Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Medical Treatment for Acute Sinusitis Medication

  • Author: Ted L Tewfik, MD; Chief Editor: Arlen D Meyers, MD, MBA  more...
 
Updated: May 04, 2016
 

Medication Summary

Medical drainage is achieved with topical and systemic vasoconstrictors. Oral alpha-adrenergic vasoconstrictors, including pseudoephedrine and phenylephrine, can be used for 10-14 days to allow for restoration of normal mucociliary function and drainage. Because oral alpha-adrenergic vasoconstrictors may cause hypertension and tachycardia, they may be contraindicated in patients with cardiovascular disease. Oral alpha-adrenergic vasoconstrictors may also be contraindicated in competitive athletes because of rules of competition. Topical vasoconstrictors (eg, oxymetazoline hydrochloride) provide good drainage, but they should be used only for a maximum of 3-5 days, given the increased risk of rebound congestion, vasodilatation, and rhinitis medicamentosa when used for longer periods.

Mucolytic agents (eg, guaifenesin, saline lavage) have the theoretical benefit of thinning mucous secretions and improving drainage. They are not, however, commonly used in clinical practice in the treatment of acute sinusitis. Intranasal steroids have not been conclusively shown to be of benefit in cases of acute sinusitis.

Antihistamines are beneficial for reducing ostiomeatal obstruction in patients with allergies and acute sinusitis; however, they are not recommended for routine use for patients with acute sinusitis. Antihistamines may complicate drainage by thickening and pooling sinonasal secretions.

In cases of suspected or documented bacterial sinusitis, the second principle of treatment is to provide adequate systemic treatment of the likely bacterial pathogens (ie, S pneumoniae, H influenzae, M catarrhalis). The physician should be aware of the probability of bacterial resistance within their community. Approximately 44 % of H influenzae and almost all of M catarrhalis strains have beta-lactamase–mediated resistance to penicillin-based antimicrobials in children. As many as 64% of S pneumoniae strains are penicillin resistant because of altered penicillin-binding proteins. Multiple drug–resistant S pneumoniae strains are also found in substantial numbers of children in daycare settings.[11]

Initial selection of the appropriate antibiotic therapy should be based on the likely causative organisms given the clinical scenario and the probability of resistant strains within a community. The course of treatment is usually 14 days. First-line therapy at most centers is usually amoxicillin or a macrolide antibiotic in patients allergic to penicillin because of the low cost, ease of administration, and low toxicity of these agents. Amoxicillin should be given at double the usual dose (80-90 mg/kg/d), especially in areas with known S pneumoniae resistance.

Table 1. Dosage, Route, and Spectrum of Activity of Commonly Used First-Line Antibiotics* (Open Table in a new window)

Antibiotic Dosage Streptococcus pneumoniae Haemophilus influenzae Moraxella catarrhalis Anaerobic bacteria
Sensitive Intermediate Resistant
Amoxicillin 500 mg PO tid +++ ++ + ++ + +
Clarithromycin 250-500 mg PO bid ++ ++ + ++ +++ +
Azithromycin 500 mg PO first day, then



250 mg/d PO for 4 days



++ ++ + ++ +++ +

*+, low activity against microorganism; ++, moderate activity against microorganism; +++, good activity against microorganism

Patients who live in communities with a high incidence of resistant organisms, those who fail to respond within 48-72 hours of commencement of therapy, and those with persistence of symptoms beyond 10-14 days should be considered for second-line antibiotic therapy. The most commonly used second-line therapies include amoxicillin clavulanate, second- or third-generation cephalosporins (eg, cefuroxime, cefpodoxime, cefdinir), macrolides (ie, clarithromycin), fluoroquinolones (eg, ciprofloxacin, levofloxacin, moxifloxacin), and clindamycin.

In patients with dental causes of sinusitis or those with foul-smelling discharge, anaerobic coverage using clindamycin or amoxicillin with metronidazole is necessary.

Table 2. Dosage, Route, and Spectrum of Activity of Commonly Used Second-Line Antibiotics* (Open Table in a new window)

Antibiotic Dosage Streptococcus pneumoniae Haemophilus influenzae Moraxella catarrhalis Anaerobic bacteria
Sensitive Intermediate Resistant
Amoxicillin/clavulanate 500 mg PO tid +++ ++ + +++ +++ +++
Cefuroxime 250-500 mg PO bid +++ ++ + +++ ++ ++
Cefpodoxime



+



cefixime



200 mg PO bid



400 mg/d PO



-



++



+++



-



++



-



+



+++



+++



+++



+++



-



Ciprofloxacin 500-750 mg PO bid ++ + + ++ +++ +
Levofloxacin 500 mg/d PO +++ +++ +++ +++ +++ +++
Trovafloxacin 200 mg/d PO +++ +++ +++ +++ +++ +++
Clindamycin 300 mg PO tid +++ +++ +++ - - +++
Metronidazole 500 mg PO tid - - - - - +++

*+, low activity against microorganism; ++, moderate activity against microorganism; +++, good activity against microorganism; -, no activity against microorganism

Patients with nosocomial acute sinusitis require adequate intravenous coverage of gram-negative organisms. Aminoglycoside antibiotics are usually the drugs of choice for the treatment of such patients because of their excellent gram-negative coverage and sinus penetration. Selection of an antibiotic is usually based on the culture results of attained maxillary secretion.

