, and the CoreValve (Medtronic), made of porcine pericardium.

Previous
Next

Indications for Bioprosthetic Valves

Aortic stenosis

The American College of Cardiology/American Heart Association (ACC/AHA) recommendations for aortic valve replacement in patients with valvular aortic stenosis (AS) are summarized in the list below.[9] In most adults with symptomatic severe AS, aortic valve replacement (AVR) is the surgical treatment of choice. If concomitant coronary disease is present, AVR and coronary artery bypass graft (CABG) surgery should be performed simultaneously.

Successful AVR produces substantial clinical and hemodynamic improvement in patients with AS, including octogenarians. AVR should be performed in all symptomatic patients with severe AS regardless of left ventricular (LV) function, as survival is better with surgical treatment than with medical treatment.

ACC/AHA recommendations for AVR in AS are as follows (indication; class):

  • Symptomatic patients with severe AS; Class I
  • Patients with severe AS undergoing CABG surgery; Class I
  • Patients with severe AS undergoing surgery on the aorta or other heart valves; Class I
  • Patients with moderate AS undergoing CABG surgery or surgery on the aorta or other heart valves; Class IIa
  • Prevention of sudden death in asymptomatic patients with none of the findings listed under asymptomatic patients with severe AS; Class III

AVR is also recommended in asymptomatic patients with severe AS and the following:

  • LV systolic dysfunction; Class IIa
  • Abnormal response to exercise (eg, hypotension); Class IIa
  • Ventricular tachycardia; Class IIb
  • Marked or excessive left ventricular hypertrophy (LVH) (>15 mm); Class IIb
  • Valve area less than 0.6 cm 2; Class II

The classes referred to above are defined as follows:

  • Class I - Conditions for which there is evidence and/or general agreement that the procedure or treatment is beneficial, useful, and effective
  • Class II - Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment
  • Class IIa - Weight of evidence/opinion is in favor of usefulness/efficacy
  • Class IIb - Usefulness/efficacy is less well established by evidence/opinion
  • Class III - Conditions for which there is evidence and/or general agreement that the procedure/treatment is not useful/effective and in some cases may be harmful

Candidates for percutaneous aortic valve placement must have severe, symptomatic aortic stenosis with formal contraindications for conventional aortic valve surgery or other characteristics that would limit the patient's surgical candidacy because of excessive morbidity or mortality. The procedure should be offered to patients who would gain functional improvement from the procedure and not because they refuse conventional operation.

Aortic regurgitation

Under current ACC/AHA guidelines, aortic valve surgery is recommended for patients with chronic, severe aortic regurgitation (AR) when the patient is symptomatic. It is also recommended in the asymptomatic patient with chronic, severe AR who has a resting ejection fraction (EF) of 50% or less or left ventricular dilatation. Additional circumstances in which aortic valve surgery may be reasonable are listed below.[9] Surgical treatment of AR usually requires replacement of the diseased valve with a prosthetic valve, although valve-sparing repair is increasingly possible with advances in surgical technique and technology.

ACC/AHA recommendations for AVR in AR are as follows (indication; class):

  • Symptomatic patients with severe AR, irrespective of LV systolic function; Class I
  • Asymptomatic patients with chronic, severe AR and LV systolic dysfunction (EF < 0.50) at rest; Class I
  • Patients with chronic, severe AR while undergoing CABG or surgery on the aorta or other heart valves; Class I
  • Asymptomatic patients with severe AR with normal LV systolic function (EF >0.50) but with severe LV dilatation (end-diastolic dimension >75 mm or end-systolic dimension >55 mm); Class IIa
  • Patients with moderate AR while undergoing surgery on the ascending aorta; Class IIb
  • Patients with moderate AR while undergoing CABG; Class IIb
  • Asymptomatic patients with severe AR and normal LV systolic function at rest (EF >0.50) when the degree of LV dilatation exceeds an end-diastolic dimension of 70 mm or end-systolic dimension of 50 mm, when there is evidence of progressive LV dilatation, declining exercise tolerance, or abnormal hemodynamic responses to exercise; Class IIb
  • Asymptomatic patients with mild, moderate, or severe AR and normal LV systolic function at rest (EF >0.50) when degree of dilatation is not moderate or severe (end-diastolic dimension < 70 mm, end-systolic dimension < 50 mm); Class III

