Medscape is available in 5 Language Editions – Choose your Edition here.


Malignant Tumors of the Palate Treatment & Management

  • Author: Nader Sadeghi, MD, FRCSC; Chief Editor: Arlen D Meyers, MD, MBA  more...
Updated: Apr 22, 2015

Preoperative Details

Examination under anesthesia

Approximately 10-15% of patients with head and neck squamous cell carcinoma (SCC) have a synchronous second primary cancer in the upper aerodigestive tract, lung, or esophagus. Patients with soft palate cancer have an even higher prevalence (approaching 25%) of synchronous and metachronous lesions. Hence, perform panendoscopy, including esophagoscopy, bronchoscopy, and laryngopharyngoscopy, on these patients. Alternatively, a complete flexible nasopharyngolaryngoscopy, chest radiography, and barium esophagography may suffice for synchronous tumor assessment.

The results of one study found that the use of panendoscopy may help identify synchronous second primary tumors in patients with a history of tobacco use but not in nonsmoking patients.[2]

Examination under anesthesia is required for tumor mapping in most patients with SCCs of the soft palate, except for those with very small lesions. Patients with small tumors confined to the soft palate, with all boundaries visible, do not require examination under anesthesia. In these patients, a complete flexible nasopharyngolaryngoscopy and transoral inspection and palpation are adequate for tumor mapping.


Specific treatment of palate cancer depends on the location of the tumor (hard vs soft palate), stage of the tumor (see Staging), and pathologic type of the cancer. For this reason, management of SCC and carcinomas of minor salivary gland origin are discussed separately.

Treatment of T1-T2 squamous cell carcinoma of the hard palate

Surgery is the preferred treatment for SCC of the hard palate. However, megavoltage radiation has also been used with some success as a viable alternative in treating patients with these tumors.

Small T1 and T2 lesions can be managed with either surgery or radiation therapy. Radiation therapy is given to a total dose of 60-70 Gy. The proximity of the tumor to the bone and potential complications of osteoradionecrosis make radiation therapy less desirable for managing these lesions. On the other hand, surgery for these lesions is simple, with low morbidity and no loss of function.

For tumors that do not involve the periosteum or bone, through-and-through excision of the palate, opening the sinonasal fossa, is not necessary. For these lesions, a simple transoral excision into and including the periosteum is sufficient. A 1-cm margin is taken with the tumor. The periosteum serves as the superior margin. The periosteum may be spared only in very superficial tumors that are not close to the periosteum. This is an intraoperative decision. With surgical management, the 5-year survival rates are 75% for stage I and 50% for stage II tumors.

In most cases, the defect from such lesions may be left open to heal by secondary intention and granulation. Skin grafting is discouraged. Consider placing a palatal acrylic prosthesis (healing plate), which can be fabricated by a dentist or prosthodontist prior to resection. This helps protect the palate wound during the healing process. In some cases, palatal and/or buccal mucosal flaps are necessary to restore tissue deficiency, especially when dealing with patients’ postradiation therapy and/or those with larger soft palate defects.[3]

Treatment of the neck in T1-T2 squamous cell carcinoma of the hard palate

Clinical and radiological N0 necks in these patients do not require elective treatment. When occult neck metastasis is suggested, staging functional neck dissection (including levels 1, 2, and 3) is performed. Recently, a 27% rate of occult cervical metastasis was reported in a series of 26 patients with maxillary alveolar ridge and hard palate squamous cell carcinoma. The authors thus suggest an elective neck dissection for such cancers with clinically N0 neck.[4] Other authors have suggested the use of sentinel lymph node biopsy in such situations.[5]

Treatment of an N1 neck is controversial. A pathological N1 node is considered adequately treated with neck dissection alone when no extracapsular extension is present. However, in many centers, any pathological N1 node is treated with postoperative radiotherapy; this is recommended. Definitely initiate postoperative radiation therapy for patients with extracapsular extension.

If the pathological stage of the neck is N2 or higher, initiate postoperative radiotherapy.

