Medscape is available in 5 Language Editions – Choose your Edition here.


Genetic Sensorineural Hearing Loss Treatment & Management

  • Author: Stephanie A Moody Antonio, MD; Chief Editor: Arlen D Meyers, MD, MBA  more...
Updated: Feb 03, 2016

Medical Care

See the list below:

  • Treat any middle ear disease, including otitis media, with appropriate medical therapy.
  • Hearing amplification, whether with conventional or advanced technologic devices, is critical to the habilitation process. The goal of amplification is to take advantage of any residual hearing the patient may possess. At a minimum, the goal is to orient the patient to an acoustic event in his or her environment. Hearing amplification can usually be implemented with success by the age of 6 weeks.
  • Assistive listening devices and personal systems may be helpful.
    • Personal devices aid in reducing the signal-to-noise ratio in various listening situations, such as watching television, in classrooms, and in auditoriums.
    • Telephone devices include volume controls and couplers for use with certain hearing aids. For individuals unable to use standard telephone devices, telecommunication devices for the deaf are available.
    • Captioning allows individuals with severe hearing impaired to watch television.
    • Signaling devices, which substitute visual signals for auditory signals, are available to detect environmental household sounds such as the doorbell, ringing telephone, alarm from an alarm clock, fire alarm, or a baby's cry.

Surgical Care

Surgical management of external and middle ear deformities may be recommended in bilateral cases.

  • Cochlear implantation
    • Consider cochlear implantation for patients who do not demonstrate significant benefit from conventional hearing amplification.
    • Cochlear implants are electronic devices designed to convert mechanical sound energy into electric signals that can be delivered to the cochlear nerve.
    • Perform a CT or MRI scan of the temporal bones prior to cochlear implantation to ensure the presence of an intact cochlea and cochlear nerve.
    • In children, substantially better performance is obtained when auditory input is restored with cochlear implantation in children younger than 2 years.


Participation of many members of the medical community is required to offer comprehensive service to the family of a person with hearing loss. Pediatricians, audiologists, speech-language pathologists, educational specialists, and otolaryngologists must contribute to these efforts.

  • Obtain an otolaryngology consult when hearing loss is suspected or diagnosed. The otolaryngologist identifies the hearing loss, assesses the cause, identifies risk factors, and obtains appropriate medical tests.
  • A geneticist may offer assistance in establishing the etiology of SNHL. The geneticist can also provide genetic counseling to address a family's questions about the etiology of the patient's hearing loss and the risk of hearing loss in future children. Arnos has evaluated the ethical and social implications of genetic testing.[25]
  • The audiologist is responsible for selection of the appropriate aid, which is a critical decision. Once hearing amplification is in place, systematic monitoring is necessary to ensure proper function of the device while monitoring speech and language development.
  • A speech and language pathologist can provide appropriate educational programs necessary to enrich social, emotional, and academic development. The patient's linguistic and communicative skills must be analyzed with the understanding that the final indication of the success of the habilitative program is the patient's language capability and not the level of hearing. As a general rule, initially present language to children who are hearing impaired using all available inputs, including auditory, visual, and tactile stimuli.
  • An ophthalmology evaluation is important to assess visual acuity and to evaluate any possible ocular components of syndromic hearing loss.


Anecdotal reports associate increased risk of hearing loss with patients who have enlarged vestibular aqueducts and participate in contact sports.

Contributor Information and Disclosures

Stephanie A Moody Antonio, MD Associate Professor, Department of Otolaryngology-Head and Neck Surgery, Eastern Virginia Medical School

Stephanie A Moody Antonio, MD is a member of the following medical societies: American Academy of Otolaryngology-Head and Neck Surgery, Virginia Society of Otolaryngology-Head and Neck Surgery, American Neurotology Society, American Medical Association

Disclosure: Nothing to disclose.