Mitral stenosis

Valve replacement for mitral stenosis (MS) may be considered in patients who are candidates for surgical therapy when the valve is not suitable for valvotomy (either surgical or percutaneous). The recommendations for surgery in patients with mitral stenosis, according to the current ACC/AHA guidelines, are described below.[9]

Mitral valve surgery (repair if possible) is indicated in patients with symptomatic (New York Heart Association [NYHA] functional Class III–IV) moderate or severe MS under any of the following circumstances:

  • Percutaneous mitral balloon valvotomy is unavailable
  • Percutaneous mitral balloon valvotomy is contraindicated because of left atrial thrombus despite anticoagulation or because concomitant moderate to severe mitral regurgitation (MR) is present
  • The valve morphology is not favorable for percutaneous mitral balloon valvotomy in a patient with acceptable operative risk (Class I)

Symptomatic patients with moderate to severe MS who also have moderate to severe MR should receive mitral valve replacement (MVR) unless valve repair is possible at the time of surgery (Class I).

Mitral valve replacement is reasonable in patients with severe MS and severe pulmonary hypertension (pulmonary artery systolic pressure >60 mm Hg) who have NYHA functional Class I–II symptoms and who are not considered candidates for percutaneous mitral balloon valvotomy or surgical mitral valve repair (Class IIa).

Mitral regurgitation

Although more technically demanding, mitral valve repair is recommended over MVR in most patients with severe, chronic mitral regurgitation (MR) who require surgery. Patients should be referred to surgical centers experienced with mitral valve repair. If mitral valve repair is not feasible, MVR with preservation of the chordal apparatus is preferred, as this preserves LV function and enhances postoperative survival.[9]

Previous
Next

Clinical Implementation of Bioprosthetic Valves

The ACC/AHA recommendations for selection of a prosthetic aortic valve include the following[7] :

  • A mechanical prosthesis is recommended for AVR in patients with a mechanical valve in the mitral or tricuspid position (Class I)
  • A bioprosthesis is recommended for AVR in patients of any age who will not take warfarin or who have major medical contraindications to warfarin therapy (Class I)
  • A bioprosthesis is reasonable for AVR in patients aged 65 years or older without risk factors for thromboembolism (Class IIa)
  • Aortic valve re-replacement with a homograft is reasonable for patients with active prosthetic valve endocarditis (Class IIa)
  • A bioprosthesis might be considered for AVR in a woman of childbearing age (Class IIb)

In addition, according to the recommendations, patient preference is a reasonable consideration in the selection of aortic valve operation and valve prosthesis. A mechanical prosthesis is reasonable for AVR in patients younger than age 65 years who do not have a contraindication to anticoagulation. A bioprosthesis is reasonable for AVR in patients younger than 65 years who elect to receive this valve for lifestyle considerations after detailed discussions of the risks of anticoagulation versus the likelihood that a second AVR may be necessary in the future (Class IIa).

The ACC/AHA recommendations for selection of a prosthetic mitral valve include the following[9] :

  • A mechanical prosthesis is recommended for MVR in patients with a mechanical valve in the mitral or tricuspid position (Class I)
  • A mechanical prosthesis is reasonable for MVR in patients younger than age 65 years with long-standing atrial fibrillation (Class IIa)
  • A bioprosthesis is reasonable for MVR in patients aged 65 years or older (Class IIa)

A bioprosthesis is reasonable for MVR in patients younger than age 65 years in sinus rhythm who elect to receive this valve for lifestyle considerations after detailed discussions of the risks of anticoagulation versus the likelihood that a second MVR may be necessary in the future (Class IIa).

