Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Inflammatory Diseases of the Middle Ear Clinical Presentation

  • Author: Diego A Preciado, MD, PhD, FAAP; Chief Editor: Arlen D Meyers, MD, MBA  more...
 
Updated: Feb 08, 2016
 

History

The earliest clinical manifestation of acute suppurative otitis media is a sense of fullness in the ear with some conductive hearing loss. An earache may be present but is not severe.

In the exudative stage, the middle ear fills with an exudate, which is under pressure. Marked otalgia and fever are also present. In smaller children, anorexia, vomiting, and diarrhea may occur. Conductive hearing loss is noticeable. If the infection progresses, the tympanic membrane may perforate, initially producing hemorrhagic discharge and then mucopurulent discharge. The otalgia usually reduces after perforation.

The 2 classic symptoms of chronic suppurative otitis media (CSOM; mucosal disease) include otorrhea and hearing loss, which can affect one or both ears. The discharge varies in character, from serous or mucoid to frankly purulent, and the discharge may be intermittent or continuous. Blood-stained discharge is found in association with florid granulation tissue and aural polyps, and it is a common indicator of underlying cholesteatoma.

The predominant form of hearing loss associated with chronic middle ear disease is conductive in nature. More recently, the occurrence of sensorineural hearing loss in the ears with chronic discharge has been recognized. This hearing loss, which mainly involves high frequencies, is thought to result from the passage of bacterial toxins across the round window membrane to the cochlea.

The main symptom of CSOM with cholesteatoma is purulent otorrhea, with or without associated conductive hearing loss, similar to that of mucosal disease alone. Signs found during physical examination coupled with radiologic imaging findings are critical for the diagnosis of cholesteatoma because history symptoms are largely unreliable for determining the presence of cholesteatoma.

A study by McCormick et al indicated that during an infant’s first year, symptom severity in upper respiratory tract infection helps to predict whether concurrent AOM exists. Other factors that aid in the prediction include whether the child attends day care and whether earache and cough are present.[10]

Next

Physical

Otoscopic examination in patients with AOM reveals a hyperemic, opaque, bulging tympanic membrane. Pneumatic otoscopy demonstrates reduced mobility. Mucopurulent otorrhea is a reliable sign.

When the diagnosis of otitis media with effusion (OME) is questionable, tympanometry can be beneficial in the examination of infants older than 4 months. Alternatively, acoustic reflectometry with spectral gradient analysis may also be used because it costs less and does not require an airtight seal in the ear canal.

Examination with an operating microscope and adequate suction equipment is required for CSOM diagnosis. In young children, a short-acting, general anesthetic is sometimes required, especially when suction is needed.

In ears without cholesteatoma, the perforation is usually of the central type. Perforations vary in size, and the activity of the disease relates to the degree of discharge. The discharge may be mucoid or purulent. Microbiological swabs should be obtained to identify aerobic and anaerobic pathogens. Pulsatile purulent discharge occurs in heavily infected cases with capillary engorgement of the middle ear mucosa.

If the size of the perforation permits, various middle ear structures can be visualized. The middle ear mucosa is either normal or edematous, and aural polyps may be present, arising from the middle ear mucosa or the margins of the perforation. The most common ossicular abnormalities include disruption of the incudostapedial joint, necrosis of the incus long process, and medial retraction and shortening of the malleus handle. Other features include secondary otitis externa in ears with profuse discharge and scars in patients who have previously undergone otologic surgery.

The hearing loss should be assessed clinically using Rinne and Weber tuning fork tests.

In patients with CSOM with cholesteatoma, the site and the extent of the tympanic membrane defect and the presence and the extent of squamous epithelium and keratin debris should be noted. The involvement of the ossicular chain and the presence of inflammatory polyps, granulation tissue, or osteitis should also be noted.

Rigid lens otoscopy is particularly useful in assessing the extent of cholesteatoma.

The use of angled endoscopes permits examination of the facial recess and the sinus tympani, which is often involved in pars tensa cholesteatoma.

Postnasal space masses can block the orifices of the eustachian tube and cause otitis media. Therefore, an examination of an adult with unilateral otitis media must include a postnasal evaluation with flexible fiberoptic nasopharyngoscopy.