Treatment of T3-T4 squamous cell carcinoma of the hard palate

T3 and T4 lesions frequently require combined oncologic treatment, including surgery and radiation therapy to both the primary site and the neck. N1 necks may be treated with radiotherapy or neck dissection. Necks that are N2 or higher are treated with planned combined surgery and radiotherapy. Larger palatal cancers have a poor prognosis and require multimodality oncologic therapy. Radiation is given using high-voltage equipment to a total of 60-70 Gy.

Importantly, when planning surgery for lesions that extend beyond the hard palate, determine the deficit that will result from resection. Resection of the soft palate can cause significant velopharyngeal insufficiency. Because the soft palate is a dynamic structure, it is difficult to reconstruct. Lesions that invade the palatine bone require partial palatectomy, with resulting oroantral and oronasal fistula. Invasion into the nasal cavity or the maxillary sinus requires inferior maxillectomy, partial maxillectomy, or total maxillectomy, depending on the extent of the lesion. Prosthetic rehabilitation is highly effective in these patients. However, use of vascularized free flaps, such as the scapular osteocutaneous flap or free fibula osteocutaneous flap, are highly effective in functional as well as aesthetic reconstruction and restoration of maxillary buttresses.[6, 7, 8]

Extension into the pterygopalatine and infratemporal fossa requires skull-base approaches to effectively extirpate the tumor.

Treatment of squamous cell carcinoma of the soft palate

Size, location, and contiguous spread of the primary tumor are important factors in the prognosis. Extension outside the palatine arch, especially to the base of the tongue, adversely affects patient survival. Patients with midline tumors and tumors that extend across the palatine arch have poorer survival rates. This is because of a higher incidence of regional metastasis. Absence of the soft palate results in velopharyngeal insufficiency, affecting both speech and swallowing.

Because of difficulties in adequate reconstruction, radiation therapy has been the recommended treatment for soft palate cancers in the past. Although advances in reconstructive techniques and prosthetic reconstruction have allowed for more effective surgical resection and rehabilitation for patients with soft palate cancers, radiation therapy remains the primary treatment modality in many centers for T1, T2, and T3 lesions, with results comparable with those of surgery.

Using radiotherapy as the primary treatment, control of the primary lesion is achieved in 80-90% of T1 lesions, 60-70% of T2 lesions, and 55-65% of T3 lesions. This rate drops to less than 50% for T4 lesions. Effective treatment for the primary lesion requires a dose of approximately 70 Gy.

Potential complications of radiotherapy include severe xerostomia, muscular fibrosis and resultant trismus, osteoradionecrosis of the mandible, and soft tissue ulceration. Complications of radiotherapy are volume dependent and dose dependent.

More recently, some centers prefer interstitial brachytherapy using iridium Ir 192 to boost the initial external beam of radiotherapy. The primary tumor is given 40-60 Gy of external beam radiation, followed by 20-40 Gy of brachytherapy. Boosting the primary tumor site to high doses allows improved locoregional control of the tumor, while reducing complications by avoiding wide-field, high-dose radiation.

Both radiotherapy and surgery are adequate for controlling early lesions. For advanced T3 and T4 lesions, traditional external beam radiotherapy alone is associated with poor survival rates. As a result, for advanced stage III and IV tumors, a planned combined treatment, including surgical resection followed by radiation therapy to the primary tumor and the neck, is the recommended treatment.

An alternative is the use of chemotherapy combined with radiotherapy, followed by surgical resection. Cisplatin and 5-fluorouracil are the chemotherapeutic agents used. Chemotherapy may be given in 2-3 cycles to assess the patient's response and to reevaluate. If the patient responds to chemotherapy, radiation is given for a full course of 70 Gy; surgery is reserved for salvage. Surgery is considered if the patient responds poorly to the chemotherapy.