Previous
Next

Clinical Trial Evidence for Bioprosthetic Valves

In a Veterans Affairs study comparing bioprosthetic valves with mechanical valves, at 15 years, all-cause mortality after AVR was lower in patients who received a mechanical valve than in those who received a bioprosthetic valve (66% vs 79%, respectively). In the study, 575 patients at 13 VA medical centers undergoing single AVR (n = 394) or single MVR (n = 181) were randomized at the time of surgery to receive a Hancock porcine valve or a Bjork-Shiley spherical disc valve. Long-term survival and valve-related complications were compared. No significant difference in all-cause mortality was seen between the two MVR groups.[10]

Reoperation rate after AVR was higher with the bioprosthetic valve than with the mechanical valve (29 ± 5% vs 10 ± 3%). Valve-related deaths after AVR accounted for 41% of all deaths in the bioprosthetic group and 37% in the mechanical valve group; valve-related deaths after MVR were 57% and 44% of all deaths, respectively. Primary valve failure was significantly greater with bioprosthetic valves for AVR (bioprosthetic vs mechanical, 23 ± 5% vs 0 ± 0%) and for MVR (44 ± 8% vs 5 ± 4%).

Almost all the primary valve failures were in patients younger than age 65 years (18 of 20 patients in the AVR group and 20 of 21 patients in the MVR group). Bleeding occurred more frequently in patients with a mechanical valve than in those with a bioprosthesis (AVR, 51 ± 4% vs 30 ± 4%; MVR, 53 ± 7% vs 31 ± 6%). No statistically significant differences were seen between the two valve groups for systemic embolism, infective endocarditis, or valve thrombosis.

Similar results were seen in the Edinburgh heart valve trial, in which 533 patients (AVR, n = 211; MVR, n = 261; double valve replacement, n = 61) were randomized at the time of surgery to receive a Bjork-Shiley 60° spherical tilting disc valve (n = 267) or a porcine bioprosthesis (Hancock, n = 107; Carpentier-Edwards, n = 159). Long-term survival rates at 20 years were not significantly different between the 2 valve groups (mechanical 25.0 ± 2.7%, porcine 22.6 ± 2.7%). Major bleeding was more common in Bjork-Shiley patients than in bioprosthesis patients (40.7 ± 5.4% vs 27.9 ± 8.4%, respectively). No significant differences were seen in major embolism or endocarditis.[11]

Previous
Next

Pathophysiology

Valve failure

Primary valve failure may occur abruptly from the tearing or breakage of components or from a thrombus suddenly impinging on leaflet mobility. More commonly, valve failure presents gradually from calcifications or thrombus formation. Bioprostheses are less thrombogenic than mechanical valves, but this advantage is balanced by their diminished durability when compared with mechanical valves. Although 30-35% of bioprostheses will fail within 10-15 years, it can be anticipated that most mechanical valves will remain functional for 20-30 years.

Stenosis or incompetence of prosthetic valves occurs and may be due to a tear or perforation of the valve cusp, valvular thrombosis, pannus formation, valve calcification, or stiffening of the leaflets.

Primary failure of mechanical valves may be caused by suture line dehiscence, thrombus formation, or breakage or separation of the valve components. Acute valvular regurgitation or embolization of the valve fragments may result.

When the mitral valve acutely fails, rapid left atrial volume overload causes increased left atrial pressure. Pulmonary venous congestion and, ultimately, pulmonary edema occur. Cardiac output is decreased because a portion of the left ventricular output is being regurgitated into the left atrium. The compensatory mechanism of increased sympathetic tone increases the heart rate and the systemic vascular resistance (SVR). This may worsen the situation by decreasing diastolic filling time and impeding left ventricular outflow, thereby increasing the regurgitation.

