Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Allergic Rhinitis in Otolaryngology and Facial Plastic Surgery

  • Author: Quoc A Nguyen, MD; Chief Editor: Arlen D Meyers, MD, MBA  more...
 
Updated: Jan 20, 2016
 

Background

Allergic rhinitis is a common health problem for which many patients do not seek appropriate medical care. Although not a life-threatening condition in most cases, it has a substantial impact on public health and the economy.

According to findings in a recent study, the total estimated cost of allergic rhinitis in 1994 was between 1.2 and 1.5 billion dollars.[1] The illness resulted in more than 6 million missed work days, 2 million missed school days, and 28 million reduced-activity days. These figures are certainly higher today because of the higher cost of new medications and the increasing prevalence of the condition.

Boggy inferior turbinate in an allergic patient. Boggy inferior turbinate in an allergic patient.
Next

Pathophysiology

Because the nose is the most common port of entry for allergens, in patients with allergies, signs and symptoms of allergic rhinitis, not surprisingly, are the most common complaints.

Four types of hypersensitivity responses exist, as initially classified by Gell and Coombs and later modified by Shearer and Huston. Individuals with allergic rhinitis are thought to have type I reactions.

After initial exposure to an antigen, antigen-processing cells (macrophages) present the processed peptides to T helper cells. Upon subsequent exposure to the same antigen, these cells are stimulated to differentiate into either more T helper cells or B cells. The B cells may further differentiate into plasma cells and produce immunoglobulin E (IgE) specific to that antigen. Allergen-specific IgE molecules then bind to the surface of mast cells, sensitizing them.

Further exposures result in the bridging of 2 adjacent IgE molecules, leading to the release of preformed mediators from mast cell granules. These mediators (ie, histamine, leukotrienes, kinins) cause early-phase symptoms such as sneezing, rhinorrhea, and congestion. Late-phase reactions begin 2-4 hours later and are caused by newly arrived inflammatory cells. Mediators released by these cells prolong the earlier reactions and lead to chronic inflammation.

Previous
Next

Epidemiology

Frequency

United States

Approximately 39 million Americans are reported to have allergic rhinitis. From various studies, 17-25% of the population in the United States are estimated to have the condition.

Mortality/Morbidity

Allergic rhinitis is frequently associated with otitis media, rhinosinusitis, and asthma, either as a precipitating and/or aggravating factor or a symptomatic comorbid condition.

Allergic rhinitis can significantly decrease the quality of life and impair social and work functions, either directly or indirectly, because of the adverse effects of medications taken to relieve the symptoms.

Sex

Males and females tend to be affected by allergic rhinitis in fairly equal proportions. A study by Cazzoletti et al found gender-associated age-based differences in the prevalence of self-reported allergic and nonallergic rhinitis, with allergic rhinitis showing an age-based decrease in prevalence that was comparable in males and females (from 26.6% in persons aged 20-44 years to 15.6% in persons aged 65-84 years), and nonallergic rhinitis showing an age-based decrease in prevalence among females (from 12.0% in females aged 20-44 years to 7.5% in females aged 65-84 years) and roughly the same prevalence in younger and older males (10.2% in males aged 20-44 years and 11.1% in males aged 65-84 years).[2]

Age

Allergic rhinitis appears mainly to affect individuals younger than 45 years.

The condition may begin to appear in patients as young as 2 years and usually reaches a peak in those aged 21-30 years.

It then tends to remain stable or slowly decrease until patients are aged 60 years, when again the prevalence may increase slightly.

Previous
 
 
Contributor Information and Disclosures
Author

Quoc A Nguyen, MD Associate Clinical Professor, Director, Sinus and Allergy Center, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Medical Center

Quoc A Nguyen, MD is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, Phi Beta Kappa, American Academy of Otolaryngic Allergy, American Academy of Otolaryngology-Head and Neck Surgery, The Triological Society, American Rhinologic Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Stephen G Batuello, MD Consulting Staff, Colorado ENT Specialists

Stephen G Batuello, MD is a member of the following medical societies: American Academy of Otolaryngology-Head and Neck Surgery, American Association for Physician Leadership, American Medical Association, Colorado Medical Society

Disclosure: Nothing to disclose.

