Medscape is available in 5 Language Editions – Choose your Edition here.


CBRNE - Vomiting Agents - Dm, Da, Dc Clinical Presentation

  • Author: Christopher P Holstege, MD; Chief Editor: Zygmunt F Dembek, PhD, MPH, MS, LHD  more...
Updated: Aug 06, 2015


A history of exposure to an aerosolized substance that resulted in ophthalmic and pulmonary irritation and then progressed to nausea, vomiting, abdominal cramps, and headache suggests exposure to a vomiting agent. In the early phases of an emergency response, the toxin's identity would be unknown and the history misleading and inaccurate.

Fear, anxiety, and mistrust are likely to affect victims, emergency responders, bystanders, and the entire community after such an incident. Overwhelming emotions in some patients, rescuers, and hospital staff are likely to cause acute anxiety reactions and mass psychogenic illness. Patients truly suffering from vomiting-agent poisoning and those suffering from mass psychogenic illness would be difficult to separate, because the symptoms are similar. Patients with either condition may complain of the following:

  • Nausea
  • Vomiting
  • Diarrhea
  • Headache
  • Tearing
  • Dizziness
  • Chest tightness
  • Shortness of breath

Because differentiating mass hysteria from a true vomiting-agent poisoning may be difficult, treat all patients experiencing symptoms as true toxic emergencies. The potential exists for patients with mass psychogenic illness to overwhelm the entire emergency response system and hinder timely treatment of those with true toxic emergencies.



The signs and symptoms encountered in a person exposed to a vomiting agent may vary. Factors that determine clinical effects include the amount of the agent encountered and the route of exposure. Depending on those variables, the progression of signs and symptoms can range from mild mucosal irritation to cardiovascular collapse and death. The following list constitutes findings that may be noted on physical examination following exposure to vomiting agents:

  • Eye - Conjunctival injection, tearing, and blepharospasm
  • Nose - Excessive nasal discharge, sneezing, mucosal injection, and edema
  • Throat - Mucosal injection and edema
  • Lungs - Excessive cough, wheezing, rhonchi, prolonged expiratory phase, and tachypnea
  • Heart - Tachycardia
  • Abdomen - Hyperactive bowel sounds, intestinal cramps, emesis, and diarrhea
  • Skin - Erythema and edema at the site of dermal contact
  • Mental status - Central nervous system depression, syncope, and death (possible with significant exposure)


Human exposures to vomiting agents rarely have been reported. Potential causes of exposure to these agents are laboratory accidents, terrorist events, or military conflicts.

Contributor Information and Disclosures

Christopher P Holstege, MD Professor of Emergency Medicine and Pediatrics, University of Virginia School of Medicine; Chief, Division of Medical Toxicology, Center of Clinical Toxicology; Medical Director, Blue Ridge Poison Center

Christopher P Holstege, MD is a member of the following medical societies: American Academy of Clinical Toxicology, Medical Society of Virginia, Society of Toxicology, Wilderness Medical Society, European Association of Poisons Centres and Clinical Toxicologists, American Academy of Emergency Medicine, American College of Emergency Physicians, American College of Medical Toxicology, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Zygmunt F Dembek, PhD, MPH, MS, LHD Associate Professor, Department of Military and Emergency Medicine, Adjunct Assistant Professor, Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, F Edward Hebert School of Medicine

Zygmunt F Dembek, PhD, MPH, MS, LHD is a member of the following medical societies: American Chemical Society, New York Academy of Sciences

Disclosure: Nothing to disclose.

Additional Contributors

Fred Henretig, MD Director, Section of Clinical Toxicology, Professor, Medical Director, Delaware Valley Regional Poison Control Center, Departments of Emergency Medicine and Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital

Disclosure: Nothing to disclose.

  1. Sanderson H, Fauser P, Thomsen M, Sorensen PB. Screening level fish community risk assessment of chemical warfare agents in the Baltic Sea. J Hazard Mater. 2008 Jun 15. 154(1-3):846-57. [Medline].

  2. Sanderson H, Fauser P, Thomsen M, Larsen JB. Weight-of-evidence environmental risk assessment of dumped chemical weapons after WWII along the Nord-Stream gas pipeline in the Bornholm Deep. J Hazard Mater. 2012 May 15. 215-216:217-26. [Medline].

  3. Sanderson H, Fauser P, Rahbek M, Larsen JB. Review of environmental exposure concentrations of chemical warfare agent residues and associated the fish community risk following the construction and completion of the Nord Stream gas pipeline between Russia and Germany. J Hazard Mater. 2014 Aug 30. 279:518-26. [Medline].

