Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Hantavirus Cardiopulmonary Syndrome

  • Author: Juliet D Caldwell, MD; Chief Editor: Jeter (Jay) Pritchard Taylor, III, MD  more...
 
Updated: Apr 01, 2015
 

Background

Hantavirus was first recognized as an infectious disease in the early 1950s when a cluster of 3,000 United Nation troops stationed in Korea was struck by a mysterious illness. Ten to fifteen percent of those infected perished,[1] and though the exact etiologic agent was not discovered for two decades, it was suspected that rodents served as the main epidemiologic vector. Infection was associated with fever, hypotension, renal failure, thrombocytopenia, and disseminated intravascular coagulation (DIC). The clinical syndrome became known as hemorrhagic fever with renal syndrome (HFRS), formerly Korean hemorrhagic fever, and the virus was named Hanta after the Hantaan River of Korea. Over the ensuing years, several other etiologic agents of HFRS such as the Seoul, Puumala, and Dobrava viruses, were discovered across Europe and Asia.[2, 3, 4]

Though antigenic evidence of Hantavirus remains widespread among rodents across the United States,[5] only a handful of cases of HFRS was ever identified in the states.[6]

Hantavirus cardiopulmonary syndrome (HCPS), however, was not recognized until May of 1993, when an unusual illness struck a Navajo tribe living on the border of New Mexico and Arizona.[7] Those infected presented with fever, chills, myalgia, and cough, which often progressed to dyspnea, respiratory distress, and cardiovascular collapse. An alarming 80% of those infected died. (See the image below.)

Hantavirus cardiopulmonary syndrome (HCPS) precaut Hantavirus cardiopulmonary syndrome (HCPS) precautions during the 1993 outbreak.

Over the next month, a highly effective collaboration ensued between the Indian Health Service, the University of New Mexico School of Medicine, and the Centers for Disease Control and Prevention, leading not only to the successful isolation of the virus, but also to the identification of the reservoir and vector for the disease, Peromyscus maniculatus (deer mouse) (see image below).


Peromyscus maniculatus - The deer mouse. Peromyscus maniculatus - The deer mouse.

Serum samples from those afflicted demonstrated evidence of Hantavirus infection and within 10 weeks of the original outbreak, researchers had successfully developed a diagnostic test for the virus. The new virus went through a litany of names (eg, Little Water virus, Four Corners virus, Muerto Canyon virus) before finally being given the somewhat tongue-in-cheek moniker of Sin Nombre virus (in Spanish, literally the virus with no name). The clinical syndrome caused by Sin Nombre virus (SNV) became known as Hantavirus pulmonary syndrome (HPS) or, more accurately, Hantavirus cardiopulmonary syndrome (HCPS).[8]

About 20 viruses have been identified within the genus Hantavirus, family Bunyaviridae, but only 11 have been shown to cause human disease. Four of these belong to the “Old World” and cause HFRS across Europe, Russia, and Asia.[8] China has the highest annual incidence of HFRS with somewhere between 20,000 and 100,000 cases of symptomatic HFRS reported each year. Most cases are attributable to the Seoul virus, with the Hantaan virus playing a more minor role.

Five of the “New World” Hantaviruses cause HCPS in North America, while a few others cause disease in Central America and South America. Most New World viruses cause HCPS only; however, the Black Creek Canal virus and the Bayou virus of the southeastern United States, as well as the Andes virus of South America, have been linked to renal failure and share some similarities with HFRS.

SNV is the prototypical New World Hantavirus and is the cause of the vast majority of cases of HCPS in the United States (see the image below).

Geographic distribution and viral cause of Hantavi Geographic distribution and viral cause of Hantavirus cardiopulmonary syndrome (HCPS).

The SNV and the Andes virus of South America cause the most severe disease, with case fatalities somewhere between 30 and 50%.

According to Native American legend, HCPS has existed in North America's southwest desert for hundreds, if not thousands, of years. Navajo oral tradition describes an illness now thought to be HCPS that struck down young healthy members of the tribe after temperate winters, and tradition also warns of the dangers of coexisting with rodents.

The earliest serologically confirmed SNV infection was in a person who developed an HCPS-like illness in July of 1959; scientists were finally able to confirm the presence of immunoglobulin G (IgG) antibodies to SNV in the victim’s serum in September of 1994.[8]

Next

Pathophysiology

Each individual Hantavirus has its own species of wild rodent as its reservoir[9] ; in the case of SNV, this reservoir is the deer mouse (see the image below).