Previous
Next

Causes

See the list below:

  • Acute otitis media (AOM) prevalence varies by season, with an increased incidence in the colder months.
  • Day care is a major risk factor in the incidence of middle ear infections. Upper airway hygiene in children who attend day care is poor, and coughing, sneezing, and nasal dripping contaminate the environment with bacteria and viruses.
  • Anatomical variants, such as of the overt and submucous cleft palate, may cause recurrent episodes, often with subsequent complications.
  • Immunologic deficiencies and functional changes (eg, barotrauma, patulous eustachian tube) have an important influence on the incidence of middle ear infections.
  • Adenoid hypertrophy may be an important factor in the etiology of recurrent attacks, possibly because of its close relationship to the eustachian tube.
  • Passive smoking has been shown to be associated with the occurrence of otitis media, especially in preschool-aged children whose parents smoke.
  • Allergic rhinitis in children has been shown to be associated with higher prevalence of otitis media with effusion (OME). Inflammatory obstruction of the nasopharynx may lead to inflammatory swelling of the eustachian tube with resultant obstruction. This facilitates a reflux of bacteria-laden allergic nasopharyngeal secretions that can then enter the middle ear cavity to cause repeated bouts of otitis media.
  • Gastroesophageal reflux disease has also been recently implicated in the pathogenesis of OME. A recent study revealed higher concentrations (up to 1000-fold greater than serum levels) of pepsin/pepsinogen in children with OME. Although direct mechanistic causation has not been shown, the authors concluded that reflux of gastric juice into the middle ear may be the primary factor in the initiation of OME in children.
  • Several studies have attempted to determine a genetic link to recurrent otitis media. A recent study examined the frequency of otitis media in infants hospitalized with respiratory syncytial virus (RSV) infection and found that a certain interferon gamma (IFN-γ) polymorphism may represent one member of a family of genes that contributes to the measured heritability of otitis media. Rates of otitis media are significantly concordant in monozygotic twins.
Previous
 
 
Contributor Information and Disclosures
Author

Diego A Preciado, MD, PhD, FAAP Assistant Professor, Department of Otolaryngology, Division of Pediatric Otolaryngology, George Washington University School of Medicine, Children's National Medical Center

Diego A Preciado, MD, PhD, FAAP is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, Association for Research in Otolaryngology, American Society of Pediatric Otolaryngology, American Academy of Otolaryngology-Head and Neck Surgery

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Gerard J Gianoli, MD Clinical Associate Professor, Departments of Otolaryngology-Head and Neck Surgery and Pediatrics, Tulane University School of Medicine; President, The Ear and Balance Institute; Board of Directors, Ponchartrain Surgery Center

Gerard J Gianoli, MD is a member of the following medical societies: American Otological Society, Society of University Otolaryngologists-Head and Neck Surgeons, Triological Society, American Neurotology Society, American Academy of Otolaryngology-Head and Neck Surgery, American College of Surgeons

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Vesticon<br/>Received none from Vesticon, Inc. for board membership.

Chief Editor

Arlen D Meyers, MD, MBA Professor of Otolaryngology, Dentistry, and Engineering, University of Colorado School of Medicine

Arlen D Meyers, MD, MBA is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery, American Head and Neck Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cerescan;RxRevu;SymbiaAllergySolutions<br/>Received income in an amount equal to or greater than $250 from: Symbia<br/>Received from Allergy Solutions, Inc for board membership; Received honoraria from RxRevu for chief medical editor; Received salary from Medvoy for founder and president; Received consulting fee from Corvectra for senior medical advisor; Received ownership interest from Cerescan for consulting; Received consulting fee from Essiahealth for advisor; Received consulting fee from Carespan for advisor; Received consulting fee from Covidien for consulting.

Additional Contributors

John C Li, MD Private Practice in Otology and Neurotology; Medical Director, Balance Center

John C Li, MD is a member of the following medical societies: American Academy of Otolaryngology-Head and Neck Surgery, American Neurotology Society, American College of Surgeons, American Medical Association, American Tinnitus Association, Florida Medical Association, North American Skull Base Society

Disclosure: Received consulting fee from Synthes Power Tools for consulting.

Acknowledgements

The authors and editors of Medscape Drugs & Diseases gratefully acknowledge previous authors Nasir Aziz, MD, MA, Resident Physician, Riverside Regional Medical Center, and Sanjeev Silva, MBBS, MRCS, DLO, Senior House Officer, Department of Otorhinolaryngology, Head and Neck, Facial Plastics, Great Ormond Street Hospital for Sick Children, UK, for their contributions to this article.

References
  1. Cunningham M, Guardiani E, Kim HJ, Brook I. Otitis media. Future Microbiol. 2012 Jun. 7(6):733-53. [Medline].

  2. Stol K, Diavatopoulos DA, Graamans K, Engel JA, Melchers WJ, Savelkoul HF, et al. Inflammation in the Middle Ear of Children with Recurrent or Chronic Otitis Media is Associated with Bacterial Load. Pediatr Infect Dis J. 2012 Jun 4. [Medline].

