Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Dehydration Workup

  • Author: Alex Koyfman, MD; Chief Editor: Timothy E Corden, MD  more...
 
Updated: Oct 04, 2015
 

Approach Considerations

Laboratory studies are of limited use in cases of mild dehydration. However, they should be considered under certain conditions, such as the following:

  • Consider a fingerstick to check serum glucose level in all patients, especially if mental status is not at baseline or hyperglycemia or hypoglycemia are suspected
  • Consider checking serum electrolytes in the moderately dehydrated child if the history or physical examination findings are inconsistent with straightforward gastroenteritis [6]
  • Check serum electrolyte levels in all children with severe dehydration and in those receiving intravenous fluids
  • Pursue appropriate testing when a diagnosis other than gastroenteritis is suspected

For children who are in hypovolemic shock, the following studies are recommended:

  • Basic metabolic panel
  • Venous blood gases
  • Serum lactic acid
  • Complete blood cell count (CBC)
  • Urinalysis

Serum electrolyte levels are important to determine sodium concentration, which can guide resuscitation. Bicarbonate and potassium levels also are important to assess the degree of metabolic acidosis from volume depletion and tissue hypoperfusion as well a screen for coexisting hypokalemia. Blood urea nitrogen and creatinine levels measure renal function and intravascular volume. The glucose measurement may reveal hyperglycemia or hypoglycemia.

Venous blood gas measurements are indicated in patients with severe volume depletion. Serum pH provides a more direct measure of acidosis than the calculated bicarbonate level and may help guide decisions regarding disposition level of care.

Serum lactate elevation is indicative of tissue perfusion and oxygenation resulting in anaerobic metabolism. It may be helpful in cases of severe dehydration or sepsis. The CBC may be helpful in cases in which volume depletion is due to sepsis or hemorrhage. On urinalysis, the urine specific gravity indicates the degree of volume depletion. Urinalysis may also reveal an underlying infectious etiology.

Bedside ultrasound has also been used to measure the inferior vena cava and the aorta diameter ratio and has been found to be a marginally accurate measurement of acute weight loss in children with dehydration due to gastroenteritis.[7, 8] A study also reported that ultrasound measured inspiratory inferior vena cava collapse and physician gestalt were poor predictors of the actual level of dehydration.[8]

Jauregui et al designed a study to validate if the ratio of the ultrasound-measured diameter of the inferior vena cava (IVC) to the aorta (Ao) correlates with the level of dehydration in children as previous studies have reported. The study also tested the accuracy of the ultrasound measured inspiratory IVC collapse and physician gestalt to predict significant dehydration in children in the emergency department. The authors concluded that the ultrasound-measured IVC/Ao ratio is a modest predictor of significant dehydration in children. The inspiratory IVC collapse and physician gestalt were poor predictors of the actual level of dehydration in this study.[9]

Next

Obtaining Vascular Access

Prior to vascular access attempts, consider oral rehydration in mild and moderate dehydration. A significant body of evidence indicates that an initial trial of oral rehydration with small, frequent volumes of electrolyte-containing solution (5-10 mL every 5-10 min) for pediatric patients with mild to moderate volume depletion is simple and effective, avoiding the more resource-intensive methods that are noxious to infants and children.[10]

Typical sites for intravenous access include superficial veins in the dorsum of the hand, the antecubital fossa (median cephalic or basilic veins), dorsum of the foot, and scalp veins.

Use intraosseous access if attempts to start percutaneous intravenous lines are unsuccessful. Typical sites are the proximal anterior tibia and the distal femur.[11]

For central venous access, typical sites are as follows:

  • Femoral vein
  • Internal jugular vein
  • Subclavian vein

Bedside ultrasound guidance should be used whenever possible to facilitate direct visualization when placing these lines. In infants and young children, access to the internal jugular vein may be difficult because of the short necks. Umbilical vein catheterization may be difficult and usually is not recommended for neonates who have been discharged from the hospital and are returning to the ED.

Use venous cutdown for emergent access and resuscitation only when intraosseous access is not available or fails. Safe performance depends on the skill of the provider. The typical site is the distal saphenous vein, which is anterior and superior to the medial malleolus.