Chemotherapy may be given concomitantly with radiotherapy, reserving surgery for salvage. Administration of 5-fluorouracil can be performed as an intravenous bolus or continuous infusion over 72-120 hours. Doses range from 800-1200 mg/m2. For cisplatin, the usual dose is 60-100 mg/m2 every 3 weeks. Accelerated fractionation radiotherapy has provided comparable disease-specific survival when compared with concomitant chemoradiation (cisplatin) for locally advanced oropharyngeal stage III and IVA/B cancers, while yielding a lower rate of long-term dependency on gastric-tube feeding. Standard fractionation (hypofractionation) radiation is inferior to both accelerated fractionation and to chemoradiation in this group.[9]

Combined external beam radiation followed by brachytherapy is an alternative to surgery for the management of advanced lesions, reserving surgery for salvage.

Brachytherapy for tumors with bony invasion or in proximity of the mandible results in a high rate of osteoradionecrosis. These patients are best treated with planned surgical excision followed by external beam radiotherapy, as are patients with tumor extension beyond the palatine arch into the base of the tongue.

Treatment of neck metastasis in soft palate squamous cell carcinoma

SCCs of the soft palate and uvula have a high rate of occult regional metastasis, as high as 20-30% at presentation, even in early primary tumors. Therefore, definitive treatment must encompass regional lymphatics in all SCCs of the soft palate. In midline lesions or in those that cross the midline, the rate of bilateral metastasis is high, requiring treatment of both necks.

Tumor thickness is an excellent predictor of nodal metastasis in soft palate cancers. In one study, all patients with tumors thicker than 3.12 mm had cervical metastasis, with tumor thickness correlating more directly with nodal metastasis than with T stage.

Clinical regional metastasis at presentation reduces the 5-year survival rate by half, from 80% in N0 necks to 40% in necks with clinically evident metastasis. For small tumors treated primarily with radiotherapy, N0 and N1 necks can be controlled adequately with radiotherapy alone. For N2 and greater neck metastasis, 74% of patients still have residual SCC following radiotherapy. Hence, treat N2 and greater regional metastasis with planned combined therapy, including neck dissection followed by radiotherapy.

Treatment of minor salivary gland cancers of the palate

Seventy-four percent of minor salivary gland tumors are malignant (see the histologic types and frequencies of minor salivary gland neoplasms of the palate in the Introduction section). The palate is the most common site for minor salivary gland carcinomas. Most of these occur in the hard palate. Minor salivary gland malignancies are divided into high- and low-grade tumors. High-grade tumors include adenoid cystic carcinoma, high-grade mucoepidermoid carcinoma, high-grade adenocarcinoma, malignant mixed tumor, and carcinoma expleomorphic adenoma. Low-grade malignancies include low-grade mucoepidermoid carcinoma, polymorphous low-grade adenocarcinoma (with its propensity to occur in the hard palate), acinic cell carcinoma, and other rare tumors.

The most important poor prognostic factors for malignant minor salivary gland tumors of the palate are grade 3 histology, tumor size larger than 3 cm, and positive margins.

Surgery is the mainstay of treatment for minor salivary gland tumors of the palate. For minor salivary gland tumors of the palate in which perineural invasion is suggested, identify and evaluate the greater palatine nerve by frozen section. If the nerve is involved, follow it with proximal resection until negative margins are attained. If negative margins cannot be attained at the foramen rotundum, postoperative radiation therapy must include the trigeminal ganglion.

Postoperative radiotherapy with or without chemotherapy is indicated for high-grade tumors, large T3 or T4 lesions, positive margins, tumors showing perineural invasion, and cervical lymph node metastasis.

Radiotherapy, possibly combined with chemotherapy, is used as the primary treatment if the patient refuses surgery or is not a candidate for surgery because of extensive unresectable disease.

Cervical node metastasis is a rare event for salivary gland tumors of the palate, occurring in approximately 3% of cases. Therefore, elective neck dissection is not indicated in these tumors in the absence of clinical or radiological signs of nodal metastasis.

For adenoid cystic carcinoma, surgery followed by radiation therapy is the treatment of choice. Wide surgical margins are taken because this tumor is known for microscopic extension beyond the gross tumor margins. The propensity for perineural extension requires resection along the greater palatine nerves with frozen section control to achieve negative margins. Postoperative radiation is preferred because preoperative radiation therapy increases surgical complications.


