Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Alcohol Toxicity Treatment & Management

  • Author: Michael D Levine, MD; Chief Editor: Asim Tarabar, MD  more...
 
Updated: Jul 06, 2016
 

Prehospital Care

The prehospital care provider has several important tasks. First, the prehospital provider should search for any empty containers near the patient. In addition, a blood sugar level should be obtained on anyone who appears intoxicated. Local protocols and the skill level of the provider dictate additional prehospital care for patients with altered mental status.

Next

Emergency Department Care

As with all emergency patients, initial treatment should focus on the airway, breathing, and circulation. Gastric decontamination is rarely necessary for any of the alcohols. An exception to this may be a patient who presents immediately after ingestion of a toxic alcohol in whom one might reasonably expect to be able to recover a significant amount of the toxin via aspiration through a nasogastric tube.

Treatment of ethanol and isopropanol intoxication is largely supportive.[14] Because of the hemorrhagic gastritis that can follow isopropanol ingestion, H2 blockade or proton-pump inhibitors may be helpful. Hemodialysis, while effective, is rarely indicated, and should only be used in the setting of profound hemodynamic compromise.[4]

Once either methanol or ethylene glycol intoxication are suspected, treatment should be initiated without delay. Fortunately, since both alcohols are metabolized by alcohol dehydrogenase, the treatment is the same, and differentiating which of the two toxic alcohols is responsible is not necessary before implementing treatment.[14]

The primary antidotal treatment of methanol or ethylene glycol involves blocking alcohol dehydrogenase. This enzyme can be inhibited by either ethanol or fomepizole.[15, 16, 17] Toxic alcohol levels are frequently not immediately available. Thus, ideally, if methanol or ethylene glycol poisoning is suspected, the patient should receive a loading dose of fomepizole while the levels are being obtained. Because the next dose of fomepizole is not due for an additional 12 hours, this strategy allows 12 hours for the blood to be processed at a reference laboratory before additional treatment is needed.

Inhibition of alcohol dehydrogenase with ethanol may be substituted for treatment with fomepizole (see below), though studies have highlighted the greater safety of fomepizole as a treatment, when available.[9] In some patients, treatment with fomepizole alone may represent definitive treatment and can prevent the need for hemodialysis.[18]

In addition to blocking alcohol dehydrogenase, significant metabolic acidosis should be treated with sodium bicarbonate infusions. If methanol is suspected, folinic acid should be administered at a dose of 1 mg/kg, with a maximal dose of 50 mg. It should be repeated every 4 hours. If folinic acid is not immediately available, folic acid can be substituted at the same dose. If ethylene glycol overdose is suspected, the patient should also receive 100 mg of intravenous thiamine every 6 hours and 50 mg of pyridoxine every 6 hours. The purpose of the thiamine and pyridoxine is to shunt metabolism of glyoxylic acid away from oxalate and favor the formation of less toxic metabolites.

In methanol overdose, sodium bicarbonate should be administered liberally, with the goal being to completely reverse the acidosis. Experimental studies suggest that formate is excreted in the kidneys at a much higher rate when the patient is not acidotic. In addition, when the patient is not acidotic, formic acid dissociates to formate at lower rates so that less formate crosses the blood-brain barrier. Thus, in methanol intoxication, correcting the acidosis actually speeds up elimination of the toxic compound and decreases toxicity.

If ethanol is used as an antidote, the recommended target serum concentration is 100-150 mg/dL. Because ethanol inhibits gluconeogenesis, hypoglycemia is common in patients on an ethanol infusion.[19] Hypoglycemia is particularly prevalent in pediatric patients on such drips. Thus, serum glucose levels must be checked frequently, at least every 2 hours. In addition, because it is difficult to attain a steady serum concentration of ethanol, the ethanol level also must be checked frequently, and titrations made.

A 5% or 10% ethanol solution can be made in the pharmacy. If giving ethanol, a loading dose of 600 mg/kg should be given, followed by a drip of 66-154 mg/kg/h with chronic alcoholics requiring doses at the higher end of the scale. Ethanol can be given either intravenously or orally.

In addition to hypoglycemia, additional adverse effects from ethanol infusion include inebriation, CNS depression, pancreatitis, and local phlebitis. Because of the phlebitis that occurs with ethanol infusions, some advocate that ethanol should only be administered via a central venous line.