In addition to surgical management, complications of acute sinusitis should be managed with a course of intravenous antibiotics. Third-generation cephalosporins (eg, cefotaxime, ceftriaxone) in combination with vancomycin provide adequate intracranial penetration, making them a good first-line choice.

Table 3. Dosage, Route, and Spectrum of Activity of Commonly Used Intravenous Antibiotics* (Open Table in a new window)

Antibiotic Dosage Streptococcus pneumoniae Haemophilus influenzae Moraxella catarrhalis Gram-negative Anaerobic bacteria
Piperacillin 3-4 g IV q4-6h +++ + - +++ +++
Piperacillin/tazobactam 3.375 g IV q6h +++ +++ +++ +++ ++
Ticarcillin 3 g IV q4h +++ - - +++ ++
Ticarcillin/clavulanate 3.1 g IV q4h +++ +++ - +++ ++
Imipenem 500 mg IV q6h +++ +++ +++ +++ +++
Meropenem 1 g IV q8h +++ +++ +++ +++ ++
Cefuroxime 1 g IV q8h +++ +++ +++ ++ ++
Ceftriaxone 2 g IV bid +++ +++ +++ +++ ++
Cefotaxime 2 g IV q4-6h +++ +++ +++ +++ ++
Ceftazidime 2 g IV q8h +++ +++ +++ +++ ++
Gentamicin 1.7 mg/kg IV q8h - +++ +++ ++ -
Tobramycin 1.7 mg/kg IV q8h - +++ +++ ++ -
Vancomycin 1 g IV q6-12h +++ - - - ++

*+, low activity against microorganism; ++, moderate activity against microorganism; +++, good activity against microorganism; -, no activity against microorganism

Described below are recommended antibiotic regimens.

Next

Antibiotics

Class Summary

Therapy must be comprehensive and cover all likely pathogens in the context of this clinical setting.

Amoxicillin (Trimox, Amoxil, Biomox)

 

First-line antibiotic. Interferes with synthesis of cell wall mucopeptides during active multiplication, resulting in bactericidal activity against susceptible bacteria.

Cefdinir (Omnicef)

 

Classified as a third-generation cephalosporin and inhibits mucopeptide synthesis in the bacterial cell wall. Typically bactericidal, depending on organism susceptibility, dose, and serum or tissue concentrations.

Clarithromycin (Biaxin)

 

First-line antibiotic. Inhibits bacterial growth, possibly by blocking dissociation of peptidyl tRNA from ribosomes, causing RNA-dependent protein synthesis to arrest.

Cefuroxime (Ceftin, Kefurox, Zinacef)

 

Second-line PO and first-line IV antibiotic. Maintains gram-positive activity that first-generation cephalosporins have; adds activity against P mirabilis, H influenzae, E coli, K pneumoniae, and M catarrhalis.

Condition of patient, severity of infection, and susceptibility of microorganism determine proper dose and route of administration.

Ceftriaxone (Rocephin)

 

Third-generation cephalosporin with broad-spectrum, gram-negative activity; lower efficacy against gram-positive organisms; higher efficacy against resistant organisms. Arrests bacterial growth by binding to one or more penicillin binding proteins. Has good penetration.

Vancomycin (Vancocin, Lyphocin, Vancoled)

 

Potent antibiotic directed against gram-positive organisms and active against Enterococcus species. Useful in the treatment of septicemia and skin structure infections. Indicated for patients who cannot receive or have failed to respond to penicillins and cephalosporins or who have infections with resistant staphylococci. For abdominal penetrating injuries, it is combined with an agent active against enteric flora and/or anaerobes.

To avoid toxicity, current recommendation is to assay vancomycin trough levels after third dose drawn 0.5 h prior to next dosing. Use CrCl to adjust dose in patients diagnosed with renal impairment.

Used in conjunction with gentamicin for prophylaxis in penicillin-allergic patients undergoing gastrointestinal or genitourinary procedures. Effective for resistant S pneumoniae.

Amoxicillin/Clavulanate (Augmentin)

 

Drug combination treats bacteria resistant to beta-lactam antibiotics.