Intraoperative Details

Transoral approach

The transoral approach, as seen in the image below, provides adequate exposure for superficial tumors of the hard palate that do not invade the bone. General anesthesia aids exposure and provides comfort for the patient. The patient is placed in a supine position with the head extended.

Transoral resection of a mucoepidermoid carcinoma Transoral resection of a mucoepidermoid carcinoma of the palate.

A Dingman or Crockard mouth gag provides attachable cheek retractors to facilitate exposure as depicted in the image below.

Schematic per-oral approach to the palate using a Schematic per-oral approach to the palate using a Dingman mouth retractor.

Alternatively, a hard rubber bite block or a Denhardt gag may be used to retract the mouth open for exposure. The lesion is mapped with an adequate margin of 1 cm. A soft tissue incision is made with a knife or electrocautery device. Electrocautery reduces blood loss. Alternatively, the carbon dioxide laser provides adequate hemostasis and causes less tissue damage. The incision includes the periosteum if it is to be taken as the superior margin. Using a periosteal elevator, the periosteum is elevated under direct vision, and the tumor is removed.

In cases in which the tumor involves the periosteum or the bone, the bone must be taken as the margin. This can be achieved using a cutting burr. If possible, preserve the superior mucoperiosteal coverage to prevent oronasal fistula, although this may be difficult. A prosthetic device is highly effective for swallowing and speech rehabilitation.

In cases in which the tumor is lateral and involves the alveolar ridge, a partial alveolectomy is included with palate resection. To improve exposure, a buccogingival sulcus incision is made to the level of the anterior maxillary wall. A facial degloving approach is used to improve exposure. The infraorbital nerve is preserved. An opening is made into the maxillary antrum to expose the superior surface of the palate. Following soft tissue incisions, bony cuts are made as needed using a Stryker saw, and the tumor is removed. Exposed soft tissue surfaces are covered with a split-thickness skin graft, except for closed cavities. Immediate prosthetic rehabilitation is performed with the aid of the prosthodontist who preoperatively prepared the temporary prosthetic device.

For extensive tumors of the hard palate involving the hard palate bilaterally, a total palatectomy and inferior bilateral maxillectomy is required. These resections leave the patient with extensive midfacial defects involving the palate, upper jaw, and sinuses. Flap and graft reconstruction of these defects is fraught with difficulty, often resulting in breakdown, which leads to oroantral or oronasal fistula. A total midfacial prosthetic rehabilitation is highly effective for restoring deglutition, speech, and facial contour and for making the postoperative surgical bed easier to monitor.

In cases of soft palate cancer, very small mucosal lesions may be resected transorally with preservation of the superior mucosa. If the defect is close to the hard palate, an advancement rotation flap from the hard palate may be used to close the defect. Small defects at the posterior margin of the soft palate may be closed by approximating the superior and inferior mucosa. The resulting velopharyngeal insufficiency corrects over time. A superiorly based pharyngeal flap may be used to close the defect.


A mandibular approach provides wide exposure for resection of T4 soft palate cancers extending to the hard palate, lateral pharynx, tonsil, base of tongue, and/or mandible. A visor flap or lip-splitting neck incision may be used. A horizontal incision is made from the mastoid tip to the submentum. The lip is split with a stair-step cut along the vermilion to prevent lip notching, and a Z incision is carried over the mentum to join the submental incision. The periosteum is raised on either side of the incision. A parasymphysial stair-step osteotomy is made in a way that preserves the anterior muscular attachments of the mandible in the opposite side.

Once the position of the osteotomy is determined, mandibular miniplates are bent to adapt to the contour of the mandible for mandibular plating at the end. An incision is made in the floor of the mouth from the labiogingival sulcus to the anterior resection margin. The mylohyoid muscle is cut. This allows the mandible to swing open. Excellent exposure is provided to the entire soft palate and oropharynx.