Previous
 
 
Contributor Information and Disclosures
Author

Alex Koyfman, MD Assistant Professor, Department of Emergency Medicine, University of Texas Southwestern Medical Center, Parkland Memorial Hospital

Alex Koyfman, MD is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Coauthor(s)

Carrie Ng, MD Resident Physician, Department of Pediatrics, Bellevue Hospital Center, New York University School of Medicine

Carrie Ng, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Emergency Physicians, American Institute of Ultrasound in Medicine

Disclosure: Nothing to disclose.

Mark P Foran, MD, MPH Assistant Professor of Emergency Medicine, New York University School of Medicine; Attending Emergency Physician, Bellevue Hospital Center and NYU Langone Medical Center

Mark P Foran, MD, MPH is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, American Public Health Association, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Chief Editor

Timothy E Corden, MD Associate Professor of Pediatrics, Co-Director, Policy Core, Injury Research Center, Medical College of Wisconsin; Associate Director, PICU, Children's Hospital of Wisconsin

Timothy E Corden, MD is a member of the following medical societies: American Academy of Pediatrics, Phi Beta Kappa, Society of Critical Care Medicine, Wisconsin Medical Society

Disclosure: Nothing to disclose.

Acknowledgements

Richard G Bachur, MD Associate Professor of Pediatrics, Harvard Medical School; Associate Chief and Fellowship Director, Attending Physician, Division of Emergency Medicine, Children's Hospital of Boston

Richard G Bachur, MD is a member of the following medical societies: American Academy of Pediatrics, Society for Academic Emergency Medicine, and Society for Pediatric Research

Disclosure: Nothing to disclose.

Ann G Egland, MD Consulting Staff, Department of Operational and Emergency Medicine, Walter Reed Army Medical Center

Ann G Egland, MD is a member of the following medical societies: American College of Emergency Physicians, American Medical Association, Association of Military Surgeons of the US, Medical Society of Virginia, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Terrance K Egland, MD Director, Business Planning and Development, Bureau of Medicine and Surgery

Terrance K Egland, MD is a member of the following medical societies: American Academy of Pediatrics

Disclosure: Nothing to disclose.

James Li, MD Former Assistant Professor, Division of Emergency Medicine, Harvard Medical School; Board of Directors, Remote Medicine

Disclosure: Nothing to disclose.

Alison Wiley Lozner, MD Resident Physician, Harvard Affiliated Emergency Medicine Residency, Brigham and Women's Hospital; Clinical Fellow in Emergency Medicine, Harvard Medical School

Alison Wiley Lozner, MD is a member of the following medical societies: American Academy of Emergency Medicine and American College of Emergency Physicians

Disclosure: Nothing to disclose.

James Kimo Takayesu, MD, MSc Assistant Professor in Surgery, Director of Undergraduate Medical Education, Consulting Staff, Massachusetts General Hospital; Associate Residency Director, Harvard Affiliated Emergency Medicine Residency Partners

James Kimo Takayesu, MD, MSc is a member of the following medical societies: Alpha Omega Alpha, American College of Emergency Physicians, Sigma Xi, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Wayne Wolfram, MD, MPH Associate Professor, Department of Emergency Medicine, Mercy St Vincent Medical Center

Wayne Wolfram, MD, MPH is a member of the following medical societies: American Academy of Emergency Medicine, American Academy of Pediatrics, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

References
  1. Mange K, Matsuura D, Cizman B, et al. Language guiding therapy: the case of dehydration versus volume depletion. Ann Intern Med. 1997 Nov 1. 127(9):848-53. [Medline].

  2. Singhi SC, Shah R, Bansal A, Jayashree M. Management of a child with vomiting. Indian J Pediatr. 2013 Apr. 80(4):318-25. [Medline].

  3. Glaser NS, Ghetti S, Casper TC, Dean JM, Kuppermann N. Pediatric diabetic ketoacidosis, fluid therapy, and cerebral injury: the design of a factorial randomized controlled trial. Pediatr Diabetes. 2013 Mar 13. [Medline]. [Full Text].