Ethanol infusions are not only labor intensive, but once the costs of the frequent blood glucose and serum ethanol levels are accounted for, ethanol antidotal therapy is frequently more expensive than fomepizole. Ethanol has also been associated with more frequent adverse reactions than fomepizole.[20] Thus, because of the lower overall cost and the ease of administration and safety considerations, fomepizole has become the preferred antidote for methanol or ethylene glycol poisoning.[21]

Fomepizole should be administered as a loading dose of 15 mg/kg. Subsequent doses should be at 10 mg/kg every 12 hours for 4 doses. Because fomepizole actually induces its own metabolism after 48 hours of treatment, if additional doses are needed, the dose should be increased to 15 mg/kg. Fomepizole needs to be re-dosed during hemodialysis. The package insert or local poison center can help with the re-dosing strategy. Fomepizole should be continued until the serum ethylene glycol or methanol concentrations are less than 20 mg/dL.

Hemodialysis is frequently required in patients with significant methanol or ethylene glycol ingestions.[14, 18] Indications for hemodialysis include the following:

  • Arterial pH <7.10
  • A decline of >0.05 in the arterial pH despite bicarbonate infusion
  • pH <7.3 despite bicarbonate therapy
  • Rise in serum creatinine level by 90 mmol/L
  • Initial plasma methanol or ethylene glycol concentration ≥50 mg/dL
Previous
Next

Consultations

For patients with ethanol intoxication who appear to have issues with dependence or abuse, consider referral to an alcohol detoxification facility. Consult a toxicologist for all known or suspected cases of isopropanol, methanol, or ethylene glycol ingestion. If a toxicologist is not immediately available at the medical center where the patient is located, the regional poison control center can be contacted at (800) 222-1222.

Consult a nephrologist for any known or suspected cases of methanol or ethylene glycol intoxication to assist in the decision making for hemodialysis.

Previous
 
 
Contributor Information and Disclosures
Author

Michael D Levine, MD Assistant Professor, Department of Emergency Medicine, Section of Medical Toxicology, Keck School of Medicine of the University of Southern California

Michael D Levine, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Emergency Physicians, American College of Medical Toxicology, American Medical Association, Phi Beta Kappa, Society for Academic Emergency Medicine, Emergency Medicine Residents' Association

Disclosure: Nothing to disclose.

Coauthor(s)

Tobias D Barker, MD Attending Physician, Department of Emergency Medicine; Director, Harvard Medical School Dubai Center Simulation Center

Tobias D Barker, MD is a member of the following medical societies: American College of Emergency Physicians, Phi Beta Kappa, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Specialty Editor Board

John T VanDeVoort, PharmD Regional Director of Pharmacy, Sacred Heart and St Joseph's Hospitals

John T VanDeVoort, PharmD is a member of the following medical societies: American Society of Health-System Pharmacists

Disclosure: Nothing to disclose.

Michael J Burns, MD Instructor, Department of Emergency Medicine, Harvard University Medical School, Beth Israel Deaconess Medical Center

Michael J Burns, MD is a member of the following medical societies: American Academy of Clinical Toxicology, American College of Emergency Physicians, American College of Medical Toxicology, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Chief Editor

Asim Tarabar, MD Assistant Professor, Director, Medical Toxicology, Department of Emergency Medicine, Yale University School of Medicine; Consulting Staff, Department of Emergency Medicine, Yale-New Haven Hospital

Disclosure: Nothing to disclose.

Additional Contributors

Jeffrey Glenn Bowman, MD, MS Consulting Staff, Highfield MRI

Disclosure: Nothing to disclose.

References
  1. Jammalamadaka D, Raissi S. Ethylene glycol, methanol and isopropyl alcohol intoxication. Am J Med Sci. 2010 Mar. 339(3):276-81. [Medline].

  2. Hornfeldt CS. A report of acute ethanol poisoning in a child: mouthwash versus cologne, perfume and after-shave. J Toxicol Clin Toxicol. 1992. 30(1):115-21. [Medline].

  3. Martz W. A lethal ingestion of a household cleaner containing pine oil and isopropanol. J Anal Toxicol. 2010 Jan-Feb. 34(1):49-52. [Medline].