  4. Sanderson H, Fauser P, Thomsen M, Sørensen PB. Human health risk screening due to consumption of fish contaminated with chemical warfare agents in the Baltic Sea. J Hazard Mater. 2009 Feb 15. 162(1):416-22. [Medline].

  5. Fauser P, Sanderson H, Hedegaard RV, Sloth JJ, Larsen MM, Krongaard T, et al. Occurrence and sorption properties of arsenicals in marine sediments. Environ Monit Assess. 2013 Jun. 185(6):4679-91. [Medline].

  6. Ishii K, Tamaoka A, Otsuka F, et al. Diphenylarsinic acid poisoning from chemical weapons in Kamisu, Japan. Ann Neurol. 2004 Nov. 56(5):741-5. [Medline].

  7. Nakamagoe K, Fujizuka N, Koganezawa T, Shimizu K, Takiguchi S, Horaguchi T, et al. Residual central nervous system damage due to organoarsenic poisoning. Neurotoxicol Teratol. 2013 May-Jun. 37:33-8. [Medline].

  8. Kato K, Mizoi M, An Y, et al. Oral administration of diphenylarsinic acid, a degradation product of chemical warfare agents, induces oxidative and nitrosative stress in cerebellar Purkinje cells. Life Sci. 2007 Nov 10. 81(21-22):1518-25. [Medline].

  9. Compton, JAF. Military Chemical and Biological Agents: Chemical and Toxicological Properties. 1988. 194-204.

  10. Ellison DH. Vomiting agents. Handbook of Chemical and Biological Warfare Agents. 2000. 149-150.

  11. Haas R, Tsivunchyk O, Steinbach K. Conversion of adamsite (phenarsarzin chloride) by fungal manganese peroxidase. Appl Microbiol Biotechnol. 2004 Feb. 63(5):564-6. [Medline].

  12. Haas R, Tsivunchyk O, Steinbach K, von Löw E, Scheibner K, Hofrichter M. Conversion of adamsite (phenarsarzin chloride) by fungal manganese peroxidase. Appl Microbiol Biotechnol. 2004 Feb. 63(5):564-6. [Medline].

  13. Henriksson J, Johannisson A, Bergqvist PA, Norrgren L. The toxicity of organoarsenic-based warfare agents: in vitro and in vivo studies. Arch Environ Contam Toxicol. 1996 Feb. 30(2):213-9. [Medline].

  14. Holstege CP, Bechtel LK, Reilly TH, et al. Unusual but potential agents of terrorists. Emerg Med Clin North Am. 2007 May. 25(2):549-66; abstract xi. [Medline].

  15. Hu H, Somani SM, eds. Toxicodynamics of riot-control agents (lacrimators). Chemical Warfare Agents. 1992. 271-288.

  16. Ishii K, Tamaoka A, Otsuka F, Iwasaki N, Shin K, Matsui A, et al. Diphenylarsinic acid poisoning from chemical weapons in Kamisu, Japan. Ann Neurol. 2004 Nov. 56(5):741-5. [Medline].

  17. Kohler M, Hofmann K, Volsgen F. Bacterial release of arsenic ions and organoarsenic compounds from soil contaminated by chemical warfare agents. Chemosphere. 2001 Feb. 42(4):425-9. [Medline].

  18. Pitten FA, Muller G, Konig P, et al. Risk assessment of a former military base contaminated with organoarsenic-based warfare agents: uptake of arsenic by terrestrial plants. Sci Total Environ. 1999 Feb 9. 226(2-3):237-45. [Medline].

  19. Sidell FR. Riot control agents. Management of Chemical Warfare Agent Casualties. 1995. 93-99.

  20. Tornes JA, Opstad AM, Johnsen BA. Determination of organoarsenic warfare agents in sediment samples from Skagerrak by gas chromatography-mass spectrometry. Sci Total Environ. 2006 Mar 1. 356(1-3):235-46. [Medline].

  21. Zajtchuck R, ed. Riot control agents. Textbook of Military Medicine. 1997. 308-324.

  22. Hurst G, Tourinsky S, Madsen J, Newmark J, Hill B, Boardman C, et al. Riot-Control Agents. Hurst G, Tourinsky S, Madsen J, Newmark J, Hill B, Boardman C, Dawson J. Medical Management of Chemical Casualties Handbook. Fourth. 3100 Ricketts Point Road Aberdeen Proving Ground, MD 21010-5400: Chemical Casualty Care Division US Army Medical Research Institute of Chemical Defense; February 2007. 194-211. [Full Text].

All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.