  4. King CK, Glass R, Bresee JS, Duggan C. Managing acute gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. MMWR Recomm Rep. 2003 Nov 21. 52:1-16. [Medline].

  5. Steiner MJ, DeWalt DA, Byerley JS. Is this child dehydrated?. JAMA. 2004 Jun 9. 291(22):2746-54. [Medline].

  6. Wathen JE, MacKenzie T, Bothner JP. Usefulness of the serum electrolyte panel in the management of pediatric dehydration treated with intravenously administered fluids. Pediatrics. 2004 Nov. 114(5):1227-34. [Medline].

  7. Lozon MM. Pediatric vascular access and blood sampling techniques. Roberts JR, Hedges JR. Clinical Procedures in Emergency Medicine. 4th ed. Philadelphia: WB Saunders; 2004. 357-8.

  8. Jauregui J, Nelson D, Choo E, Stearns B, Levine AC, Liebmann O, et al. The BUDDY (Bedside Ultrasound to Detect Dehydration in Youth) study. Crit Ultrasound J. 2014. 6 (1):15. [Medline].

  9. Jauregui J, Nelson D, Choo E, Stearns B, Levine AC, Liebmann O, et al. The BUDDY (Bedside Ultrasound to Detect Dehydration in Youth) study. Crit Ultrasound J. 2014. 6(1):15. [Medline]. [Full Text].

  10. Spandorfer PR, Alessandrini EA, Joffe MD, Localio R, Shaw KN. Oral versus intravenous rehydration of moderately dehydrated children: a randomized, controlled trial. Pediatrics. 2005 Feb. 115(2):295-301. [Medline].

  11. Freedman SB, Adler M, Seshadri R, Powell EC. Oral ondansetron for gastroenteritis in a pediatric emergency department. N Engl J Med. 2006 Apr 20. 354(16):1698-705. [Medline].

  12. Kersten H. Oral ondansetron decreases the need for intravenous fluids in children with gastroenteritis. J Pediatr. 2006 Nov. 149(5):726. [Medline].

  13. Alhashimi D, Alhashimi H, Fedorowicz Z. Antiemetics for reducing vomiting related to acute gastroenteritis in children and adolescents. Cochrane Database Syst Rev. 2006 Oct 18. CD005506. [Medline].

  14. American Academy of Pediatrics. Practice parameter: the management of acute gastroenteritis in young children. American Academy of Pediatrics, Provisional Committee on Quality Improvement, Subcommittee on Acute Gastroenteritis. Pediatrics. 1996 Mar. 97(3):424-35. [Medline].

  15. Barkin RM, Ward DG. Infectious diarrheal disease and dehydration. Marx JA. Rosen's Emergency Medicine: Concepts and Clinical Practice. 6th ed. Philadelphia, Pa: Mosby/Elsevier; 2006. Vol 3: 2623-34.

  16. Hom J, Sinert R. Evidence-based emergency medicine/systematic review abstract. Comparison between oral versus intravenous rehydration to treat dehydration in pediatric gastroenteritis. Ann Emerg Med. 2009 Jul. 54(1):117-9. [Medline].

 
Previous
Next
 
Table. Physical Examination Findings in Pediatric Dehydration
Symptom Degree of Dehydration
Mild (< 3% body weight lost) Moderate (3-9% body weight lost) Severe (>9% body weight lost)
Mental status Normal, alert Restless or fatigued, irritable Apathetic, lethargic, unconscious
Heart rate Normal Normal to increased Tachycardia or bradycardia
Quality of pulse Normal Normal to decreased Weak, thready, impalpable
Breathing Normal Normal to increased Tachypnea and hyperpnea
Eyes Normal Slightly sunken Deeply sunken
Fontanelles Normal Slightly sunken Deeply sunken
Tears Normal Normal to decreased Absent
Mucous membranes Moist Dry Parched
Skin turgor Instant recoil Recoil < 2 seconds Recoil >2 seconds
Capillary refill < 2 seconds Prolonged Minimal
Extremities Warm Cool Mottled, cyanotic
Adapted from King CK, Glass R, Bresee JS, et al. Managing acute gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. MMWR Recomm Rep. Nov 21 2003;52(RR-16):1-16.[4]
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.