Acute failure of a prosthetic aortic valve causes a rapidly progressive left ventricular volume overload. Increased left ventricular diastolic pressure results in pulmonary congestion and edema. The cardiac output is reduced substantially. The compensatory mechanism of an increased heart rate and a positive inotropic state, mediated by increased sympathetic tone, partly helps to maintain output. However, this is hampered by an increase in SVR, which impedes forward flow. Increased systolic wall tension causes a rise in myocardial oxygen consumption. Myocardial ischemia in acute aortic regurgitation may occur, even in the absence of coronary artery disease.

Biological prosthetic valves often slowly degenerate over time, become calcified, or suffer from thrombus formation. These events result in the slowly progressive failure of the valve. The presentation is usually that of gradually worsening congestive heart failure, with increasing dyspnea. Alternatively, patients may present with unstable angina or systemic embolization, or they may be entirely asymptomatic.

The first TAVI device for use in the United States was approved in November 2011. Subsequently, not enough time has passed to gather data concerning longevity and use. Vascular complications and strokes related to the procedure are decreasing with improved delivery techniques and equipment. Complications related to the conduction system requiring permanent pacemaker implantation occur in 14% of patients. This risk is increased with the use of the CoreValve prosthesis.[12]

Prosthetic valve endocarditis

PVE occurring within 1 year of implantation (early PVE) usually is due to perioperative contamination or hematogenous spread. PVE occurring after 1 year (late PVE) is usually caused by hematogenous spread.[13]

The pathologic hallmark of PVE in mechanical valves is ring abscesses. Ring abscess may lead to valve dehiscence and perivalvular leakage. Local extension results in the formation of myocardial abscesses. Further extension to the conduction system often results in a new atrioventricular block. Valve stenosis and purulent pericarditis occur less frequently.

Bioprosthetic valve PVE usually causes leaflet tears or perforations. Valve stenosis is more common with bioprosthetic valves than with mechanical valves. Ring abscess, purulent pericarditis, and myocardial abscesses are much less frequent in bioprosthetic valve PVE.

Finally, glomerulonephritis, mycotic aneurysms, systemic embolization, and metastatic abscesses also may complicate PVE.

Previous
Next

Epidemiology

Frequency

United States

Prosthetic valve thrombosis is more common in mechanical valves. With proper anticoagulation, the rate of thrombosis in all valves is within the range of 0.1-5.7% per patient-year. Caged ball valves have the highest rate of thromboembolic complications, and bileaflet valves have the lowest. Valve thrombosis is increased with valves in the mitral position and in patients with subtherapeutic anticoagulation.

Anticoagulant-related hemorrhagic complications of mechanical valves include major hemorrhage in 1-3% of patients per year and minor hemorrhage in 4-8% of patients per year.

Low-grade hemolytic anemia occurs in 70% of prosthetic heart valve recipients, and severe hemolytic anemia occurs in 3%. The incidence is increased with caged ball valves and in those with perivalvular leaks.

Primary valve failure occurs in 3-4% of patients with bioprostheses within 5 years of implantation and in up to 35% of patients within 15 years. Mechanical valves have a much lower incidence of primary failure.

PVE occurs in 2-4% of patients. The incidence is 3% in the first postoperative year, then 0.5% for subsequent years. The incidence is higher when valve surgery is performed in patients with active native valve endocarditis. The incidence is higher in mitral valves. Mechanical and biological valves are equally susceptible to early PVE, but the incidence of late PVE is higher for bioprostheses. Despite improvements in surgical techniques, no appreciable change in the incidence has been observed.[14]

Mortality/Morbidity

Acute failure of a prosthetic aortic valve usually leads to sudden or near-sudden death. Prompt recognition and treatment of acute prosthetic mitral valve failure can be lifesaving.[13]

PVE has an overall mortality rate of 50%. In early PVE, the mortality rate is 74%. In late PVE, the mortality rate is 43%. The mortality rate with a fungal etiology is 93%. The mortality rate for staphylococcal infections is 86%. PVE due to Staphylococcus has a mortality rate of 25-40%.[13, 14]

Fatal anticoagulant-induced hemorrhage occurs in 0.5% of patients per year.