If no mandibular bony invasion is noted based on preoperative imaging studies, the periosteum is raised as the margin. Relevant soft tissue cuts are made around the tumor, and it is removed. If invasion of the hard palate or the upper alveolus is noted, osteotomies are made using a Stryker saw following adequate soft tissue cuts. This exposure allows for an inferior maxillectomy. Give attention to assessing invasion of the medial pterygoid muscle, and, if invaded, take adequate deep margins. In irradiated patients or when a chance for composite resection of the mandible exists, a lateral mandibulotomy is preferred. The site of the cut varies depending on the exact extent of the tumor. A visor flap can be used, obviating the need for lip splitting.

Reconstruction of the palate

A basic hard palate prosthesis can be designed with extension into the oropharynx. When a posterior functioning band of soft palate is preserved, the obturator extension sits in the defect. During swallowing, the posterior band raises against the obturator. For total soft palate defects, the posterior extension of the obturator sits in the oropharynx anterior to the pharyngeal constrictor. During swallowing, the superior constrictor is raised against this static prosthesis to achieve velopharyngeal closure.

A study by Ye et al indicated that the buccal fat pad can be effectively used in immediate palate reconstruction after cancer surgery, even if the patient subsequently undergoes radiotherapy. The study involved 18 patients, with the buccal fat pad employed as a pedicled flap to reconstruct palate defects ranging from 7.5-19.2 cm2 and radiotherapy administered 4-5 weeks after surgery. The investigators reported that the flaps provided adequate defect closure, that epithelialization of all flaps occurred within 3 weeks postoperatively, and that no radiotherapy-related complications affected the flaps.[10]

For extensive defects of the soft palate and lateral pharyngeal wall with an exposed mandible, vascularized soft tissue reconstruction is mandatory. This is especially important for patients who are irradiated. The temporalis muscle or musculofascial flap is reliable and readily available for reconstruction. It allows complete reconstruction of the soft palate and provides coverage for the lateral pharyngeal defect and exposed mandible. It may be combined with a superiorly based pharyngeal flap for a double-layer closure of the palate. A dermal graft is used to cover the muscle if it is not covered by fascia.

Microvascular radial forearm fasciocutaneous free-flap reconstruction is another alternative for total soft palate reconstruction.



For excellent patient education resources, visit eMedicineHealth's Cancer Center. Also, see eMedicineHealth's patient education article Cancer of the Mouth and Throat.



Complications of surgical resection of the soft palate may include (1) velopharyngeal insufficiency (most common), (2) hypernasal speech, (3) dysphagia, and (4) middle ear effusion from scarring at the eustachian tube opening or loss of function of tensor and/or levator palatini muscles.

Obviously, the extent of and potential for these complications depend on the extent of resection, the size of the defect, and the method of reconstruction. The larger the resection and the defect, the greater the chance for these complications. The soft palate is a dynamic structure; optimal functioning requires muscular action to elevate and tense it during deglutition and relax it during nasal respiration. Therefore, any reconstruction of the soft palate with flaps and prosthetics does not reproduce its function; it will be limited in function in the best of circumstances.

Complications from hard palate resection depend on the extent of resection. For soft tissue resection with preservation of the bony palate and soft palate only, the resulting defect heals with granulation and epithelialization, and no complications are expected. If patients had previous radiation therapy to the area, healing may be delayed.

For more extensive resection that results in oroantral or oronasal defects, oronasal and oroantral fistulas may develop. Small defects may be closed with local flaps from the rest of the hard palate or from the buccal mucosa. Larger defects are managed adequately and effectively with obturators. Because the organ is not dynamic, obturators are very effective and well tolerated.


Outcome and Prognosis

In the last 5 years, inclusion of quality of life (QOL) measures in the treatment decisions for head and neck cancer have become important. Oropharyngeal cancers that include the soft palate are an area of active clinical research, using QOL as an outcome measurement. With combined modalities of treatment including surgery and radiotherapy or chemoradiation, both being comparable in cure rates for advanced cancers, predicted QOL becomes an important consideration to help make treatment decisions.[11]

A retrospective study by Yang et al determined the 3- and 5-year survival rates for a cohort of 62 patients with SCC of the maxillary gingiva and hard palate to be 66.6% and 57.3%, respectively, with the survival rate found to be associated with tumor grade, T classification, margin status, cervical lymphatics, and local recurrence. The study also reported that in patients within this cohort, postoperative radiotherapy improved the prognosis in those with lesions located after the first premolar plane area.[12]


Future and Controversies

Elective treatment of the clinically negative neck in head and neck cancer versus observation and subsequent treatment of those who develop neck metastasis remains a subject of controversy. Recent retrospective data suggest that the rate of occult neck disease (pN1) in N0 patients receiving meticulous workup is low. Close observation with later treatment reserved for subsequent neck disease produces statistically similar survival rates to the elective prophylactic treatments and may be a valid form of treatment. Current literature, however, lacks clinical evidence to answer this question.