Barry Strasnick, MD, FACS Chairman, Professor, Department of Otolaryngology-Head and Neck Surgery, Eastern Virginia Medical School

Barry Strasnick, MD, FACS is a member of the following medical societies: Alpha Omega Alpha, American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery, American Auditory Society, American College of Surgeons, American Medical Association, American Tinnitus Association, Ear Foundation Alumni Society, Norfolk Academy of Medicine, North American Skull Base Society, Society of University Otolaryngologists-Head and Neck Surgeons, Vestibular Disorders Association, Virginia Society of Otolaryngology-Head and Neck Surgery

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Ted L Tewfik, MD Professor of Otolaryngology-Head and Neck Surgery, Professor of Pediatric Surgery, McGill University Faculty of Medicine; Senior Staff, Montreal Children's Hospital, Montreal General Hospital, and Royal Victoria Hospital

Ted L Tewfik, MD is a member of the following medical societies: American Society of Pediatric Otolaryngology, Canadian Society of Otolaryngology-Head & Neck Surgery

Disclosure: Nothing to disclose.

Chief Editor

Arlen D Meyers, MD, MBA Professor of Otolaryngology, Dentistry, and Engineering, University of Colorado School of Medicine

Arlen D Meyers, MD, MBA is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery, American Head and Neck Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cerescan;RxRevu;SymbiaAllergySolutions<br/>Received income in an amount equal to or greater than $250 from: Symbia<br/>Received from Allergy Solutions, Inc for board membership; Received honoraria from RxRevu for chief medical editor; Received salary from Medvoy for founder and president; Received consulting fee from Corvectra for senior medical advisor; Received ownership interest from Cerescan for consulting; Received consulting fee from Essiahealth for advisor; Received consulting fee from Carespan for advisor; Received consulting fee from Covidien for consulting.

Additional Contributors

Robert A Battista, MD, FACS Assistant Professor of Otolaryngology, Northwestern University, The Feinberg School of Medicine; Physician, Ear Institute of Chicago, LLC

Robert A Battista, MD, FACS is a member of the following medical societies: American Academy of Otolaryngology-Head and Neck Surgery, Illinois State Medical Society, American Neurotology Society, American College of Surgeons

Disclosure: Nothing to disclose.


The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous author Karen K Hoffmann, MD, to the development and writing of this article.

  1. Eisen MD, Ryugo DK. Hearing molecules: contributions from genetic deafness. Cell Mol Life Sci. 2007 Mar. 64(5):566-80. [Medline]. [Full Text].

  2. Vrijens K, Van Laer L, Van Camp G. Human hereditary hearing impairment: mouse models can help to solve the puzzle. Hum Genet. 2008 Nov. 124(4):325-48. [Medline].

  3. Van Camp G, SmithR. Cloned genes for nonsyndromic hearing impairment. Hereditary Hearing Loss Homepage. Available at Accessed: 04/14/09.

  4. Brini M, Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E. Plasma-membrane calcium pumps and hereditary deafness. Biochem Soc Trans. Nov 2007. 35 (pt 5):913-8.

  5. Xing G, Chen Z, Cao X. Mitochondrial rRNA and tRNA and hearing function. Cell Res. 2007 Mar. 17(3):227-39. [Medline]. [Full Text].

  6. El-Amraoui A, Petit C. Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J Cell Sci. 2005 Oct 15. 118:4593-603. [Medline].

  7. Mehra S, Eavey RD, Keamy DG Jr. The epidemiology of hearing impairment in the United States: newborns, children, and adolescents. Otolaryngol Head Neck Surg. 2009 Apr. 140(4):461-72. [Medline].

  8. Saunders JE, Vaz S, Greinwald JH, Lai J, Morin L, Mojica K. Prevalence and etiology of hearing loss in rural Nicaraguan children. Laryngoscope. 2007 Mar. 117(3):387-98. [Medline].

  9. Ouyang XM, Yan D, Yuan HJ, et al. The genetic basis of non-syndromic hearing loss among Chinese. J Hum Genet. 2009. 54(3):131-40.

  10. Angeli SI. Phenotype/genotype correlations in a DFNB1 cohort with ethnical diversity. Laryngoscope. 2008 Nov. 118(11):2014-23. [Medline].

  11. Schimmenti LA, Martinez A, Telatar M, et al. Infant hearing loss and connexin testing in a diverse population. Genet Med. 2008 Jul. 10(7):517-24. [Medline].

  12. Korres S, Nikolopoulos TP, Komkotou V, et al. Newborn hearing screening: effectiveness, importance of high-risk factors, and characteristics of infants in the neonatal intensive care unit and well-baby nursery. Otol Neurotol. 2005 Nov. 26(6):1186-90. [Medline].