Peromyscus maniculatus - The deer mouse. Peromyscus maniculatus - The deer mouse.

Somewhere between 5% and 20% of rodents exhibit antigenic evidence of Hantavirus infection with active viral shedding into feces, urine, and saliva. Human infection typically occurs by inhalation of aerosolized rodent waste, though occasionally disease may be contracted via a rodent bite or direct mucous membrane contact with rodent excreta. The primary risk factor for Hantavirus infection, therefore, is prolonged exposure to rodents, particularly within a closed, poorly ventilated area.[10, 11]

Although generally not transmittable from person-to-person, the Andes virus of Argentina is a surprising exception to this rule.[12] One Chilean study found that sexual partners of people with Andes virus–induced HCPS had a 17.6% risk of developing infection, as opposed to 1.2% among casual household contacts.[13]

Hantavirus demonstrates similar tissue tropism in rodents and humans, but for unclear reasons, rodents typically remain symptom free; consequently, they never develop immunity and become perpetual viral shedders.[14, 15] Given that Hantavirus is typically airborne, virus first infects the lung parenchyma where it is phagocytized and transported to draining lymph nodes. From here, the virus disseminates and primarily targets vascular endothelial cells, particularly of the heart, lung, and lymphoid tissues, and in the case of HFRS, the kidney.

Although disease severity directly correlates with viral RNA load,[15] considerable evidence exists that immune mechanisms rather than direct viral cytopathology are responsible for the massive vascular dysfunction and plasma leakage of HFRS and HCPS.[16, 17] Likely players include tumor necrosis factor-alpha (TNF alpha), interleukin 1 beta (IL-1 beta), and interferon gamma (IFN-gamma), though this has yet to be clarified.[18] Recently, vascular endothelial growth factor has been implicated as a major player in the hyperpermeability found in Hantaan virus–induced HFRS.[19]

In the case of HCPS, capillary leak is overwhelmingly centered in the lungs leading to fulminant noncardiogenic pulmonary edema. Pathologic specimens demonstrate boggy, edematous lungs and copious tracheal and pleural fluid.[20] Patients may progress quickly to cardiogenic shock with decreased cardiac output, elevated systemic vascular resistance, and lactic acidosis.[21, 22] Severe cardiac depression acts synergistically with intravascular hypovolemia caused by capillary leakage and ultimately results in precipitous cardiopulmonary collapse. In light of this, early use of vasopressors and judicious administration of fluids is recommended, as well as the prompt transfer of patients to centers with extracorporeal membrane oxygenation (ECMO) capabilities in case rescue therapy becomes necessary. The name change from Hantavirus pulmonary syndrome to Hantavirus cardiopulmonary syndrome reflects the key contribution to morbiditymade by concomitant myocardial dysfunction.

Previous
Next

Epidemiology

Frequency

United States

As of February 2013, 617 cases of Hantavirus cardiopulmonary syndrome (HCPS) have been confirmed in 34 states (see the image below). Thirty-six percent of all reported cases have resulted in death.

Hantavirus pulmonary syndrome cases by state of ex Hantavirus pulmonary syndrome cases by state of exposure.

Of note, a recent outbreak of HCPS struck campers at Yosemite National Park in the summer of 2012. Ten cases have so far been confirmed in campers that slept in rodent-infested campsites; the disease claimed 3 of these 10 lives.[23]

Most cases are caused by the Sin Nombre virus (SNV) and have occurred west of the Mississippi River, which corresponds to the geographic distribution of the deer mouse (see the image below).[8]

Geographic distribution of Hantavirus cardiopulmon Geographic distribution of Hantavirus cardiopulmonary syndrome (HCPS) and Peromyscus maniculatus.

The preponderance of cases occurs in rural locales. The prevalence of Hantavirus infection in deer mice, the host vector for Sin Nombre virus (responsible for most US cases), was 27.5-32.5%. The greatest concentration remains in the Four Corners area; the top 5 states of exposure are, in descending order, New Mexico, Colorado, Arizona, California, and Washington. National annual incidence in nonepidemic years is about 20-30 cases (see the image below).

Hantavirus pulmonary syndrome cases by outcome. Hantavirus pulmonary syndrome cases by outcome.