Contributor Information and Disclosures

Nader Sadeghi, MD, FRCSC Professor, Otolaryngology-Head and Neck Surgery, Director of Head and Neck Surgery, George Washington University School of Medicine and Health Sciences

Nader Sadeghi, MD, FRCSC is a member of the following medical societies: American Head and Neck Society, American Thyroid Association, American Academy of Otolaryngology-Head and Neck Surgery, Royal College of Physicians and Surgeons of Canada

Disclosure: Nothing to disclose.


Khalid Al-Sebeih, MD, FRCSC, FACS Associate Professor, Department of Surgery, Faculty of Medicine, Kuwait University

Khalid Al-Sebeih, MD, FRCSC, FACS is a member of the following medical societies: American College of Surgeons, American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery, Canadian Academy of Facial Plastic and Reconstructive Surgery, Canadian Society of Otolaryngology-Head & Neck Surgery, Kuwait Medical Association, Royal College of Physicians and Surgeons of Canada

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Karen H Calhoun, MD, FACS, FAAOA Professor, Department of Otolaryngology-Head and Neck Surgery, Ohio State University College of Medicine

Karen H Calhoun, MD, FACS, FAAOA is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, American Head and Neck Society, Association for Research in Otolaryngology, Southern Medical Association, American Academy of Otolaryngic Allergy, American Academy of Otolaryngology-Head and Neck Surgery, American College of Surgeons, American Medical Association, American Rhinologic Society, Society of University Otolaryngologists-Head and Neck Surgeons, Texas Medical Association

Disclosure: Nothing to disclose.

Chief Editor

Arlen D Meyers, MD, MBA Professor of Otolaryngology, Dentistry, and Engineering, University of Colorado School of Medicine

Arlen D Meyers, MD, MBA is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery, American Head and Neck Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cerescan;RxRevu;SymbiaAllergySolutions<br/>Received income in an amount equal to or greater than $250 from: Symbia<br/>Received from Allergy Solutions, Inc for board membership; Received honoraria from RxRevu for chief medical editor; Received salary from Medvoy for founder and president; Received consulting fee from Corvectra for senior medical advisor; Received ownership interest from Cerescan for consulting; Received consulting fee from Essiahealth for advisor; Received consulting fee from Carespan for advisor; Received consulting fee from Covidien for consulting.

Additional Contributors

M Abraham Kuriakose, MD, DDS, FRCS Chairman, Head and Neck Institute, Amrita Institute of Medical Sciences

M Abraham Kuriakose, MD, DDS, FRCS is a member of the following medical societies: American Association for Cancer Research, American Head and Neck Society, British Association of Oral and Maxillofacial Surgeons, Royal College of Surgeons of England

Disclosure: Nothing to disclose.

  1. Yang Z, Deng R, Sun G, Huang X, Tang E. Cervical metastases from squamous cell carcinoma of hard palate and maxillary alveolus: A retrospective study of 10 years. Head Neck. 2013 Jun 4. [Medline].

  2. Rodriguez-Bruno K, Ali MJ, Wang SJ. Role of panendoscopy to identify synchronous second primary malignancies in patients with oral cavity and oropharyngeal squamous cell carcinoma. Head Neck. 2011 Jul. 33(7):949-53. [Medline].

  3. Stassen L, Khosa AD, Israr M. The value of the 'buccal pad of fat' in the reconstruction of oral defects following removal of intraoral tumours--a clinical assessment. Ir Med J. 2013 Jan. 106(1):13-5. [Medline].