Previous
 
 
Contributor Information and Disclosures
Author

Ted L Tewfik, MD Professor of Otolaryngology-Head and Neck Surgery, Professor of Pediatric Surgery, McGill University Faculty of Medicine; Senior Staff, Montreal Children's Hospital, Montreal General Hospital, and Royal Victoria Hospital

Ted L Tewfik, MD is a member of the following medical societies: American Society of Pediatric Otolaryngology, Canadian Society of Otolaryngology-Head & Neck Surgery

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Stephen G Batuello, MD Consulting Staff, Colorado ENT Specialists

Stephen G Batuello, MD is a member of the following medical societies: American Academy of Otolaryngology-Head and Neck Surgery, American Association for Physician Leadership, American Medical Association, Colorado Medical Society

Disclosure: Nothing to disclose.

Chief Editor

Arlen D Meyers, MD, MBA Professor of Otolaryngology, Dentistry, and Engineering, University of Colorado School of Medicine

Arlen D Meyers, MD, MBA is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery, American Head and Neck Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cerescan;RxRevu;SymbiaAllergySolutions<br/>Received income in an amount equal to or greater than $250 from: Symbia<br/>Received from Allergy Solutions, Inc for board membership; Received honoraria from RxRevu for chief medical editor; Received salary from Medvoy for founder and president; Received consulting fee from Corvectra for senior medical advisor; Received ownership interest from Cerescan for consulting; Received consulting fee from Essiahealth for advisor; Received consulting fee from Carespan for advisor; Received consulting fee from Covidien for consulting.

Additional Contributors

Jack A Coleman, MD Consulting Staff, Franklin Surgical Associates

Jack A Coleman, MD is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Sleep Medicine, American Academy of Otolaryngic Allergy, American Academy of Otolaryngology-Head and Neck Surgery, American Bronchoesophagological Association, American College of Surgeons, The Triological Society, American Society for Laser Medicine and Surgery, Association of Military Surgeons of the US

Disclosure: Received honoraria from Accarent, Inc. for speaking and teaching.

Acknowledgements

Melvin D Schloss, MD, FRCSC, Director of Pediatric Otolaryngology, Professor, Department of Otolaryngology, McGill University Faculty of Medicine, Canada

Disclosure: Nothing to disclose.

Steven E Sobol, MD, FRCSC, MSc, FAAP Assistant Professor, Director of Pediatric Otolaryngology, Department of Otolaryngology Head and Neck Surgery, Emory University School of Medicine; Otolaryngologist-In-Chief, Children's Healthcare of Atlanta at Egleston

Steven E Sobol, MD, FRCSC, MSc, FAAP is a member of the following medical societies: American Academy of Otolaryngology-Head and Neck Surgery

Disclosure: Nothing to disclose.

References
  1. Bishai WR. Issues in the management of bacterial sinusitis. Otolaryngol Head Neck Surg. 2002 Dec. 127(6 Suppl):S3-9. [Medline].

  2. Ray NF, Baraniuk JN, Thamer M, Rinehart CS, Gergen PJ, Kaliner M. Healthcare expenditures for sinusitis in 1996: contributions of asthma, rhinitis, and other airway disorders. J Allergy Clin Immunol. 1999 Mar. 103(3 Pt 1):408-14. [Medline].

  3. [Guideline] Rosenfeld RM, Andes D, Bhattacharyya N, Cheung D, Eisenberg S, Ganiats TG, et al. Clinical practice guideline: adult sinusitis. Otolaryngol Head Neck Surg. 2007 Sep. 137(3 Suppl):S1-31. [Medline].

  4. Khalid AN, Ladha KS, Luong AU, Quraishi SA. Association of Vitamin D Status and Acute Rhinosinusitis: Results From the United States National Health and Nutrition Examination Survey 2001-2006. Medicine (Baltimore). 2015 Oct. 94 (40):e1447. [Medline]. [Full Text].

  5. Savolainen S, Jousimies-Somer H, Karjalainen J. Do simple laboratory tests help in etiologic diagnosis in acute maxillary sinusitis?. Acta Otolaryngol Suppl. 1997. 529:144-7. [Medline].

  6. Georgy MS, Peters AT. Chapter 8: Rhinosinusitis. Allergy Asthma Proc. 2012 May-Jun. 33 Suppl 1:S24-7. [Medline].

  7. Pynnonen MA, Lynn S, Kern HE, et al. Diagnosis and treatment of acute sinusitis in the primary care setting: A retrospective cohort. Laryngoscope. 2015 May 22. [Medline].

  8. Fleming-Dutra KE, Hersh AL, Shapiro DJ, et al. Prevalence of Inappropriate Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010-2011. JAMA. 2016 May 3. 315 (17):1864-1873. [Medline].

  9. Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, et al. Clinical practice guideline (update): adult sinusitis. Otolaryngol Head Neck Surg. 2015 Apr. 152 (2 Suppl):S1-S39. [Medline].