The New York virus, the Black Creek Canal virus, and the Bayou virus are other rare causes of HCPS that have been confirmed in eastern and southeastern United States.[8]

Generally, outbreaks of Hantavirus occur in the spring and fall. This appears to correspond with farming cycles when workers are exposed to field-rodents during planting and harvest periods.[8]

International

Thirty-six cases of HCPS have been reported in Canada, primarily Alberta, and account for 10-15% of all North American cases yearly. South America is the other major reservoir of HCPS. Confirmed cases of HCPS include 404 in Argentina, 74 in Paraguay, 273 in Chile, and 168 in Brazil. Bolivia had 20 cases; Panama, 31; and Uruguay, 23.[8] Currently, at least 4 Hantavirus species in South America are recognized to cause HCPS. One of them, the Andes virus, is unique for reports of person-to-person transmission and of an increased mortality rate in children.[8, 24, 25, 13]

Mortality/Morbidity

During the 1993 outbreak in the southwestern United States, the mortality rate was approximately 80%. Increased recognition of the disease and more aggressive interventions (eg, extracorporeal membrane oxygenation (ECMO) and early mechanical ventilation) have led to a decrease in mortality, with rates now ranging from 35% to 40%, though there is wide yearly variability.[8, 26, 27] Most deaths occur within 24 hours of hospital admission.

Race

During the initial outbreak in 1993, Native Americans were almost exclusively affected and the press named the mysterious disease "Navajo flu." As cases mounted, however, it became clear that HCPS was an equal opportunity killer. To date, 78% of patients with Hantavirus infection have been white; 18%, Native American; 2%, African Americans; 1%, Asian; and 20%, Hispanic (ethnicity considered separately from race).[8, 28]

Sex

Males account for 63% of the total number of HCPS diagnoses. This may reflect a higher environmental exposure to deer mice.[8]

Age

HCPS has a remarkable predilection for affecting relatively young, healthy adults. The mean age of patients with HCPS is 37 years, with a range of 6-83 years. Less than 7% of cases occur in persons younger than 17 years, and disease is very rare in those younger than 10 years. Preadolescent children infected with SNV have generally had mild illness; however, between May and November of 2009, a cluster of 5 severe pediatric cases was reported, resulting in 4 intubations and 1 case fatality.[29]

Previous
 
 
Contributor Information and Disclosures
Author

Juliet D Caldwell, MD Assistant Professor, Department of Emergency Medicine, Weill Cornell Medical College; Attending Physician, Department of Emergency Medicine, New York Presbyterian Hospital, Weill-Cornell Medical Center; Attending Physician, Department of Emergency Medicine, Long Island College Hospital

Juliet D Caldwell, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Emergency Physicians, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Barry J Sheridan, DO Chief Warrior in Transition Services, Brooke Army Medical Center

Barry J Sheridan, DO is a member of the following medical societies: American Academy of Emergency Medicine

Disclosure: Nothing to disclose.

Chief Editor

Jeter (Jay) Pritchard Taylor, III, MD Assistant Professor, Department of Surgery, University of South Carolina School of Medicine; Attending Physician, Clinical Instructor, Compliance Officer, Department of Emergency Medicine, Palmetto Richland Hospital

Jeter (Jay) Pritchard Taylor, III, MD is a member of the following medical societies: American Academy of Emergency Medicine, South Carolina Medical Association, Columbia Medical Society, South Carolina College of Emergency Physicians, American College of Emergency Physicians, American Medical Association, Society for Academic Emergency Medicine

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Chief Editor for Medscape.

Acknowledgements

Scott Cameron, MD Consulting Staff, Department of Emergency Medicine, Regions Hospital

Disclosure: Nothing to disclose.

Michelle Ervin, MD Chair, Department of Emergency Medicine, Howard University Hospital

Michelle Ervin, MD is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, American Medical Association, National Medical Association, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Maureen Gang, MD Assistant Professor, Department of Emergency Medicine, New York University Medical Center

Disclosure: Nothing to disclose.

Mana Lumumba Kasongo, MD, MS Consulting Staff, Southwest Emergency Physicians

Disclosure: Nothing to disclose.

References
  1. Sheedy JA, Froeb HF, Batson HA, et al. The clinical course of epidemic hemorrhagic fever. Am J Med. 1954 May. 16(5):619-28. [Medline].