Age

In children, bioprostheses rapidly calcify and, therefore, undergo rapid degeneration and valve dysfunction. Incidence of bioprosthetic failure is much higher in patients younger than 40 years. The incidence of having any prosthetic valve complication decreases with age.

Previous
 
 
Contributor Information and Disclosures
Author

Eric M Kardon, MD, FACEP Attending Emergency Physician, Georgia Emergency Medicine Specialists; Physician, Division of Emergency Medicine, Athens Regional Medical Center

Eric M Kardon, MD, FACEP is a member of the following medical societies: American College of Emergency Physicians, American Medical Informatics Association, Medical Association of Georgia

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

A Antoine Kazzi, MD Deputy Chief of Staff, American University of Beirut Medical Center; Associate Professor, Department of Emergency Medicine, American University of Beirut, Lebanon

A Antoine Kazzi, MD is a member of the following medical societies: American Academy of Emergency Medicine

Disclosure: Nothing to disclose.

Chief Editor

Richard A Lange, MD, MBA President, Texas Tech University Health Sciences Center, Dean, Paul L Foster School of Medicine

Richard A Lange, MD, MBA is a member of the following medical societies: Alpha Omega Alpha, American College of Cardiology, American Heart Association, Association of Subspecialty Professors

Disclosure: Nothing to disclose.

Acknowledgements

Mary C Mancini, MD, PhD

Professor and Chief of Cardiothoracic Surgery, Department of Surgery, Louisiana State University School of Medicine in Shreveport

Mary C Mancini, MD, PhD is a member of the following medical societies: American Association for Thoracic Surgery, American College of Surgeons, American Surgical Association, Phi Beta Kappa, and Society of Thoracic Surgeons

Disclosure: Nothing to disclose.

Judy Lin, MD

Disclosure: Nothing to disclose.

References
  1. Chiang YP, Chikwe J, Moskowitz AJ, Itagaki S, Adams DH, Egorova NN. Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA. 2014 Oct 1. 312(13):1323-9. [Medline].

  2. O'Riordan M. Survival and stroke rates equivalent at 15 years with mechanical and bioprosthetic aortic valves. Heartwire. September 30, 2014. [Full Text].

  3. O’Riordan M. SCCT policy statement recommends CT prior to TAVI/TAVR procedures. Medscape Medical News. Jan 11, 2013. [Full Text].

  4. Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, Leipsic JA. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr. 2012 Nov. 6(6):366-80. [Medline].

  5. Whitlock RP, Sun JC, Fremes SE, Rubens FD, Teoh KH,. Antithrombotic and thrombolytic therapy for valvular disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012 Feb. 141(2 Suppl):e576S-600S. [Medline].

  6. Van de Werf F, Brueckmann M, Connolly SJ, Friedman J, Granger CB, Härtter S, et al. A comparison of dabigatran etexilate with warfarin in patients with mechanical heart valves: THE Randomized, phase II study to evaluate the safety and pharmacokinetics of oral dabigatran etexilate in patients after heart valve replacement (RE-ALIGN). Am Heart J. 2012 Jun. 163(6):931-937.e1. [Medline].

  7. Rahimtoola SH. Choice of prosthetic heart valve in adults an update. J Am Coll Cardiol. 2010 Jun 1. 55(22):2413-26. [Medline].

  8. Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009 Feb 24. 119(7):1034-48. [Medline].

  9. [Guideline] Bonow RO, Carabello BA, Chatterjee K, et al for the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008 Sep 23. 52(13):e1-142. [Medline]. [Full Text].

  10. Hammermeister K, Sethi GK, Henderson WG, Grover FL, Oprian C, Rahimtoola SH. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J Am Coll Cardiol. 2000 Oct. 36(4):1152-8. [Medline].

  11. Oxenham H, Bloomfield P, Wheatley DJ, et al. Twenty year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses. Heart. 2003 Jul. 89(7):715-21. [Medline]. [Full Text].