  4. Simental AA Jr, Johnson JT, Myers EN. Cervical metastasis from squamous cell carcinoma of the maxillary alveolus and hard palate. Laryngoscope. 2006 Sep. 116(9):1682-4. [Medline].

  5. Sanchez-Fernandez JM, Santaolalla-Montoya F, Sanchez-del Rey A, et al. In reference to: "Cervical metastasis from squamous cell carcinoma of the maxillary alveolus and hard palate.". Laryngoscope. 2007 Mar. 117(3):565-6; author reply 566. [Medline].

  6. Germain MA, Hartl DM, Marandas P, et al. Free flap reconstruction in the treatment of tumors involving the hard palate. Eur J Surg Oncol. 2006 Apr. 32(3):335-9. [Medline].

  7. Genden EM, Wallace DI, Okay D, et al. Reconstruction of the hard palate using the radial forearm free flap: indications and outcomes. Head Neck. 2004 Sep. 26(9):808-14. [Medline].

  8. Yamamoto Y, Kawashima K, Sugihara T, et al. Surgical management of maxillectomy defects based on the concept of buttress reconstruction. Head Neck. 2004 Mar. 26(3):247-56. [Medline].

  9. Kader HA, Mydin AR, Wilson M, et al. Treatment outcomes of locally advanced oropharyngeal cancer: a comparison between combined modality radio-chemotherapy and two variants of single modality altered fractionation radiotherapy. Int J Radiat Oncol Biol Phys. 2011 Jul 15. 80(4):1030-6. [Medline].

  10. Ye W, Song Y, Ying B, et al. Use of the buccal fat pad in the immediate reconstruction of palatal defects related to cancer surgery with postoperative radiation therapy. J Oral Maxillofac Surg. 2014 Dec. 72(12):2613-20. [Medline].

  11. Eskander A, Givi B, Gullane PJ, Irish J, Brown D, Gilbert RW, et al. Outcome predictors in squamous cell carcinoma of the maxillary alveolus and hard palate. Laryngoscope. 2013 Apr 1. [Medline].

  12. Yang X, Song X, Chu W, et al. Clinicopathological Characteristics and Outcome Predictors in Squamous Cell Carcinoma of the Maxillary Gingiva and Hard Palate. J Oral Maxillofac Surg. 2015 Jan 10. [Medline].

  13. Blot WJ, Winn DM, Fraumeni JF Jr. Oral cancer and mouthwash. J Natl Cancer Inst. 1983 Feb. 70(2):251-3. [Medline].

  14. Chung CK, Constable WC. Squamous cell carcinoma of the soft palate and uvula. Int J Radiat Oncol Biol Phys. 1979 Jun. 5(6):845-50. [Medline].

  15. Chung CK, Johns ME, Cantrell RW, et al. Radiotherapy in the management of primary malignancies of the hard palate. Laryngoscope. 1980 Apr. 90(4):576-84. [Medline].

  16. Chung CK, Rahman SM, Lim ML, et al. Squamous cell carcinoma of the hard palate. Int J Radiat Oncol Biol Phys. 1979 Feb. 5(2):191-6. [Medline].

  17. Duvvuri U, Simental AA Jr, D'Angelo G, et al. Elective neck dissection and survival in patients with squamous cell carcinoma of the oral cavity and oropharynx. Laryngoscope. 2004 Dec. 114(12):2228-34. [Medline].

  18. Evans JF, Shah JP. Epidermoid carcinoma of the palate. Am J Surg. 1981 Oct. 142(4):451-5. [Medline].

  19. Gillespie MB, Brodsky MB, Day TA, et al. Swallowing-related quality of life after head and neck cancer treatment. Laryngoscope. 2004 Aug. 114(8):1362-7. [Medline].

  20. Gluckman JL. Synchronous multiple primary lesions of the upper aerodigestive system. Arch Otolaryngol. 1979 Oct. 105(10):597-8. [Medline].

  21. Graham S, Dayal H, Rohrer T, et al. Dentition, diet, tobacco, and alcohol in the epidemiology of oral cancer. J Natl Cancer Inst. 1977 Dec. 59(6):1611-8. [Medline].

