Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Thallium Toxicity Workup

  • Author: Chip Gresham, MD, FACEM; Chief Editor: Asim Tarabar, MD  more...
 
Updated: Apr 23, 2014
 

Laboratory Studies

See the list below:

  • Because laboratory studies are generally nonspecific, any unexplained peripheral neuropathy, especially accompanied by alopecia, should raise clinical suspicion for thallium toxicity. In consultation with the medical toxicologist, initiate treatment of patients with high suspicion of thallium toxicity while awaiting laboratory confirmation.
  • The definitive clinical diagnosis of thallium poisoning can only be established by demonstrating elevated thallium levels. Thallium can be recovered in the hair, nails, feces, saliva, blood, and urine.
  • A 24-hour urine thallium concentration is the standard toxicologic method and is assayed by atomic absorption photospectrometry. The normal level is less than 5 mcg/L.
  • A urine spot test can deliver faster results. However, it often gives false-positive results, and it requires the use of 20% nitric acid, which can be dangerous and is usually not readily available.
  • Because it is rapidly eliminated from the body, measurements of blood thallium reflect only recent exposures. Thus, it is not generally considered to be a reliable means of identifying or monitoring exposure to thallium.
  • A CBC with differential can identify anemia, leukocytosis, eosinophilia, and thrombocytopenia, which have all been reported in cases of thallium exposure. Anemia most likely occurs secondary to GI hemorrhage.
  • Electrolytes, calcium, glucose, BUN, creatinine, and liver function tests (LFTs) should be obtained. Thallium exposure can lead to electrolyte and glucose abnormalities, hypocalcemia, and impair renal and hepatic dysfunction.
  • A pregnancy test should be considered for all women of childbearing age.
Next

Imaging Studies

See the list below:

  • Thallium is radiopaque; therefore, an abdominal radiograph should be obtained. This may reveal thallium metal after an acute ingestion. Radiographs of suspected exposure sources may be useful for confirming the presence of a heavy metal.
  • Liu et al investigated the correlation between functional imaging and long-term clinical imaging in cases of thallium toxicity. They concluded that FDG/PET imaging demonstrated the extent of brain involvement and correlated with cognitive impairment.[22]
Previous
Next

Other Tests

See the list below:

  • Nerve conduction studies (NCS) may reveal findings consistent with an axonal sensorimotor peripheral neuropathy, with nerves innervating the feet most significantly involved. NCS may be useful in both diagnosing and monitoring patients with thallium exposure. The severity of abnormalities on NCS has been shown to correlate with the severity of other symptoms and findings.
  • An EEG may show nonspecific slow-wave activity in severe cases.
  • Microscopic inspection of scalp hair reveals dark black and brown pigment in the hair roots in approximately 95% of poisoned patients. However, this may be difficult to visualize by the untrained observer. Darkening of the hair root can occur as early as 4 days postexposure. These dark regions are an optical phenomenon caused by the accumulation of gaseous inclusions that diffract the light, resulting in the appearance of a black band.
  • Electroretinographic (ERG) examination reveals a delayed visual evoked response. These ERG changes tend to occur before development of clinical symptoms in thallium intoxication. ERG may be useful when persons with known thallium exposure receive follow-up examinations.[23]
  • An ECG should be obtained to identify tachycardia and cardiac arrhythmias.
Previous
 
 
Contributor Information and Disclosures
Author

Chip Gresham, MD, FACEM Emergency Medicine Physician and Medical Toxicologist, Department of Emergency Medicine, Clinical Director of Medication Safety, Middlemore Hospital; Senior Lecturer, Auckland University Medical School, New Zealand

Chip Gresham, MD, FACEM is a member of the following medical societies: American College of Emergency Physicians, American College of Medical Toxicology, Society for Academic Emergency Medicine, Emergency Medicine Residents' Association

Disclosure: Nothing to disclose.

Coauthor(s)

Emma A Lawrey, MBChB, Dip Paeds, PG Cert ClinEd, FACEM Emergency Medicine Consultant and Clinical Toxicology Fellow, Department of Emergency Medicine, Middlemore Hospital, New Zealand

Emma A Lawrey, MBChB, Dip Paeds, PG Cert ClinEd, FACEM is a member of the following medical societies: Australasian College for Emergency Medicine

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

John G Benitez, MD, MPH Associate Professor, Department of Medicine, Medical Toxicology, Vanderbilt University Medical Center; Managing Director, Tennessee Poison Center

John G Benitez, MD, MPH is a member of the following medical societies: American Academy of Clinical Toxicology, American Academy of Emergency Medicine, American College of Medical Toxicology, American College of Preventive Medicine, Undersea and Hyperbaric Medical Society, Wilderness Medical Society, American College of Occupational and Environmental Medicine

Disclosure: Nothing to disclose.