  12. Bates MG, Matthews IG, Fazal IA, Turley AJ. Postoperative permanent pacemaker implantation in patients undergoing trans-catheter aortic valve implantation: what is the incidence and are there any predicting factors?. Interact Cardiovasc Thorac Surg. 2011 Feb. 12(2):243-53. [Medline].

  13. Habib G, Thuny F, Avierinos JF. Prosthetic valve endocarditis: current approach and therapeutic options. Prog Cardiovasc Dis. 2008 Jan-Feb. 50(4):274-81. [Medline].

  14. Nataloni M, Pergolini M, Rescigno G, Mocchegiani R. Prosthetic valve endocarditis. J Cardiovasc Med (Hagerstown). 2010 Dec. 11(12):869-83. [Medline].

  15. Akhtar RP, Abid AR, Zafar H, Khan JS. Aniticoagulation in patients following prosthetic heart valve replacement. Ann Thorac Cardiovasc Surg. 2009 Feb. 15(1):10-7. [Medline].

  16. Daniels PR, McBane RD, Litin SC, Ward SA, Hodge DO, Dowling NF, et al. Peri-procedural anticoagulation management of mechanical prosthetic heart valve patients. Thromb Res. 2009 Feb 19. [Medline].

  17. Botta L, Bechan R, Yilmaz A, Di Bartolomeo R. Prosthetic valve endocarditis due to Brucella: successful outcome with a combined strategy. J Cardiovasc Med (Hagerstown). 2009 Mar. 10(3):257-8. [Medline].

  18. Jeejeebhoy FM. Prosthetic heart valves and management during pregnancy. Can Fam Physician. 2009 Feb. 55(2):155-7. [Medline].

  19. Shapira Y, Vaturi M, Sagie A. Hemolysis associated with prosthetic heart valves: a review. Cardiol Rev. 2009 May-Jun. 17(3):121-4. [Medline].

  20. Lengyel M. Diagnosis and treatment of left-sided prosthetic valve thrombosis. Expert Rev Cardiovasc Ther. 2008 Jan. 6(1):85-93. [Medline].

  21. Yaffee DW, Smith DE 3rd, Ursomanno PA, et al. Management of blood transfusion in aortic valve surgery: impact of a blood conservation strategy. Ann Thorac Surg. 2013 Nov 19. [Medline].

  22. Janeczko LL. Blood conservation strategy helpful in aortic valve replacement. Reuters Health Information. December 16, 2013. [Full Text].

  23. Brennan JM, Edwards FH, Zhao Y, et al. Early anticoagulation of bioprosthetic aortic valves in older patients: results from the Society of Thoracic Surgeons Adult Cardiac Surgery National Database. J Am Coll Cardiol. 2012 Sep 11. 60(11):971-7. [Medline].

  24. [Guideline] Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007 Oct 9. 116(15):1736-54. [Medline].

  25. Nishimura RA, Carabello BA, Faxon DP, et al. ACC/AHA 2008 guideline update on valvular heart disease: focused update on infective endocarditis: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Catheter Cardiovasc Interv. 2008 Sep 1. 72(3):E1-12. [Medline].

  26. [Guideline] Horstkotte D, Follath F, Gutschik E, Lengyel M, Oto A, Pavie A, et al. Guidelines on prevention, diagnosis and treatment of infective endocarditis. The Task Force on Infective Endocarditis of the European Society of Cardiology. France: European Society of Cardiology. 2004. [Full Text].

  27. American College of Obstetricians and Gynecologists. ACOG Committee Opinion: safety of Lovenox in pregnancy. Obstet Gynecol. 2002 Oct. 100(4):845-6. [Medline].

  28. Baddour LM, Wilson WR, Bayer AS. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications. Circulation. 2005 Jun 14. 111(23):e394-434. [Medline].

  29. Bussey HI. An overview of anticoagulants, antiplatelet agents, and the combination in patients with mechanical heart valves. J Heart Valve Dis. 2004 May. 13(3):319-24. [Medline].