  10. Patel RG, Daramola OO, Linn D, et al. Do you need to operate following recovery from complications of pediatric acute sinusitis?. Int J Pediatr Otorhinolaryngol. 2014 Jun. 78(6):923-5. [Medline].

  11. Slack CL, Dahn KA, Abzug MJ, Chan KH. Antibiotic-resistant bacteria in pediatric chronic sinusitis. Pediatr Infect Dis J. 2001 Mar. 20(3):247-50. [Medline].

  12. Sobol SE, Marchand J, Tewfik TL, Manoukian JJ, Schloss MD. Orbital complications of sinusitis in children. J Otolaryngol. 2002 Jun. 31(3):131-6. [Medline].

  13. Chandler JR, Langenbrunner DJ, Stevens ER. The pathogenesis of orbital complications in acute sinusitis. Laryngoscope. 1970 Sep. 80(9):1414-28. [Medline].

  14. Boto LR, Calado C, Vieira M, Camilo C, Abecasis F, Campos AR, et al. [Subdural empyema due to gemella morbillorum as a complication of acute sinusitis]. Acta Med Port. 2011 May-Jun. 24(3):475-80. [Medline].

  15. Fukushima K, Noda M, Saito Y, Ikeda T. Streptococcus sanguis meningitis: report of a case and review of the literature. Intern Med. 2012. 51(21):3073-6. [Medline].

  16. [Guideline] Slavin RG, Spector SL, Bernstein IL, Kaliner MA, Kennedy DW, Virant FS, et al. The diagnosis and management of sinusitis: a practice parameter update. J Allergy Clin Immunol. 2005 Dec. 116(6 Suppl):S13-47. [Medline].

  17. Taylor JA, Weber W, Standish L, et al. Efficacy and safety of echinacea in treating upper respiratory tract infections in children: a randomized controlled trial. JAMA. 2003 Dec 3. 290(21):2824-30. [Medline].

 
Previous
Next
 
Air-fluid level (arrow) in the maxillary sinus suggests sinusitis.
Table 1. Dosage, Route, and Spectrum of Activity of Commonly Used First-Line Antibiotics*
Antibiotic Dosage Streptococcus pneumoniae Haemophilus influenzae Moraxella catarrhalis Anaerobic bacteria
Sensitive Intermediate Resistant
Amoxicillin 500 mg PO tid +++ ++ + ++ + +
Clarithromycin 250-500 mg PO bid ++ ++ + ++ +++ +
Azithromycin 500 mg PO first day, then



250 mg/d PO for 4 days



++ ++ + ++ +++ +
Table 2. Dosage, Route, and Spectrum of Activity of Commonly Used Second-Line Antibiotics*
Antibiotic Dosage Streptococcus pneumoniae Haemophilus influenzae Moraxella catarrhalis Anaerobic bacteria
Sensitive Intermediate Resistant
Amoxicillin/clavulanate 500 mg PO tid +++ ++ + +++ +++ +++
Cefuroxime 250-500 mg PO bid +++ ++ + +++ ++ ++
Cefpodoxime



+



cefixime



200 mg PO bid



400 mg/d PO



-



++



+++



-



++



-



+



+++



+++



+++



+++



-



Ciprofloxacin 500-750 mg PO bid ++ + + ++ +++ +
Levofloxacin 500 mg/d PO +++ +++ +++ +++ +++ +++
Trovafloxacin 200 mg/d PO +++ +++ +++ +++ +++ +++
Clindamycin 300 mg PO tid +++ +++ +++ - - +++
Metronidazole 500 mg PO tid - - - - - +++
Table 3. Dosage, Route, and Spectrum of Activity of Commonly Used Intravenous Antibiotics*
Antibiotic Dosage Streptococcus pneumoniae Haemophilus influenzae Moraxella catarrhalis Gram-negative Anaerobic bacteria
Piperacillin 3-4 g IV q4-6h +++ + - +++ +++
Piperacillin/tazobactam 3.375 g IV q6h +++ +++ +++ +++ ++
Ticarcillin 3 g IV q4h +++ - - +++ ++
Ticarcillin/clavulanate 3.1 g IV q4h +++ +++ - +++ ++
Imipenem 500 mg IV q6h +++ +++ +++ +++ +++
Meropenem 1 g IV q8h +++ +++ +++ +++ ++
Cefuroxime 1 g IV q8h +++ +++ +++ ++ ++
Ceftriaxone 2 g IV bid +++ +++ +++ +++ ++
Cefotaxime 2 g IV q4-6h +++ +++ +++ +++ ++
Ceftazidime 2 g IV q8h +++ +++ +++ +++ ++
Gentamicin 1.7 mg/kg IV q8h - +++ +++ ++ -
Tobramycin 1.7 mg/kg IV q8h - +++ +++ ++ -
Vancomycin 1 g IV q6-12h +++ - - - ++
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.