Chief Editor

Asim Tarabar, MD Assistant Professor, Director, Medical Toxicology, Department of Emergency Medicine, Yale University School of Medicine; Consulting Staff, Department of Emergency Medicine, Yale-New Haven Hospital

Disclosure: Nothing to disclose.

Additional Contributors

William K Chiang, MD Associate Professor, Department of Emergency Medicine, New York University School of Medicine; Chief of Service, Department of Emergency Medicine, Bellevue Hospital Center

William K Chiang, MD is a member of the following medical societies: American Academy of Clinical Toxicology, American College of Medical Toxicology, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Acknowledgements

Mary L Arvanitis, DO, FACOEP Clinical Assistant Professor, Department of Emergency Medicine, Michigan State University, College of Human Medicine; Consulting Staff, Department of Emergency Medicine, Covenant Hospital; Director, Osteopathic Medical Education, Synergy Medical Education Alliance

Disclosure: Nothing to disclose.

Igor Boyarsky, DO Emergency Room Physician, Kaiser Permanente Southern California

Igor Boyarsky, DO is a member of the following medical societies: American Academy of Anti-Aging Medicine, American Academy of Emergency Medicine, American College of Emergency Physicians, and American Osteopathic Assocation

Disclosure: Nothing to disclose.

Adrian D Crisan, MD Staff Physician, Department of Emergency Medicine, Martin Luther King Jr/Drew Medical Center

Disclosure: Nothing to disclose.

G Patrick Daubert, MD Assistant Professor, Assistant Medical Director, Sacramento Division, California Poison Control System; Director of Clinical and Medical Toxicology Education, Department of Emergency Medicine, University of California, Davis Medical Center

G Patrick Daubert, MD is a member of the following medical societies: American College of Emergency Physicians, American College of Medical Toxicology, American Medical Association, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Wendy R Regal, MD Clinical Instructor, Department of Emergency Medicine, Synergy Medical Education Alliance, Michigan State University

Disclosure: Nothing to disclose.

References
  1. Mercurio M, Hoffman RS. Thallium. Goldfrank's Toxicologic Emergencies. 9th ed. 2011. 1326-33.

  2. Mulkey JP, Oehme FW. A review of thallium toxicity. Vet Hum Toxicol. 1993 Oct. 35(5):445-53. [Medline].

  3. Saddique A, Peterson CD. Thallium poisoning: a review. Vet Hum Toxicol. 1983 Feb. 25(1):16-22. [Medline].

  4. Rusyniak DE, Furbee RB, Kirk MA. Thallium and arsenic poisoning in a small midwestern town. Ann Emerg Med. 2002 Mar. 39(3):307-11. [Medline].

  5. LaDou J. Metals. Occupational and Environmental Medicine. 2nd ed. 1997. 429-30.

  6. Wang C, Chen Y, Liu J, Wang J, Li X, Zhang Y, et al. Health risks of thallium in contaminated arable soils and food crops irrigated with wastewater from a sulfuric acid plant in western Guangdong province, China. Ecotoxicol Environ Saf. 2013 Apr. 90:76-81. [Medline].

  7. Turner A, Furniss O. An evaluation of the toxicity and bioaccumulation of thallium in the coastal marine environment using the macroalga, Ulva lactuca. Mar Pollut Bull. 2012 Dec. 64(12):2720-4. [Medline].

  8. Galván-Arzate S, Santamaría A. Thallium toxicity. Toxicol Lett. 1998 Sep 30. 99(1):1-13. [Medline].

  9. Hasan M, Ali SF. Effects of thallium, nickel, and cobalt administration of the lipid peroxidation in different regions of the rat brain. Toxicol Appl Pharmacol. 1981 Jan. 57(1):8-13. [Medline].

  10. Hultin T, Näslund PH. Effects of thallium (I) on the structure and functions of mammalian ribosomes. Chem Biol Interact. 1974 May. 8(5):315-28. [Medline].

  11. Hazardous Substances Data Bank [Internet]. Bethesda (MD): National Library of Medicine (US); [Last Revision Date 2005 Jun 23; cited 2005 Nov 17]. Thallium, Elemental; Hazardous Substances Databank Number: 4496.

  12. Atsmon J, Taliansky E, Landau M, et al. Thallium poisoning in Israel. Am J Med Sci. 2000 Nov. 320(5):327-30. [Medline].