  30. Butany J, Ahluwalia MS, Munroe C, et al. Mechanical heart valve prostheses: identification and evaluation (erratum). Cardiovasc Pathol. 2003 Nov-Dec. 12(6):322-44. [Medline].

  31. Butany J, Fayet C, Ahluwalia MS, et al. Biological replacement heart valves. Identification and evaluation. Cardiovasc Pathol. 2003 May-Jun. 12(3):119-39. [Medline].

  32. Cannegieter SC, Rosendaal FR, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation. 1994 Feb. 89(2):635-41. [Medline].

  33. [Guideline] Dajani AS, Taubert KA, Wilson W, et al. Prevention of bacterial endocarditis. Recommendations by the American Heart Association. Circulation. 1997 Jul 1. 96(1):358-66. [Medline].

  34. Das M, Twomey D, Al Khaddour A, Dunning J. Is thrombolysis or surgery the best option for acute prosthetic valve thrombosis?. Interact Cardiovasc Thorac Surg. 2007 Dec. 6(6):806-11. [Medline].

  35. Goldman ME. Echocardiographic doppler evaluation of prosthetic valve function and dysfunction. Adv Cardiol. 2004. 41:179-84. [Medline].

  36. Kahn S. Long-term outcomes with mechanical and tissue valves. J Heart Valve Dis. 2002. 11, Suppl 1:S8-S14.

  37. [Guideline] Lengyel M, Fuster V, Keltai M, et al. Guidelines for management of left-sided prosthetic valve thrombosis: a role for thrombolytic therapy. Consensus Conference on Prosthetic Valve Thrombosis. J Am Coll Cardiol. 1997 Nov 15. 30(6):1521-6. [Medline].

  38. MacKenzie GS, Heinle SK. Echocardiography and Doppler assessment of prosthetic heart valves with transesophageal echocardiography. Crit Care Clin. 1996 Apr. 12(2):383-409. [Medline].

  39. Mehlman DJ. A pictorial and radiographic guide for identification of prosthetic heart valve devices. Prog Cardiovasc Dis. 1988 May-Jun. 30(6):441-64. [Medline].

  40. O'Riordan M. FDA Approves Medtronic's CoreValve for Inoperable Patients. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/819376. Accessed: January 26, 2014.

  41. Piper C, Kprfer R, Horstkotte D. Prosthetic valve endocarditis. Heart. 2001 May. 85(5):590-3. [Medline].

  42. Roudaut R, Lafitte S, Roudaut MF, et al. Fibrinolysis of mechanical prosthetic valve thrombosis: a single-center study of 127 cases. J Am Coll Cardiol. 2003 Feb 19. 41(4):653-8. [Medline].

  43. Stein PD, Alpert JS, Bussey HI, et al. Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest. 2001 Jan. 119(1 Suppl):220S-227S. [Medline].

  44. Vongpatanasin W, Hillis LD, Lange RA. Prosthetic heart valves. N Engl J Med. 1996 Aug 8. 335(6):407-16. [Medline].

  45. Willson A, Webb J. Transcatheter treatment approaches for aortic valve disease. Int J Cardiovasc Imaging. 2011 Dec. 27(8):1123-32. [Medline].

 
Previous
Next
 
Medtronic Hall mitral valve. Reproduced with permission from Medtronic, Inc.
The Hancock M.O. II aortic bioprosthesis (porcine). Reproduced with permission from Medtronic, Inc.
Starr-Edwards Silastic ball valve mitral Model 6120. Reproduced with permission from Baxter International, Inc.
Carpentier-Edwards Duralex mitral bioprosthesis (porcine). Reproduced with permission from Baxter International, Inc.
Carpentier-Edwards Perimount pericardial aortic bioprosthesis. Reproduced with permission from Baxter International, Inc.
St. Jude Medical mechanical heart valve. Photograph courtesy of St. Jude Medical, Inc. All rights reserved. St. Jude Medical is a registered trademark of St. Jude Medical, Inc.
Edwards Sapien transcatheter aortic valve.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.