  2. Lee HW, Baek LJ, Johnson KM. Isolation of Hantaan virus, the etiologic agent of Korean hemorrhagic fever, from wild urban rats. J Infect Dis. 1982 Nov. 146(5):638-44. [Medline].

  3. Brummer-Korvenkontio M, Vaheri A, Hovi T, et al. Nephropathia epidemica: detection of antigen in bank voles and serologic diagnosis of human infection. J Infect Dis. 1980 Feb. 141(2):131-4. [Medline].

  4. Avsic-Zupanc T, Xiao SY, Stojanovic R, Gligic A, van der Groen G, LeDuc JW. Characterization of Dobrava virus: a Hantavirus from Slovenia, Yugoslavia. J Med Virol. 1992 Oct. 38(2):132-7. [Medline].

  5. Tsai TF, Bauer SP, Sasso DR, et al. Serological and virological evidence of a Hantaan virus-related enzootic in the United States. J Infect Dis. 1985 Jul. 152(1):126-36. [Medline].

  6. Glass GE, Watson AJ, LeDuc JW, Childs JE. Domestic cases of hemorrhagic fever with renal syndrome in the United States. Nephron. 1994. 68(1):48-51. [Medline].

  7. Centers for Disease Control and Prevention. From the Centers for Disease Control and Prevention. Infectious diseases update: outbreak, hantavirus infection--southwestern United States, 1993. JAMA. 1993 Jul 7. 270(1):25. [Medline].

  8. Centers for Disease Control and Prevention. All About Hantavirus Web site. Available at http://www.cdc.gov/ncidod/diseases/hanta/hps.

  9. Klein SL, Calisher CH. Emergence and persistence of hantaviruses. Curr Top Microbiol Immunol. 2007. 315:217-52. [Medline].

  10. Hjelle B, Glass GE. Outbreak of hantavirus infection in the Four Corners region of the United States in the wake of the 1997-1998 El Nino-southern oscillation. J Infect Dis. 2000 May. 181(5):1569-73. [Medline].

  11. Trencseni T, Keleti B. Clinical aspects and epidemiology of haemorrhagic fever with renal syndrome. Budapest. Akademai Kiado. 1971.

  12. Lazaro ME, Cantoni GE, Calanni LM, et al. Clusters of hantavirus infection, southern Argentina. Emerg Infect Dis. 2007 Jan. 13(1):104-10. [Medline]. [Full Text].

  13. Ferres M, Vial P, Marco C, Yanez L, Godoy P, Castillo C. Prospective evaluation of household contacts of persons with hantavirus cardiopulmonary syndrome in chile. J Infect Dis. 2007 Jun 1. 195(11):1563-71. [Medline].

  14. Terajima M, Hendershot JD 3rd, Kariwa H, et al. High levels of viremia in patients with the Hantavirus pulmonary syndrome. J Infect Dis. 1999 Dec. 180(6):2030-4. [Medline].

  15. Xiao R, Yang S, Koster F, Ye C, Stidley C, Hjelle B. Sin Nombre viral RNA load in patients with hantavirus cardiopulmonary syndrome. J Infect Dis. 2006 Nov 15. 194(10):1403-9. [Medline].

  16. Mertz GJ, Hjelle BL, Bryan RT. Hantavirus infection. Adv Intern Med. 1997. 42:369-421. [Medline].

  17. Maes P, Clement J, Gavrilovskaya I, Van Ranst M. Hantaviruses: immunology, treatment, and prevention. Viral Immunol. 2004. 17(4):481-97. [Medline].

  18. Peters CJ, Simpson GL, Levy H. Spectrum of hantavirus infection: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Annu Rev Med. 1999. 50:531-45. [Medline].

  19. Li Y, Wang W, Wang JP, Pan L, Zhang Y, Yu HT. Elevated vascular endothelial growth factor levels induce hyperpermeability of endothelial cells in hantavirus infection. J Int Med Res. 2012. 40(5):1812-21. [Medline].

  20. Nolte KB, Feddersen RM, Foucar K, et al. Hantavirus pulmonary syndrome in the United States: a pathological description of a disease caused by a new agent. Hum Pathol. 1995 Jan. 26(1):110-20. [Medline].

  21. Hallin GW, Simpson SQ, Crowell RE, et al. Cardiopulmonary manifestations of hantavirus pulmonary syndrome. Crit Care Med. 1996 Feb. 24(2):252-8. [Medline].