  13. Cvjetko P, Cvjetko I, Pavlica M. Thallium toxicity in humans. Arh Hig Rada Toksikol. 2010 Mar. 61(1):111-9. [Medline].

  14. Al Hammouri F, Darwazeh G, Said A, Ghosh RA. Acute thallium poisoning: series of ten cases. J Med Toxicol. 2011 Dec. 7(4):306-11. [Medline].

  15. Li JM, Wang W, Lei S, Zhao LL, Zhou D, Xiong H. Misdiagnosis and long-term outcome of 13 patients with acute thallium poisoning in China. Clin Toxicol (Phila). 2014 Mar. 52(3):181-6. [Medline].

  16. McMillan TM, Jacobson RR, Gross M. Neuropsychology of thallium poisoning. J Neurol Neurosurg Psychiatry. 1997 Aug. 63(2):247-50. [Medline].

  17. Tabandeh H, Thompson GM. Visual function in thallium toxicity. BMJ. 1993 Jul 31. 307(6899):324. [Medline].

  18. Tromme I, Van Neste D, Dobbelaere F, et al. Skin signs in the diagnosis of thallium poisoning. Br J Dermatol. 1998 Feb. 138(2):321-5. [Medline].

  19. Saha A, Sadhu HG, Karnik AB. Erosion of nails following thallium poisoning: a case report. Occup Environ Med. 2004 Jul. 61(7):640-2. [Medline].

  20. Lu CI, Huang CC, Chang YC, Tsai YT, Kuo HC, Chuang YH, et al. Short-term thallium intoxication: dermatological findings correlated with thallium concentration. Arch Dermatol. 2007 Jan. 143(1):93-8. [Medline].

  21. Moore D, House I, Dixon A. Thallium poisoning. Diagnosis may be elusive but alopecia is the clue. BMJ. 1993 Jun 5. 306(6891):1527-9. [Medline].

  22. Liu CH, Lin KJ, Wang HM, Kuo HC, Chuang WL, Weng YH, et al. Brain fluorodeoxyglucose positron emission tomography (¹8FDG PET) in patients with acute thallium intoxication. Clin Toxicol (Phila). 2013 Mar. 51(3):167-73. [Medline].

  23. Shamshinova AM, Ivanina TA, Yakovlev AA, et al. Electroretinography in the diagnosis of thallium intoxication. J Hyg Epidemiol Microbiol Immunol. 1990. 34(2):113-21. [Medline].

  24. Hoffman RS. Thallium toxicity and the role of Prussian blue in therapy. Toxicol Rev. 2003. 22(1):29-40. [Medline].

  25. Yang Y, Brownell C, Sadrieh N, et al. Quantitative measurement of cyanide released from Prussian Blue. Clin Toxicol (Phila). 2007 Oct-Nov. 45(7):776-81. [Medline].

  26. Miller MA, Patel MM, Coon T. Prussian blue for treatment of thallium overdose in the US. Hosp Pharm. 2005. 40:796-7.

  27. Misra UK, Kalita J, Yadav RK, et al. Thallium poisoning: emphasis on early diagnosis and response to haemodialysis. Postgrad Med J. 2003 Feb. 79(928):103-5. [Medline].

  28. Huang C, Zhang X, Li G, Jiang Y, Wang Q, Tian R. A case of severe thallium poisoning successfully treated with hemoperfusion and continuous veno-venous hemofiltration. Hum Exp Toxicol. 2013 Jul 30. [Medline].

  29. Riyaz R, Pandalai SL, Schwartz M, Kazzi ZN. A fatal case of thallium toxicity: challenges in management. J Med Toxicol. 2013 Mar. 9(1):75-8. [Medline]. [Full Text].

  30. Ammendola A, Ammendola E, Argenzio F, et al. Clinical and electrodiagnostic follow-up of an adolescent poisoned with thallium. Neurol Sci. 2007 Aug. 28(4):205-8. [Medline].

  31. Montes S, Soriano L, Ríos C, et al. Endogenous thiols enhance thallium toxicity. Arch Toxicol. 2007 Oct. 81(10):683-7. [Medline].

  32. Sharma AN, Nelson LS, Hoffman RS. Cerebrospinal fluid analysis in fatal thallium poisoning: evidence for delayed distribution into the central nervous system. Am J Forensic Med Pathol. 2004 Jun. 25(2):156-8. [Medline].

  33. Talas A, Wellhöner HH. Dose-dependency of Tl+ kinetics as studied in rabbits. Arch Toxicol. 1983 May. 53(1):9-16. [Medline].

Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.