  4. Slaughter RJ, Mason RW, Beasley DM, Vale JA, Schep LJ. Isopropanol poisoning. Clin Toxicol (Phila). 2014 Jun. 52(5):470-8. [Medline].

  5. ATSDR. Methanol toxicity. Agency for Toxic Substances and Disease Registry. Am Fam Physician. 1993 Jan. 47(1):163-71. [Medline].

  6. Aufderheide TP, White SM, Brady WJ, et al. Inhalational and percutaneous methanol toxicity in two firefighters. Ann Emerg Med. 1993 Dec. 22(12):1916-8. [Medline].

  7. Coulter CV, Farquhar SE, McSherry CM, Isbister GK, Duffull SB. Methanol and ethylene glycol acute poisonings - predictors of mortality. Clin Toxicol (Phila). 2011 Dec. 49(10):900-6. [Medline].

  8. Cascallana JL, Gordo V, Montes R. Severe necrosis of oesophageal and gastric mucosa in fatal methanol poisoning. Forensic Sci Int. 2012 Mar 5. [Medline].

  9. [Guideline] Caravati EM, Erdman AR, Christianson G, Manoguerra AS, Booze LL, Woolf AD, et al. Ethylene glycol exposure: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol (Phila). 2005. 43 (5):327-45. [Medline].

  10. Mowry JB, Spyker DA, Brooks DE, McMillan N, Schauben JL. 2014 Annual Report of the American Association of Poison Control Centers' National Poison Data System (NPDS): 32nd Annual Report. Clin Toxicol (Phila). 2015. 53 (10):962-1147. [Medline]. [Full Text].

  11. Barceloux DG, Bond GR, Krenzelok EP, et al. American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. J Toxicol Clin Toxicol. 2002. 40(4):415-46. [Medline].

  12. Krahn J, Khajuria A. Osmolality gaps: diagnostic accuracy and long-term variability. Clin Chem. 2006 Apr. 52(4):737-9. [Medline].

  13. Brent J. Fomepizole for ethylene glycol and methanol poisoning. N Engl J Med. 2009 May 21. 360(21):2216-23. [Medline].

  14. Kraut JA, Kurtz I. Toxic alcohol ingestions: clinical features, diagnosis, and management. Clin J Am Soc Nephrol. 2008 Jan. 3(1):208-25. [Medline].

  15. Brent J, McMartin K, Phillips S, et al. Fomepizole for the treatment of ethylene glycol poisoning. Methylpyrazole for Toxic Alcohols Study Group. N Engl J Med. 1999 Mar 18. 340(11):832-8. [Medline].

  16. Brent J, McMartin K, Phillips S, et al. Fomepizole for the treatment of methanol poisoning. N Engl J Med. 2001 Feb 8. 344(6):424-9. [Medline].

  17. Burns MJ, Graudins A, Aaron CK, et al. Treatment of methanol poisoning with intravenous 4-methylpyrazole. Ann Emerg Med. 1997 Dec. 30(6):829-32. [Medline].

  18. Megarbane B, Borron SW, Baud FJ. Current recommendations for treatment of severe toxic alcohol poisonings. Intensive Care Med. 2005 Feb. 31(2):189-95. [Medline].

  19. Lepik KJ, Levy AR, Sobolev BG, Purssell RA, DeWitt CR, Erhardt GD. Adverse drug events associated with the antidotes for methanol and ethylene glycol poisoning: a comparison of ethanol and fomepizole. Ann Emerg Med. 2009 Apr. 53(4):439-450.e10. [Medline].

  20. Thanacoody RH, Gilfillan C, Bradberry SM, Davies J, Jackson G, Vale AJ, et al. Management of poisoning with ethylene glycol and methanol in the UK: a prospective study conducted by the National Poisons Information Service (NPIS). Clin Toxicol (Phila). 2016. 54 (2):134-40. [Medline].

  21. Ghannoum M, Hoffman RS, Mowry JB, Lavergne V. Trends in toxic alcohol exposures in the United States from 2000 to 2013: a focus on the use of antidotes and extracorporeal treatments. Semin Dial. 2014 Jul. 27(4):395-401. [Medline].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.