  3. Marom T, Nokso-Koivisto J, Chonmaitree T. Viral-Bacterial Interactions in Acute Otitis Media. Curr Allergy Asthma Rep. 2012 Sep 12. [Medline].

  4. Iino Y, Nagamine H, Kakizaki K, et al. Effectiveness of instillation of triamcinolone acetonide into the middle ear for eosinophilic otitis media associated with bronchial asthma. Ann Allergy Asthma Immunol. 2006 Dec. 97(6):761-6. [Medline].

  5. Hurst DS. The role of allergy in otitis media with effusion. Otolaryngol Clin North Am. 2011 Jun. 44(3):637-54, viii-ix. [Medline].

  6. Coughlin L. AHRQ data on antibiotic use in children with otitis media. American Family Physician. June 2005.

  7. Vayisoglu Y, Gorur K, Ozcan C, Korlu S. Unusual complication of otitis media with effusion: facial nerve paralysis. J Craniofac Surg. 2011 Jul. 22(4):1525-7. [Medline].

  8. Browning GC. Medical management of chronic mucosal otitis media. Clin Otolaryngol Allied Sci. 1984 Jun. 9(3):141-4. [Medline].

  9. Dubey SP, Larawin V, Molumi CP. Intracranial spread of chronic middle ear suppuration. Am J Otolaryngol. 2009 Mar 31. [Medline].

  10. McCormick DP, Jennings K, Ede LC, Alvarez-Fernandez P, Patel J, Chonmaitree T. Use of symptoms and risk factors to predict acute otitis media in infants. Int J Pediatr Otorhinolaryngol. 2016 Feb. 81:55-9. [Medline].

  11. Rosenfeld RM, Shin JJ, Schwartz SR, et al. Clinical Practice Guideline: Otitis Media with Effusion (Update). Otolaryngol Head Neck Surg. 2016 Feb. 154 (1 Suppl):S1-S41. [Medline]. [Full Text].

  12. Frellick M. Otitis Media: New Guideline Includes Screening At-Risk Kids. Medscape Medical News. 2016 Feb 4. [Full Text].

  13. Barclay L. Postop Tympanostomy Tube Obstruction Common. Medscape Medical News. Jul 2014. [Full Text].

  14. Conrad DE, Levi JR, Theroux ZA, et al. Risk factors associated with postoperative tympanostomy tube obstruction. JAMA Otolaryngol Head Neck Surg. 2014 Aug 1. 140(8):727-30. [Medline].

  15. Balbani AP, Montovani JC. [Impact of otitis media on language acquisition in children]. J Pediatr (Rio J). 2003 Sep-Oct. 79(5):391-6. [Medline].

  16. Balbani AP, Montovani JC. [Impact of otitis media on language acquisition in children]. J Pediatr (Rio J). 2003 Sep-Oct. 79(5):391-6. [Medline].

  17. Casselbrant ML, Mandel EM, Rockette HE, Kurs-Lasky M, Fall PA, Bluestone CD, et al. The genetic component of middle ear disease in the first 5 years of life. Arch Otolaryngol Head Neck Surg. 2004 Mar. 130(3):273-8. [Medline].

  18. Heikkinen T, Chonmaitree T. Importance of respiratory viruses in acute otitis media. Clin Microbiol Rev. 2003 Apr. 16(2):230-41. [Medline].

  19. Iino Y, Kakizaki K, Katano H, Saigusa H, Kanegasaki S. Eosinophil chemoattractants in the middle ear of patients with eosinophilic otitis media. Clin Exp Allergy. 2005 Oct. 35(10):1370-6. [Medline].

  20. Katherine L. O’Brien and Mathuram Santosham Potential Impact of Conjugate Pneumococcal Vaccines on Pediatric Pneumococcal Diseases. Am J Epidemiol; 2004. 159: 634-644.

  21. Miceli Sopo S, Zorzi G, Calvani M Jr. Should we screen every child with otitis media with effusion for allergic rhinitis?. Arch Dis Child. 2004 Mar. 89(3):287-8. [Medline].

  22. Patel JA, Nguyen DT, Revai K, Chonmaitree T. Role of respiratory syncytial virus in acute otitis media: implications for vaccine development. Vaccine. 2007 Feb 19. 25(9):1683-9. Epub 2006 Nov 9. [Medline].

  23. Poelmans J, Tack J. Extraoesophageal manifestations of gastro-oesophageal reflux. Gut. 2005 Oct. 54(10):1492-9. [Medline].

  24. Spector ND, Kelly SF. Medical home, obesity, acute otitis media, and otitis media with effusion. Curr Opin Pediatr. 2004 Dec. 16(6):706-22. [Medline].

 
Previous
Next
 
Middle ear anatomy.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.