  22. Entwisle G, Hale E. Hemodynamic alterations in hemorrhagic fever. Circulation. 1957 Mar. 15(3):414-25. [Medline].

  23. Centers for Disease Control and Prevention. Outbreak of Hantavirus Infection in Yosemite National Park. Available at http://www.cdc.gov/hantavirus/outbreaks/yosemite-national-park-2012.html. Accessed: April 17, 2013.

  24. Padula PJ, Edelstein A, Miguel SD, Lopez NM, Rossi CM, Rabinovich RD. [Epidemic outbreak of Hantavirus pulmonary syndrome in Argentina. Molecular evidence of person to person transmission of Andes virus]. Medicina (B Aires). 1998. 58 Suppl 1:27-36. [Medline].

  25. Young JC, Hansen GR, Graves TK, et al. The incubation period of hantavirus pulmonary syndrome. Am J Trop Med Hyg. 2000 Jun. 62(6):714-7. [Medline].

  26. Johnson AM, Bowen MD, Ksiazek TG, et al. Laguna Negra virus associated with HPS in western Paraguay and Bolivia. Virology. 1997 Nov 10. 238(1):115-27. [Medline].

  27. Chang B, Crowley M, Campen M, Koster F. Hantavirus cardiopulmonary syndrome. Semin Respir Crit Care Med. 2007 Apr. 28(2):193-200. [Medline].

  28. Centers for Disease Control and Prevention. Reported Cases of HPS. Available at http://www.cdc.gov/hantavirus/surveillance/index.html. Accessed: April 17, 2013.

  29. MMWR Hantavirus Pulmonary Syndrome in Five Pediatric Patients --- Four States, 2009. December 25th 2009. 58 (50):1409-1412.

  30. Castillo C, Naranjo J, Sepulveda A, Ossa G, Levy H. Hantavirus pulmonary syndrome due to Andes virus in Temuco, Chile: clinical experience with 16 adults. Chest. 2001 Aug. 120(2):548-54. [Medline].

  31. Fulhorst CF, Milazzo ML, Armstrong LR, et al. Hantavirus and arenavirus antibodies in persons with occupational rodent exposure. Emerg Infect Dis. 2007 Apr. 13(4):532-8. [Medline]. [Full Text].

  32. Koster F, Foucar K, Hjelle B, Scott A, Chong YY, Larson R. Rapid presumptive diagnosis of hantavirus cardiopulmonary syndrome by peripheral blood smear review. Am J Clin Pathol. 2001 Nov. 116(5):665-72. [Medline].

  33. Jenison S, Hjelle B, Simpson S, Hallin G, Feddersen R, Koster F. Hantavirus pulmonary syndrome: clinical, diagnostic, and virologic aspects. Semin Respir Infect. 1995 Dec. 10(4):259-269. [Medline].

  34. Hjelle B. Hantavirus Cardiopulmonary Syndrome. UpToDate. 2008.

  35. Duchin JS, Koster FT, Peters CJ, et al. Hantavirus pulmonary syndrome: a clinical description of 17 patients with a newly recognized disease. The Hantavirus Study Group. N Engl J Med. 1994 Apr 7. 330(14):949-55. [Medline].

  36. Ketai LH, Williamson MR, Telepak RJ, et al. Hantavirus pulmonary syndrome: radiographic findings in 16 patients. Radiology. 1994 Jun. 191(3):665-8. [Medline].

  37. Dietl CA, Wernly JA, Pett SB, et al. Extracorporeal membrane oxygenation support improves survival of patients with severe Hantavirus cardiopulmonary syndrome. J Thorac Cardiovasc Surg. 2008 Mar. 135(3):579-84. [Medline].

  38. Dull SM, Brillman JC, Simpson SQ, Sklar DP. Hantavirus pulmonary syndrome: recognition and emergency department management. Ann Emerg Med. 1994 Sep. 24(3):530-6. [Medline].

  39. Levy H, Simpson SQ. Hantavirus pulmonary syndrome. Am J Respir Crit Care Med. 1994 Jun. 149(6):1710-3. [Medline].

  40. Crowley MR, Katz RW, Kessler R, et al. Successful treatment of adults with severe Hantavirus pulmonary syndrome with extracorporeal membrane oxygenation. Crit Care Med. 1998 Feb. 26(2):409-14. [Medline].

  41. Hjelle B, Jenison S, Mertz G, et al. Emergency of hantaviral disease in southwestern United States. West J Med. 1994. 161:467.