Chief Editor

Arlen D Meyers, MD, MBA Professor of Otolaryngology, Dentistry, and Engineering, University of Colorado School of Medicine

Arlen D Meyers, MD, MBA is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery, American Head and Neck Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cerescan;RxRevu;SymbiaAllergySolutions<br/>Received income in an amount equal to or greater than $250 from: Symbia<br/>Received from Allergy Solutions, Inc for board membership; Received honoraria from RxRevu for chief medical editor; Received salary from Medvoy for founder and president; Received consulting fee from Corvectra for senior medical advisor; Received ownership interest from Cerescan for consulting; Received consulting fee from Essiahealth for advisor; Received consulting fee from Carespan for advisor; Received consulting fee from Covidien for consulting.

Additional Contributors

Lanny Garth Close, MD Chair, Professor, Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons

Lanny Garth Close, MD is a member of the following medical societies: Alpha Omega Alpha, American Head and Neck Society, American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery, American College of Physicians, American Laryngological Association, New York Academy of Medicine

Disclosure: Nothing to disclose.

References
  1. Malone DC, Lawson KA, Smith DH, et al. A cost of illness study of allergic rhinitis in the United States. J Allergy Clin Immunol. 1997 Jan. 99(1 Pt 1):22-7. [Medline].

  2. Cazzoletti L, Ferrari M, Olivieri M, et al. The gender, age and risk factor distribution differs in self-reported allergic and non-allergic rhinitis: a cross-sectional population-based study. Allergy Asthma Clin Immunol. 2015. 11:36. [Medline].

  3. Radulovic S, Calderon MA, Wilson D, Durham S. Sublingual immunotherapy for allergic rhinitis. Cochrane Database Syst Rev. 2010 Dec 8. 12:CD002893. [Medline].

  4. FDA OKs Oralair, First US Sublingual Allergy Immunotherapy. Medscape. Available at http://www.medscape.com/viewarticle/822975. Accessed: April 4, 2014.

  5. Grastek [package insert]. Whitehouse Station, NJ: Merck & Co, Inc. April 2014. Available at [Full Text].

  6. Maloney J, Bernstein DI, Nelson H, Creticos P, Hébert J, Noonan M, et al. Efficacy and safety of grass sublingual immunotherapy tablet, MK-7243: a large randomized controlled trial. Ann Allergy Asthma Immunol. 2014 Feb. 112(2):146-153.e2. [Medline].

  7. Creticos PS, Esch RE, Couroux P, Gentile D, D'Angelo P, Whitlow B, et al. Randomized, double-blind, placebo-controlled trial of standardized ragweed sublingual-liquid immunotherapy for allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2014 Mar. 133(3):751-8. [Medline].

  8. Creticos PS, Maloney J, Bernstein DI, Casale T, Kaur A, Fisher R, et al. Randomized controlled trial of a ragweed allergy immunotherapy tablet in North American and European adults. J Allergy Clin Immunol. 2013 May. 131(5):1342-9.e6. [Medline].

  9. Soh JY, Thalayasingam M, Ong S, Loo EX, Shek LP, Chao SS. Sublingual immunotherapy in patients with house dust mite allergic rhinitis: prospective study of clinical outcomes over a two-year period. J Laryngol Otol. 2016 Jan 19. 1-6. [Medline].

  10. Munoz del Castillo F, Jurado-Ramos A, Fernandez-Conde BL, Soler R, Barasona MJ, Cantillo E, et al. Allergenic profile of nasal polyposis. J Investig Allergol Clin Immunol. 2009. 19(2):110-6. [Medline].

  11. Alho OP, Karttunen R, Karttunen TJ. Nasal mucosa in natural colds: effects of allergic rhinitis and susceptibility to recurrent sinusitis. Clin Exp Immunol. 2004 Aug. 137(2):366-72. [Medline].

  12. Marogna M, Bruno M, Massolo A, Falagiani P. Long-lasting effects of sublingual immunotherapy for house dust mites in allergic rhinitis with bronchial hyperreactivity: A long-term (13-year) retrospective study in real life. Int Arch Allergy Immunol. 2007. 142(1):70-8. [Medline].

  13. Meltzer EO, Szwarcberg J, Pill MW. Allergic rhinitis, asthma, and rhinosinusitis: diseases of the integrated airway. J Manag Care Pharm. 2004 Jul-Aug. 10(4):310-7. [Medline].

  14. Molgaard E, Thomsen SF, Lund T, Pedersen L, Nolte H, Backer V. Differences between allergic and nonallergic rhinitis in a large sample of adolescents and adults. Allergy. 2007 Sep. 62(9):1033-7. [Medline].

  15. Mosges R, Klimek L. Today's allergic rhinitis patients are different: new factors that may play a role. Allergy. 2007 Sep. 62(9):969-75. [Medline].

 
Previous
Next
 
Boggy inferior turbinate in an allergic patient.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.