  22. Hollinshead WH. Anatomy for Surgeons. The Head and Neck. 3rd ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 1982. 331-45.

  23. Jaques DA. Epidermoid carcinoma of the palate. Otolaryngol Clin North Am. 1979 Feb. 12(1):125-8. [Medline].

  24. Keus RB, Pontvert D, Brunin F, et al. Results of irradiation in squamous cell carcinoma of the soft palate and uvula. Radiother Oncol. 1988 Apr. 11(4):311-7. [Medline].

  25. Layland MK, Sessions DG, Lenox J. The influence of lymph node metastasis in the treatment of squamous cell carcinoma of the oral cavity, oropharynx, larynx, and hypopharynx: N0 versus N+. Laryngoscope. 2005 Apr. 115(4):629-39. [Medline].

  26. Leemans CR, Engelbrecht WJ, Tiwari R, et al. Carcinoma of the soft palate and anterior tonsillar pillar. Laryngoscope. 1994 Dec. 104(12):1477-81. [Medline].

  27. Leipzig B, Zellmer JE, Klug D. The role of endoscopy in evaluating patients with head and neck cancer. A multi-institutional prospective study. Arch Otolaryngol. 1985 Sep. 111(9):589-94. [Medline].

  28. Mahboubi E. The epidemiology of oral cavity, pharyngeal and esophageal cancer outside of North America and Western Europe. Cancer. 1977 Oct. 40(4 Suppl):1879-86. [Medline].

  29. Martin JW, Chambers MS, Fleming TJ. Prosthetic rehabilitation of the nasal and paranasal sinus area. Thawly SE, Panje WR, Batsakis JG, Lindberg RD, eds. Comprehensive Management. Philadelphia, Pa: WB Saunders; 1999. Vol 1: 608-23.

  30. Panje WR, Morris MR. Surgery of oral cavity, tongue, and oropharynx. Naumann HH, Helms J, Herberhold C, Jahrsdoerfer RA, Kastenbauer ER, Panje WR, Tardy Jr ME, eds. Head and Neck Surgery. New York, NY: Thieme; 1995. Pt 2. Vol 1: 739-53.

  31. Pernot M, Malissard L, Hoffstetter S, et al. Influence of tumoral, radiobiological, and general factors on local control and survival of a series of 361 tumors of the velotonsillar area treated by exclusive irradiation (external beam irradiation+brachytherapy or brachytherapy alone). Int J Radiat Oncol Biol Phys. 1994 Dec 1. 30(5):1051-7. [Medline].

  32. Petruzzelli GJ, Myers EN. Malignant neoplasms of the hard palate and upper alveolar ridge. Oncology (Huntingt). 1994 Apr. 8(4):43-8; discussion 50, 53. [Medline].

  33. Russ JE, Applebaum EL, Sisson GA. Squamous cell carcinoma of the soft palate. Laryngoscope. 1977 Jul. 87(7):1151-6. [Medline].

  34. Tschudi D, Stoeckli S, Schmid S. Quality of life after different treatment modalities for carcinoma of the oropharynx. Laryngoscope. 2003 Nov. 113(11):1949-54. [Medline].

  35. Weber RS, Peters LJ, Wolf P, et al. Squamous cell carcinoma of the soft palate, uvula, and anterior faucial pillar. Otolaryngol Head Neck Surg. 1988 Jul. 99(1):16-23. [Medline].

  36. Wynder EL, Kabat G, Rosenberg S, et al. Oral cancer and mouthwash use. J Natl Cancer Inst. 1983 Feb. 70(2):255-60. [Medline].

Squamous cell carcinoma of the hard palate.
Thirty-two-year-old man with a submucosal lesion at the junction of the hard and soft palate.
Coronal CT scan revealing intranasal extension of the tumor.
Sagittal MRI revealing a mass confined to the palate, without sinonasal extension.
Coronal MRI.
Transoral resection of a mucoepidermoid carcinoma of the palate.
Schematic per-oral approach to the palate using a Dingman mouth retractor.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.