  13. Northern JL, Downs MP. Hearing in Children. 4th ed. Baltimore, Md: Williams & Wilkins; 1991. 28-31.

  14. Gigante M, d'Altilia M, Montemurno E, Diella S, Bruno F, Netti GS, et al. Branchio-Oto-Renal Syndrome (BOR) associated with focal glomerulosclerosis in a patient with a novel EYA1 splice site mutation. BMC Nephrol. 2013 Mar 18. 14:60. [Medline]. [Full Text].

  15. Liu XZ, Angeli SI, Rajput K, et al. Cochlear implantation in individuals with Usher type 1 syndrome. Int J Pediatr Otorhinolaryngol. 2008 Jun. 72(6):841-7. [Medline].

  16. Besnard T, García-García G, Baux D, et al. Experience of targeted Usher exome sequencing as a clinical test. Mol Genet Genomic Med. 2014 Jan. 2(1):30-43. [Medline]. [Full Text].

  17. Yoshimura H, Iwasaki S, Nishio SY, et al. Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1. PLoS One. 2014. 9(3):e90688. [Medline]. [Full Text].

  18. Shu HR, Bi H, Pan YC, Xu HY, Song JX, Hu J. Targeted exome sequencing reveals novel USH2A mutations in Chinese patients with simplex Usher syndrome. BMC Med Genet. 2015 Sep 16. 16:83. [Medline]. [Full Text].

  19. Soh LM, Druce M, Grossman AB, et al. Evaluation of genotype-phenotype relationships in patients referred for endocrine assessment in suspected Pendred syndrome. Eur J Endocrinol. 2015 Feb. 172 (2):217-26. [Medline]. [Full Text].

  20. Van Laer L, Cryns K, Smith RJ, Van Camp G. Nonsyndromic hearing loss. Ear Hear. 2003 Aug. 24(4):275-88. [Medline].

  21. Topsakal V, Hilgert N, van Dinther J, Tranebjaerg L, Rendtorff ND, Zarowski A, et al. Genotype-phenotype correlation for DFNA22: characterization of non-syndromic, autosomal dominant, progressive sensorineural hearing loss due to MYO6 mutations. Audiol Neurootol. 2010. 15(4):211-20. [Medline].

  22. Karamert R, Bayazit YA, Altinyay S, Yilmaz A, Menevse A, Gokdogan O, et al. Association of GJB2 gene mutation with cochlear implant performance in genetic non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol. 2011 Dec. 75(12):1572-5. [Medline].

  23. Usami SI, Nishio SY, Nagano M, Abe S, Yamaguchi T. Simultaneous Screening of Multiple Mutations by Invader Assay Improves Molecular Diagnosis of Hereditary Hearing Loss: A Multicenter Study. PLoS One. 2012. 7(2):e31276. [Medline]. [Full Text].

  24. Nadol JB Jr, Merchant SN. Histopathology and molecular genetics of hearing loss in the human. Int J Pediatr Otorhinolaryngol. 2001 Oct 19. 61(1):1-15. [Medline].

  25. Arnos Kathleen. Ethical and social implications of genetic testing for communication disorders. Journal of Communication Disorders. September-October 2008. 41:444-457.

  26. Cunningham M, Cox EO. Hearing assessment in infants and children: recommendations beyond neonatal screening. Pediatrics. 2003 Feb. 111(2):436-40. [Medline].

  27. DeStefano AL, Gates GA, Heard-Costa N, Myers RH, Baldwin CT. Genomewide linkage analysis to presbycusis in the Framingham Heart Study. Arch Otolaryngol Head Neck Surg. 2003 Mar. 129(3):285-9. [Medline].

  28. Smith Richard JH, Van Camp G. Deafness and Hereditary Hearing Loss, Overview. gene reviews. 2005. [Full Text].

  29. Smith Richard JH, Van Camp Guy. Deafness and Hereditary Hearing Loss Overview. geneReviews. Available at Accessed: December 22, 2008.

  30. Snoeckx RL, Huygen PL, Feldmann D, et al. GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet. 2005 Dec. 77(6):945-57. [Medline].

Inner ear.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.