  42. Huggins JW, Hsiang CM, Cosgriff TM, et al. Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J Infect Dis. 1991 Dec. 164(6):1119-27. [Medline].

  43. Chapman LE, Mertz GJ, Peters CJ, et al. Intravenous ribavirin for hantavirus pulmonary syndrome: safety and tolerance during 1 year of open-label experience. Ribavirin Study Group. Antivir Ther. 1999. 4(4):211-9. [Medline].

  44. Mertz GJ, Miedzinski L, Goade D, et al. Placebo-controlled, double-blind trial of intravenous ribavirin for the treatment of hantavirus cardiopulmonary syndrome in North America. Clin Infect Dis. 2004 Nov 1. 39(9):1307-13. [Medline].

  45. Vial PA, Valdivieso F, Ferres M, Riquelme R, Rioseco ML, Calvo M, et al. High-dose intravenous methylprednisolone for hantavirus cardiopulmonary syndrome in Chile: a double-blind, randomized controlled clinical trial. Clin Infect Dis. 2013 Oct. 57(7):943-51. [Medline]. [Full Text].

  46. Bharadwaj M, Nofchissey R, Goade D, Koster F, Hjelle B. Humoral immune responses in the hantavirus cardiopulmonary syndrome. J Infect Dis. 2000 Jul. 182(1):43-8. [Medline].

  47. Jonsson CB, Hooper J, Mertz G. Treatment of hantavirus pulmonary syndrome. Antiviral Res. 2008 Apr. 78(1):162-9. [Medline].

  48. Custer DM, Thompson E, Schmaljohn CS, Ksiazek TG, Hooper JW. Active and passive vaccination against hantavirus pulmonary syndrome with Andes virus M genome segment-based DNA vaccine. J Virol. 2003 Sep. 77(18):9894-905. [Medline].

  49. Hooper JW, Custer DM, Smith J, Wahl-Jensen V. Hantaan/Andes virus DNA vaccine elicits a broadly cross-reactive neutralizing antibody response in nonhuman primates. Virology. 2006 Mar 30. 347(1):208-16. [Medline].

  50. Schmaljohn CS, Chu YK, Schmaljohn AL, Dalrymple JM. Antigenic subunits of Hantaan virus expressed by baculovirus and vaccinia virus recombinants. J Virol. 1990 Jul. 64(7):3162-70. [Medline].

  51. Xu X, Ruo SL, McCormick JB, Fisher-Hoch SP. Immunity to Hantavirus challenge in Meriones unguiculatus induced by vaccinia-vectored viral proteins. Am J Trop Med Hyg. 1992 Oct. 47(4):397-404. [Medline].

  52. Vial PA, Valdivieso F, Calvo M, Rioseco ML, Riquelme R, Araneda A, et al. A non-randomized multicentre trial of human immune plasma for treatment of hantavirus cardiopulmonary syndrome by ANDV. Antivir Ther. 2014 Oct 15. [Medline].

  53. Howard MJ, Doyle TJ, Koster FT, et al. Hantavirus pulmonary syndrome in pregnancy. Clin Infect Dis. 1999 Dec. 29(6):1538-44. [Medline].

  54. CDC. Hantavirus pulmonary syndrome in five pediatric patients - four states, 2009. MMWR Morb Mortal Wkly Rep. 2009 Dec 25. 58(50):1409-12. [Medline].

  55. Pergam SA, Schmidt DW, Nofchissey RA, et al. Potential renal sequelae in survivors of hantavirus cardiopulmonary syndrome. Am J Trop Med Hyg. 2009 Feb. 80(2):279-85. [Medline].

 
Previous
Next
 
Hantavirus cardiopulmonary syndrome (HCPS) precautions during the 1993 outbreak.
Peromyscus maniculatus - The deer mouse.
Geographic distribution and viral cause of Hantavirus cardiopulmonary syndrome (HCPS).
Hantavirus pulmonary syndrome cases by state of exposure.
Geographic distribution of Hantavirus cardiopulmonary syndrome (HCPS) and Peromyscus maniculatus.
Hantavirus pulmonary syndrome cases by outcome.
Hantavirus cardiopulmonary syndrome (HCPS) immunoblast.
Chest radiographic progression of Hantavirus cardiopulmonary syndrome (HCPS).
Clinical progression of hantavirus cardiopulmonary syndrome.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.